
Università degli Studi di Torino
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Summary

Understanding regulation of estrogen-responsive genes is central to molec-

ular biology and of great interest in medicine. The transcriptional activa-

tion/repression due to estrogen stimuli is gene- and cell- type specific, with

a relevant molecular syntax being either unknown or not completely under-

stood. Tissue- and cell type-specificity of the physiological response to es-

trogen has been addressed in experimental models by employing large-scale

approaches, and results suggest that both complexity of transcriptional co-

regulators and epigenetics of chromatin organization are involved. Existence

of several regulatory classes, e.g. early/late up/down- regulated clearly ap-

pears in microarrays and ChIP-on-Chip studies, but little is known about

the underlying features of the corresponding gene regulatory sequences. Bio-

chemical pathways target different DNA sequence elements and build up the

combinatorial control which is a key in the regulatory events. The distribu-

tion of these DNA elements in the responsive gene regulatory regions should

enable the inference of this regulatory networks.

We collected and compared expression data from genome-wide experiments

in breast cancer cell models with a view to characterizing DNA flanking re-

gions of hundreds of estrogen-responsive genes, possibly assessing differences

between up- vs. down-regulated classes. In other words, we aimed at iden-

tifying the sequence motifs that may describe the differences between genes

that are up- and down- regulated by estrogen, suggesting context features

and possible control pathways. We set up a bioinformatics pipeline which

combines traditional approaches focused on DNA sequence analysis of prox-
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imal regions with a method that enables investigation of distal conserved

nucleotide blocks of co-regulated estrogen-responsive genes (early responders

only). We mainly focused our attention on those motifs identified by all of

the tools and/or in different experimental datasets, with a view to inferring

both regulatory factors to be tested in laboratory and relevant regulatory

networks.

Although chromatin is a major context determinant of gene responsiveness,

our pipeline handles the DNA sequences as linear strings. A topographic

perspective is achievable to some extent, but we did not attempt it on a

large scale. This pipeline also assumes that transcription binding sites tend

to be overrepresented and to cluster in modules, and that evolution conser-

vation is a key in their functionality. Despite universality of these assump-

tions has been recently challenged, we could assess remarkable features of

the sequences which may have important biological implications. The up-

stream regions of early up-regulated genes strongly differ from the ones of

early down-regulated genes, suggesting different regulatory mechanisms for

the two classes of genes. Significant motifs’ localization is provided, along

with ontological analysis of gene subsets and transcription factor distribu-

tions. An example of co-localization of transcription factor binding sites in

the 5’-flanking sequence of cyclin G2, which suggests a direct interaction be-

tween estrogen receptor and GATA-3 factor (ER-GATA), is also discussed in

detail. This interaction may be important in mammary gland development.
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Chapter 1

The complexity of estrogen

regulation in health and disease

We provide the background of the project and outline the thesis goals.

1.1 Mechanisms of estrogen receptor signal-

ing

1.1.1 Context-dependent complexity

Estrogen plays a role in a variety of key physiological processes in the human

body, as well as in the development and progression of many diseases. The

binding of estrogen to its nuclear receptor triggers a chain of molecular events.

The transcriptional result (e.g. activation/repression) is determined by the

type of co-factor complexes recruited by the activated receptor in a gene-

and cell type-specific way. The syntax of these complexes’ recruitment is

not completely understood, while a comprehension of how the relevant genes

are regulated is especially interesting in medicine. In breast cells, estrogen

induce cell proliferation and, for this reason, breast cancer is largely treated

with antiestrogenic drugs. Antiestrogenic treatments fail in about 40% of

cases, since the cellular context becomes progressively capable of converting

antiestrogenic action into estrogenic. Similarly, some of these drugs are antie-

strogenic in breast cells but estrogenic in other cells (such as osteoblast, for

8



1.1. MECHANISMS OF ESTROGEN RECEPTOR SIGNALING 9

example). Generally speaking, the cellular context results from the interplays

of several factors: chromatin remodeling proteins, RNA polymerase II com-

plexes, activity of co-activators and co-repressors, transcription factors and

signal transduction pathways [6]. The cellular context makes the response

highly variable in different tissues and gives rise to complex consequences

in medicine. Tamoxifen – an effective anti-proliferative drug employed in

breast cancer, may have opposite effects in endometrium where the ratio of

concentration of specific co-repressors/-activators is lower than in breast tis-

sue. Besides, in a type of breast cancer where HER2/neu membrane receptor

is over-expressed, resistance to Tamoxifen emerges at an early stage of the

treatment, due to detrimental synergy between the proliferation generated

via estrogen receptor (ER) and the signal cascade activated through receptor

HER2/neu.

1.1.2 Estrogen receptors as allosteric switches

Over the past 50 years, a host of studies have focused on transcriptional

control in vertebrates and, specifically, on the nuclear receptor (NR) super-

family which mediates the response to steroid hormones and to other signal-

ing molecules. Estrogen receptors belong to this superfamily of transcription

factors, which are modular proteins composed of three major domains: a

transactivation domain (N-terminus), which is the most variable among the

family members and whose 3D-structure is undetermined; a rigid DNA bind-

ing domain (DBD) with two zinc-finger motifs common to the entire family;

a ligand binding domain (LBD), well conserved and structured but able to

exhibit remarkable plasticity. The overall structural plasticity enables nuclear

receptors to respond to a variety of inputs in the specific tissue, given the

specific set of proteins they interact with. In molecular terms, isosteric lig-

ands induce receptor surface changes which favor recruitment of co-activator

vs. co-repressor complexes, thus determining transcriptional activation vs.

repression. Hence, ligand-induced allosteric alteration of estrogen receptor,

ER, is a key molecular event that modulates the response to both estro-

gen and selective estrogen receptor modulators (SERMs). There are two

estrogen receptor isoforms, ERα and ERβ, whose structural and functional
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organization is very similar [1]. They are specifically distributed in the hu-

man body. The concentration ratio of ERα and ERβ is thought to have a

functional role [3, 12], with ERα and ERβ often acting in opposite ways in

terms of cellular effect [3,4]. No crystal structure of an entire nuclear recep-

tor is available; but, for example, structures of the DBD domain bound to its

responsive element ERE (see Figure 1.1), and of the ligand binding domain

bound to several compounds have been obtained for ERα [3, 5]. Estrogen

receptors may form both homo- and hetero-dimers, one to another and with

other nuclear receptors [1,3]. For example, there is evidence that crosstalk ex-

ists between ERα and the estrogen receptor-related receptors (ERRs), which

enable estrogen to regulate genes [3].The formation of heterodimers allows

for the enhancement of combinatorial effects of ligands. ERs are activated by

estrogen and SERMs, but they may be effective even in absence of ligands.

There is also evidence for unliganded activation and modulation of ER ac-

tivities due to post-translational modifications (phosphorylation, ubiquitiny-

lation, acetylation), which can occur in specific sites within transactivation

and ligand binding domains (see [6]).

1.1.3 Genomic and non-genomic pathways

Two different models of estrogen action are currently reviewed in litera-

ture [1]. In one mechanism – the so-called genomic pathway, ERs are located

in the nucleus and, after complexation with ligand, bind DNA either directly

to the estrogen response element sequences (EREs) or through other proteins

already bound to the DNA, such as Sp1 and NFkB. As a result, appropri-

ate co-regulatory proteins are recruited to the promoter and mRNA levels

are modulated accordingly. These events produce a physiological response

on the hours time scale. This mechanism is often referred to as ’classical’

in opposition to the fastest non-genomic pathway, which occurs within sec-

onds/minutes after activation of ER located in cytoplasm, near or embedded

into the plasma membrane. The non-genomic mechanism involves protein

kinase cascades, with rapid changes in the concentration of cellular second-

messengers and phosphorylation of several structural proteins and transcrip-

tion factors. The genomic and non-genomic pathways may converge, con-
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Figure 1.1: Estrogen receptor DNA binding domain-DNA complex: a ball-

and-stick model from crystal structure published by Schwabe et al. [2]). Key

residues in color. Estrogen receptor element is a palindromic sequence com-

posed of two RGGTCA motifs separated by 3-nt space which is a key in

the recognition and binding events. YASARA molecular modeling software

package.

tributing the complexity of the estrogen regulation [8, 9]. Phosphorylation

and other post-translational modifications mentioned above is the major bio-

chemical events responsible for the achievement of nuclear receptor-mediated

and signal transduction pathways’ convergence.

Genomic regulation In the genomic pathway, estrogen receptors primar-

ily act as nuclear receptors. In absence of ligand, the receptor is bound to

multiproteic complexes which contain heat shock proteins and immunophilins.

The binding of estrogen (or other ligands) induces a conformational change

that freed the receptor, which is able to form dimers upon binding the DNA

either directly or indirectly. When the receptor adopts a different conforma-
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tion, a different molecular surface is formed which may interact with different

complexes, either co-activators or repressors. Both the receptor transactiva-

tion domain (N-terminal) and the ligand binding domain LBD (C-terminal)

surfaces contact specific proteins, which in turn mediate interaction with

either co-activator or co-repressor complexes. This events result in either

up-regulation or down-regulation of the relevant gene. While the interac-

tions involving the N-terminal are not very well understood, the C-terminal

interactions have been described in depth. Here do we briefly illustrate a

pharmacological example. From the comparison of the crystal structures of

LBD bound to estrogen and to raloxifene, an antagonist, a mechanism for

explaining agonism/antagonism has been derived [11]. When estradiol occu-

pies the binding pocket, a helix from the LBD, H12, caps the ligand in the

cavity and shields the pocket from external environment contributing to the

hydrophobic pocket; the resulting molecular surface favors the interaction

with co-activators, through the recognition of co-activator LXXLL motif by

a hydrophobic groove formed by helices 3,5,12. When instead raloxifene is

bound, H12 is displaced by the conformation of ligand and its position pre-

vents the recognition of the nuclear-receptor surface by co-activator LXXLL

motif. The receptor now displays increased affinity for the NCoR/SMART

co-repressors [6]. Since a pletora of co-activators and co-repressors – each

having common and distinct activities– exist in the cell and in different cell

types, subtle changes in the LBD structure may determine which set of co-

regulators are preferred and, therefore establish the final transcriptional re-

sult. Even the DNA sequence may display an allosteric effect on co-activator

recruitment, at least in the case of glucocorticoid receptor [7]

As repeatedly emphasized above, estrogen receptor (ER) acts an allosteric

switch due to its conformational plasticity, and its conformational changes

are induced by several types of inputs: 1) isosteric ligands, 2) ERE sequence

variations [10], and 3) phosphorylation which results from the activation of

signaling cascades.

Non-genomic regulation The major protein kinase cascades involved in

the estrogen response are the following: Src homology and collagen/growth

factor receptor binding protein 2/SOS/mitogen-activated protein kinase (MAPK),
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phosphatidylinositol 3-kinase/AKT, and cyclic AMP (cAMP)/protein kinase

A (PKA) pathways [8]. These pathways phosphorylate and activate several

transcription factors among which Jun, for example; and, through phos-

phorylation, they may change the activity of co-activators and co-repressors

and/or determine their nucleo-plasmatic delocalization [6, 8].

1.2 Large-scale approaches to estrogen regu-

lation

Understanding the tissue-specificity of estrogen regulation requires large-

scale approaches which enable comparison of transcriptional profiles under

different experimental/physiological conditions. Microarrays have been em-

ployed in order to address the gene responsiveness to estrogen and/or anti-

estrogens in both cellular and clinical models. Expressed genes are mainly

linked to proliferation, apoptosis, and development. Results of these exper-

iments display different classes of genes with different kinetics of response,

that is genes which respond quickly (1-3 hours) and genes which respond

with delay (3-6 or 10-12 hours). In addition to this, some genes respond

transiently and others are stably regulated. It was also observed that the

number of genes which are repressed by estrogen equals the number of genes

that are induced. This was somehow unexpected. Estrogenic regulation

was characterized on gene models that turned out to be induced gene, and

the theoretical models of estrogenic response in molecular biology textbook

only pictures recruitment of transcriptional coactivators as a result of estra-

diol(E2)/ER binding to DNA. These different groups of co-regulation –e. g.

up- vs. down-regulated and early vs. late– clearly point to different mecha-

nisms and pathways of regulation.

As mentioned above, there are several known mechanisms by which estrogen

can achieve gene regulation. The first way is by ER binding to responsive

regions in target genes, either by direct DNA interaction on ERE [2, 15] or

by protein-protein contact with another DNA binding factor, as described

in the case of NFkB, Sp1 and AP-1 [15]. The second possibility arises from

nongenomic responses through the MAPK pathway: this results in phospho-
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rylation, activation or cellular re-location of transcription factors (e.g. Jun)

and coactivators or corepressors (e.g. SRC1, SMRT), which finally act on

specific genes. In addition to this, even the ’secondary’ transcriptional re-

sponse –i.e. estrogen stimulating or inhibiting the expression of transcription

factors (e.g. c-fos, TFAP2c, c-MYB, c-MYC) which in turn bind to and reg-

ulate a secondary set of genes– may have a role in estrogen regulation. In

principle this modality is limited to delayed responses –it takes some time to

a cell to transcribe and to translate significant amounts of new proteins– but

examples of this type of regulation are known to be able to influence gene

transcription within 2-3 hours.

All of these regulation categories have been well-documented on single genes

in the case of positive regulation by estrogen, whereas little or no informa-

tion is available for gene repression. In order to understand the complex-

ity of genomic responses to estrogen, it is mandatory to distinguish among

these possibilities. In pursuing this task, the first essential step is to deter-

mine whether a regulated gene is a direct target of estrogen-activated ER,

either by direct ER-ERE interaction or by ER-to-factor-DNA interaction.

Therefore, experiments were carried out in order to map ER binding sites

in the genome and to correlate them with microarray results. The ChIP-

on-Chip technique –the immunoprecipitation of chromatin fragments with

factor-specific antibodies followed by identification of the associated DNA

fragments on promoter or genomic tiled microarrays– has provided a power-

ful tool for defining transcription factor binding site profiles. ChIP-on-Chip

data for ERα were produced essentially by three groups [12, 25, 65], work-

ing with different approaches (see Chapter 2 for a list of genes). Data from

genome-wide ER mapping have been matched with expression microarray

data. From this comparison, it appears that there is not outstanding over-

representation of ER-binding in any coregulation class, not even in the early

upregulated class, which theoretically represents the paradigm of immediate

gene response to a nuclear receptor ligand.

Since the estrogen responsive element (ERE) has been described in some

detail, from both mutagenesis and structural data, matrix alignment can be

used to map ERE-sequences through bioinformatics approaches. The highest

affinity binding sites for ERE in vitro are palindromic elements composed of
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two RGGTCA motifs separated by 3 bp (see FIG 1.1). Bourdeau et al. [19]

screened for consensus and near-consensus EREs the (-10kb to +5kb) flank-

ing regions of human and mouse genes (refer to Chapter 2 for a list of pairs of

orthologs). They identified approximately 70,000 motifs in both genomes and

demostrated that near-consensus EREs occur frequently in both genomes,

and that far upstream elements can be evolutionarily conserved and bind

ERα in vivo. Besides, they found multiple occurences of conserved and non-

conserved elements in more than 230 genes that are estrogen-stimulated in

microarray experiments. In a more recent yet unpublished work from our

group, ERE was mapped by a new algorithm (Cardamone et al.,in prepara-

tion) and found to be more or less equally represented in the -2000 to +500

region of both up-regulated and down-regulated genes. The bioinformatics

screenings for EREs, anyways, are hampered by the nature of ERE signal

itself (see introdution to Chapter 3).

Interestingly, there is evidence that estrogen-bound ER can act as a repressor

for certain genes: the cyclin G2 gene, which is robustly downregulated by es-

trogen treatment, contains a half-ERE that ChIP, mutagenesis and reporter

studies demonstrated to be essential for estrogenic effect. Besides, the core-

pressor NCoR (the same factor which is recruited by antagonist-bound ER)

was found at the cyclin G2 promoter [13]. The same was proved for other 2

estrogen-down-regulated genes, among which the bone morphological factor

7 [50]. These results raise the following questions: How can the same tran-

scription factor be an activator of certain genes and a repressor of certain

others? How is the E2-ER complex interpreted by other cellular proteins

in such a way that it has dramatically divergent effects? We can speculate

that the overall capacity of the receptor to interact with other proteins is

defined by the context of the gene and associated promoter-specific factors,

which together function to establish an activating or a repressing molecular

environment. For example, the Sp1 factor is known to interact with ER, and

its cognate CG-rich elements are frequently found accompanying the EREs.

This is the case of cyclin G2, in which Sp1 plays a pivotal role either in activa-

tion or in ER-mediated repression. Of course, the same line of reasoning can

be applied with more ease to secondary response, in which the composition

of transcription factor binding sites in a gene determine its transcriptional
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response to the composition of factors primarily regulated by estrogen.

1.3 Goals of the thesis

The sequence features of the regulatory region of the genes represent the

primary environment to receive ER signal and to interpret it. This ’envi-

ronment’ should not be considered as a pure DNA sequence or DNA-protein

ensemble, but it has to be thought as a complex interplay of signals that reg-

ulate protein-DNA interaction and protein-protein interaction and a complex

chromatin dynamics that would or not allow interaction of the proteins with

DNA. The key assumption here is that the primary determinant resides in

the DNA sequence itself. We reasoned that such a ’sequence environment’

may be traced looking at groups of genes that display homogeneous mode

of regulation (co-regulons). Thus, among the different gene sets defined by

microarray experiments, we concentrated our attention on the more striking

co-regulons, i.e. genes that are up- and down- regulated early after estrogen

treatment in cell culture, in a time lap when secondary regulation is pre-

sumably less important. The 5’-flanking regions of these genes were explored

with different bioinformatics tools, in order to identify a number of candidate

sequence motifs which could 1) represent target of regulation by transcription

factors or other nuclear proteins, 2) significantly associate with the type of

transcriptional result observed, and 3) hint at specific pathways and modes

of ’control’ of the estrogenic signal, independently on the presence or absence

of the ER itself.

Therefore, we collected and compared genome-wide data from breast cancer

cell models, with a view to functionally characterizing the regulatory regions

of estrogen-responsive genes through DNA sequence analyses. We focused

on the early-responder genes, setting an upper limit for responsiveness to 4

hours after estrogenic stimulation. We prepared four datasets extracting lists

of up/ down-regulated genes from the four homogeneous experiments avail-

able in literature, and prepared an additional collection of data from different

platforms and cell lines (metaset). We set up a bioinformatics pipeline which

combines traditional approaches sequence analysis of proximal DNA flanking

regions with a method that allows for exploring distal, conserved nucleotide
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blocks. First, we aimed at inferring both regulatory factors to be tested in

vitro/in vivo and relevant regulatory networks. Moreover, we pointed to as-

sess difference between up- vs. down-regulated gene 5’-flanking regions, as

well as to propose a novel investigation method based upon detection of the

combinatorial elements involved in gene regulatory control.

We did not address other regulatory mechanisms, such as epigenetics of chro-

matin organization –though very relevant to estrogen-mediated regulation–

and the possible involvement of miRNAs, recently recognized as important

regulators in other biological systems.



Chapter 2

Collection of

estrogen-responsive genes

We describe and compare several genome-wide experiments from which we

extracted the gene lists for subsequent analyses of 5’-flanking regions. We

also define our core-promoters and upstream sequences.

2.1 Dataset1: Metaset

This dataset was obtained by collation of data taken from early microarray

experiments, up to the year 2005 [17–20]. We build a list of all the genes

which were down-regulated within 4h after estrogen stimulation in several

immortalized breast cancer cell lines. In the end, the list size was 135. Each

gene has been given a score which reflected the number of independent ex-

periments collected and the experimental assessment of ERE presence. In

particular, one point was assigned to a gene for each single experiment (ex-

pression, promoter analysis, etc.) in a specific cell line, and 10 points for

Chip data. For example, when a gene was down-regulated in two different

microarray experiments it was assigned score -2; when chIP data was also

available the same gene got -12. A list of the same size for up-regulated

genes was also prepared as a control, where each gene was assigned an ex-

perimental score (of opposite sign) with the same criterion employed in the

case of down-regulated genes. The full list of genes is reported in Tables 2.1-

18
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7. Genes regulated with intermediate (5-6h) and late (>6h) kinetics were

also incorporated into the database for future reference, but have not been

treated in this work. In this dataset, early genes are identified by Official

Symbol, Gene ID and Ensemble! entry codes, and their experimental scores

are marked by an A in order to distinguish them from intermediate (B) and

late (C).

2.2 Dataset2: M.Brown

The experiment by Carroll ET AL. [22] provides the first map of all es-

trogen receptor and RNA polymerase II binding sites on a genomic scale in

breast cancer cells (CF7), in combination with gene expression data obtained

stimulating with Estrada for 0, 3, 6 and 12 h. Expression microarrays were

Aviatrix U133 plus 2.0 (over 47,000 transcripts), and the level of differential

expression at each time point was calculated relative to 0h. The microarray

employed for the Chip study was Asymmetric human tiling 1.0 (the entire

non-repetitive human genome sequence, NCBI build 35). For our analyses,

we extracted the 3-hour dataset (expression data) and the list of genes which

presented an ER-binding site (by Chip) in the flanking iatrogenic region from

the supplementary files provided by the authors. We sorted the expression

data into two lists, up- and down-regulated genes, which respectively contain

362 and 412 genes (RefSeq labels).

2.3 Dataset3: K.Nephew

Fan et al. [23] investigated into the acquired resistance to anti-estrogens ta-

moxifen and fulvestrant in breast cancer cells, through comparison of gene ex-

pression and DNA methylation profiles obtained in three breast cell lines: the

MCF7 model and two of its drug-resistant derivatives (MCF7-T and MCF7-

F). The microarray platform was Affimetrix U133 plus 2.0 (over 47,000 tran-

scripts), as in dataset2. We employed the data relevant to the treatment of

cell models with estradiol (E2), considering all responsive subsets where the

MCF7 wild type was involved (supplementary table S1 of Ref. [23]). Indeed,
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many of these genes were expressed accordingly with different fold changes

in the drug-resistant models as well. All in all, there are 202 up-regulated

genes and 158 down-regulated genes (both RefSeq and Gene Symbol) in this

dataset.

2.4 Dataset4: M. Rosenfeld

The authors aimed at determining in vivo binding profiles of transcription

factors, and, employing a new technology specifically developed, they showed

”an unprecedented number of the estrogen receptor (ERa) target genes in

MCF-7 cells”, and that ”only a fraction of these ERa direct target genes were

highly responsive to estrogen”. The expression of this fraction of ER-bound,

estrogen-inducible genes was associated with breast cancer progression in

humans. In contrast to the others, this experiment [24] –the most recent one

in our collection, was performed with Illumina (Human WG-6) as regard

the expression data (ArrayExpress database, accession no E-MEXP-984).

We extracted data at 3h with differential expression set to 50 both for up-

and down-regulated genes and cut-off= 0.98. This cutoff –the lowest of the

three suggested by the authors: 1, 0.99 and 0.98– represents the chance that

the detected spot corresponds to a gene that is expressed, even at low level.

Please, note that cut-off choice dramatically affects number of genes which

are deemed expressed. In our lists, there are 389 up-regulated genes and

203 down-regulated genes. We added BMP7 to the latter list, which shows a

modulation slightly below 0.98. So the size of the down-regulated set was 204

in the end. We also took data relevant to the chIP experiments performed

in proximal region (508 genes). From the same laboratory, we also employed

ChIP-DSL data which provides a list of 577 gene promoters ([-800,+200])

where ER is bound to [25]. The ChIP experiment was performed with a

microarray containing probes to 22K human gene promoters in RefSeq. Only

54 genes out of 575 were also found to be regulated by estradiol in the same

experiment [25].
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2.5 Dataset5: M.Rae

Creighton et al. [26] generated gene expression profiles from three differ-

ent estrogen receptor a -positive breast cancer cell lines (MCF7, T47D, and

BT474) stimulated by estradiol in vitro over time (4h, 8h, 24h, 48h) and

compared these profiles to the ones obtained from MCF7 cells grown as

xenograph. They also compared their data to published clinical data [26],

showing good overlap among in vitro and in vivo data, as well as published

clinical results. They also indicated enrichment for transcriptional targets

of the myc oncogene in the estrogen-responsive genes, and correlation with

MYC expression in human tumors. They employed Affymetrix U133A, which

contains almost 45,000 probe sets representing more than 39,000 transcripts

derived from approximately 33,000 well-substantiated human genes (Uni-

Gene database; build 133, April 20, 2001); and Affimetrix U133 plus 2.0

(over 47,000 transcripts). Then, they took the 22,283 probe sets shared be-

tween the two platforms in their analysis. They used a p-value < 0.01. For

our analyses, we extracted from their supplementary excel file clusters A and

B, e.g. the early (4h) up-regulated, and clusters E and F, e.g. the early (4h)

down-regulated. Clusters A and E contains the genes that after early induc-

tion/repression return to the baseline within 24h, while the genes in clusters

B and F showed sustained induction or repression through 24h. The authors

examined each of the gene clusters for significantly enriched Gene Ontology

annotation terms [16] and found that 1) there were no significant GO terms in

the early up-regulated genes that return to baseline before 24 hours (cluster

A; dataset5a) and in the early genes with sustained down-regulation (cluster

F; dataset5b); 2) there were significant GO terms which include ’ribosomal

function’ and ’RNA and protein processing’ in early sustained up-regulated

genes (cluster B; dataset5b); 3) for the early down-regulated genes that re-

turn to the baseline before 24 hours (cluster F; dataset5a), significant GO

terms involve ’transcription factor activity’, ’development’, and ’cell adhe-

sion’. In the remaining gene clusters relevant to 8,12,24 hours, the author

found enrichment of cell cycle-related terms, which is consistent with the

observation that breast cancer cells stimulated with estrogen begin to divide

and proliferate by 24 hours.



2.6. SUMMARY 22

2.6 Summary

The panel below (Figure 2.1) summarizes key features of the datasets in

our database. Dataset1 –a collation of data extracted from a variety of

experiments published till the 2005, is collected in Tables 2.1-7. In Table 2.8,

size of each dataset before sequence analyses.

Figure 2.1: Features of datasets 2,3,4,5. MCF7+ indicates responsive genes

in more than one cell lines/xenograph

Intersections: Down-regulated class We were interested in the most

robust genes in the down-regulated class of the database. The relevant 9

pairwise-dataset intersections are collected in Table 2.9 below (metalist not

directly included).

All datasets share the following three genes: BMP7, bone morphogenesis

factor 7; CCNG2, cyclin G2; and GTF2IRD1, GTF2I repeat domain con-

taining 1. The genes BMP7 and CCNG2 are also contained in the metalist

(dataset1) where they represent the highest score entries. It is worth noticing
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that dataset5a is complemental to dataset5b, and it does not contain BMP7

and CCNG2 by construction. None are found in the ER-bound promoter list

of dataset4 [25].

In addition to the gene triad mentioned above, for dataset2 ∩ dataset3 ∩

dataset4 we observed the following subsets {EFNA1, FZD2, MXD4, ID3};

for dataset3 ∩ dataset4 ∩ dataset5b {BTG2, MARCKS, PPFIBP2, SOCS2,

BIK}; for dataset2 ∩ dataset4 ∩ dataset5b {LMNA, RAB26, RXRA}. Among

these genes, the following ones are in the metalist as well: BIK (-1A), BTG2

(-1A), EFNA1 (-1A), and RXRA (-2A). None of these genes are in the ER-

bound promoter list of dataset4 (ChIP-DSL data) [25]. MXD4 (Max dimer-

ization protein), ID3 (inhibitor of DNA binding), and RAB26 (member Ras

oncogene family) are instead found in the list of ER-bound genes in distal

region (dataset2) [22]. GTF2IRD1, GTF2I repeat domain containing 1, is

also in this list. In Table 2.12, we gathered the down-regulated genes of our

collection which are found in the ChIP-DSL data [25]; and the genes found in

the collection of 660 pairs of orthologs which bear high affinity EREs within

2kb from TSS by Bourdeau et al. [19] are listed in Table 2.13.

Intersections: Up-regulated class The relevant 9 pairwise-dataset in-

tersections are collected in Table 2.11-12 below (metalist not directly in-

cluded). At least 9 up-regulated genes are in all datasets. They are as

follows (HUGO IDs): AMD1, ASB13, CCND1, CXCL12, DDX21, IGFBP4,

NRIP1, NP and RLN2. Surprisingly, TFF1 or pS2 – a gene whose induction

by estradiol is employed as a positive control, is not contained in dataset3.

None of these genes are in the ER-bound promoter list of dataset4 [25]; how-

ever, all but two genes (NP and RLN2) are found in the the list of ER-bound

genes in distal region (dataset2) [22]. In Table 2.14, we gathered the up-

regulated genes of our collection which are found in the ChIP-DSL data [25];

and the genes found in the collection of 660 pairs of orthologs which bear

high affinity EREs within 2kb by Bourdeau et al. [19] are listed in Table 2.15.
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2.7 Discussion

The four experiments, e.g. dataset2,3,4,5, overlap to a very limited extent,

especially in the case of down-regulated class where only three genes appear

in all lists. Even in the class of the more populated up-regulated class, we

find less than 10 genes in all lists. Comparison between datasets from dif-

ferent genome-wide experiments are complicated by several facts inherent to

the experimental techniques, as discussed in Ref. [27] –a review of strengths

and weakness of genome-wide approaches for identification of nuclear recep-

tor target genes. There is no standard way to interpret microarray data, and

variability is linked to experimental protocols, intrinsic stochastic noise in

gene expression, as well as experimental model. However, this should not

suggest that microarrays data is not valuable. Indeed, even though genes

may be different, the functions they carry out are consistent. The limited

overlap of gene lists may be partially due to the fact that we chose to take

the data as they were published; an alternative procedure could have started

with the re-normalization of raw data before comparison and sequence anal-

yses, but the shortcomings mentioned above would not be avoided even in

this case. Several genes in both regulatory classes, anyway, appear in more

than one datasets and certainly are robust entries.

The overlap between, on the one hand, the gene lists from the five datasets

and, on the other hand, both ChIP data by Kwon et al. [25] and list of

orthologs which bear putative EREs according to Bourdeau et al. [19] is

limited to about a tenth of genes per dataset. The intersection between

ChIP [25] and in-silico data [19] contains 3 genes from the down-regulated

class (ANKRD2, CITED2, NR1D1), and 6 genes from the up-regulated class

(CASP7, CYP1B1, FOXC1, HNRPDL, IFRD1, TPBG). These 9 genes are

indicated in bold in Table 2.13 and Table 2.15. This suggests that the genes

in our database –a subpopulation of the estrogen-responsive genes in breast

cancer cells– might be influenced by indirect mechanisms (e.g. E2-ER in-

teracting with DNA-bound proteins, non-genomic pathways and secondary

response). It is worth noticing that the bioinformatics screening by Bourdeau

et al. was performed on a old version of human and mouse genomes (h.s.

NCBI33, m.m. NCBI30), while the experiments refer to new versions (h.s.
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NCBI35). Moreover, given the limited number of genes (respectively 577

and 660) in the ChIP-DSL and in-silico data lists, primary targets directly

regulated by ER through ERE may be more than the few ones found.

2.8 A database called EREGLON

All of the lists are stored in a database, EREGLON, which is installed on a

Linux SunV20Z server and managed through MySQL open software. Clinical

and model data relevant to responsiveness to anti-estrogens, for example, can

be added to the database and analyzed accordingly. A comparison between

clinical and model data in diverse conditions shall provide valuable insight

into breast cancer pathogenesis. EREGLON should become an integrated

tool for storage, analysis and experimental design in the study of estrogen

regulation. In addition to primary data such as gene lists/sequences rele-

vant to diverse samples/experiments, it will contain secondary information

obtained from sequence analyses. The fully integrated database may become

a publicly accessible resource, useful for the identification of tumor markers

and the design of new experiments. Sequence analyses and relevant pathway

inference –the dynamic core of EREGLON, is performed by a bioinformatics

pipeline described in Chapter 3.



GOS GID ensgID experiments scr

ACTN1 87 ENSG00000072110 ZR75(ma) +1A

ADCY9 115 ENSG00000162104 ma +1A

AKAP1 8165 ENSG00000121057 ZR75(ma) +11A

AREG 374 ENSG00000109321 MCF7(ma)++ +1A

ARL3 403 ENSG00000138175 ZR75 (ma), MCF7 (ma) +2A

ARMCX6 54470 ENSG00000198960 ZR75 (ma) +1A

ASB13 79754 ENSG00000196372 MCF7 (ma),T47D, MDA-MB-436 +3A

ASS 445 ENSG00000130707 MCF7 (SAGE, North; ma) +1A

B4GALT1 2683 ENSG00000086062 MCF7 (ma) +1A

BCAT1 586 ENSG00000060982 T47D (ma) +1A

BCL2 596 ENSG00000171791 MCF7 (ma) +1A

BIRC5 332 ENSG00000089685 ZR75 (ma) +1A

CALCR 799 ENSG00000004948 MCF7 (ma, PCR) +1A

CAV1 857 ENSG00000105974 MCF7 (SAGE, North) +1A

CBFA2T3 863 ENSG00000129993 ma +1A

CCND1 595 ENSG00000110092 MCF7 (SAGE, North), ZR75 (ma), ZR75-1 (North, West,+) +3A

CD44 960 ENSG00000026508 ZR75 (ma) +1A

CDC6 990 ENSG00000094804 MCF7 (ma, PCR) +1A

COL4A6 1288 ENSG00000197565 MCF7 (ma), T47D (ma) +2A

CTSD 1509 ENSG00000117984 MCF7 (ma) ++; MCF7(EMSA) +2A

CXCL12 6387 ENSG00000107562 ZR75 (ma), MCF7 (ma,PCR) +2A

CYR61 3491 ENSG00000142871 MCF7 (in situ hyb, North, West) ++ +2A

E2IG2 51287 ENSG00000181924 MCF7 (SAGE, North) +1A

E2IG5 (C3orf28) 26355 ENSG00000114023 MCF7 (SAGE, North) +1A

EDG2 1902 ENSG00000198121 T47D (ma) +1A

EGR1 1958 ENSG00000120738 ma +1A

EGR3 1960 ENSG00000179388 MCF7 (ma, PCR) +1A

EIF3S9 8662 ENSG00000106263 ZR75 (ma) +1A

EIF5A 1984 ENSG00000132507 MCF7 (SAGE, North) +1A

ELL2 22936 ENSG00000118985 MCF7 (PCR,ma), T47D (ma) +2A

F12 2161 ENSG00000131187 ZR75 (ma) +1A

FKBP4 2288 ENSG00000004478 MCF7 (SAGE, North), ZR75 (ma) +2A

FLJ13611 80006 ENSG00000113597 T47D (ma) +1A

FLJ36166 349152 ENSG00000170629 MCF7(ma), ZR75 (ma) +2A

FOS 2353 ENSG00000170345 ZR75 (ma), MCF7 (ma, PCR) +2A

FOXC1 2296 ENSG00000054598 ZR75 (ma) +11A

FOXP1 27086 ENSG00000114861 MCF7 (ma), T47D (ma) +2A

G6PD 2539 ENSG00000160211 ZR75 (ma) + +1A

GADD45B 4616 ENSG00000099860 MCF7 (ma, PCR) +1A

GAPDH 2597 ENSG00000111640 T47D (ma); MCF7 (EMSA) +2A

Table 2.1: Metalists from metaset; up-/down-regulated +/- score; A= early. cont’d
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GLRB 2743 ENSG00000109738 MCF7 (ma) +1A

GREB1 9687 ENSG00000196208 MCF7 (ma); MCF7 (EMSA) +2A

H2AFZ 3015 ENSG00000164032 MCF7 (SAGE, North) +1A

H3F3A 3020 ENSG00000163041 MCF7 (SAGE, North) +1A

HBG2 3048 ENSG00000196565 T47D (ma) +1A

HIP12 (HIP1R) 9026 ENSG00000130787 ZR75 (ma) +1A

HMGB1 3146 ENSG00000189403 MCF7 (SAGE), ZR75 (ma) +2A

HOXC5 3222 ENSG00000172789 ma +1A

HOXC6 3223 ENSG00000197757 MCF7 (ma, PCR) +1A

HS3ST3A1 9955 ENSG00000153976 MCF7 (ma),T47D, MDA-MB-436 +3A

HSPA1A 3303 ENSG00000204389 ZR75 (ma) +1A

HSPA5 3309 ENSG00000044574 ZR75 (ma) +1A

HSPA8 3312 ENSG00000109971 MCF7 (SAGE, North) +1A

HSPCB 3326 ENSG00000096384 MCF7 (SAGE, North), ZR75 (ma) +2A

HSPD1 3329 ENSG00000144381 MCF7 (SAGE, North), ZR75 (ma) +2A

IGFBP4 3487 ENSG00000141753 ZR75 (ma), MCF7 (ma, PCR) +; MCF7(EMSA) +3A

INHBB 3625 ENSG00000163083 MCF7 (SAGE, North) +1A

ISG20 3669 ENSG00000172183 MCF7(ma) + +1A

JUN 3725 ENSG00000177606 ZR75 (ma) +1A

KCNAB1 7881 ENSG00000169282 MCF7 (ma), T47D (ma) +2A

CRKL 1399 ENSG00000099942 MCF7(ChIP) +10A

KLF10 7071 ENSG00000155090 ZR75 (ma) +1A

LAMA3 3909 ENSG00000053747 ZR75 (ma) +1A

LDHA 3939 ENSG00000134333 MCF7 (ma), T47D (ma) +2A

LOC92017 92017 no entry MCF7 (SAGE, North), ZR75 (ma) +2A

LRRC49 54839 ENSG00000137821 MCF7 (ma), T47D (ma) +2A

LTF 4057 ENSG00000012223 MCF7 (ma), T47D (ma) +2A

MGC16121 84848 ENSG00000165705 MCF7(ma) +1A

MYB 4602 ENSG00000118513 ZR75 (ma), MCF7 (nucl run-on trans anal., North, West) +2A

MYBL2 4605 ENSG00000101057 ZR75 (ma) +1A

MYC 4609 ENSG00000136997 ZR75 (ma) +1A

MYH11 4629 ENSG00000133392 ZR75 (ma) +1A

NME1 4830 ENSG00000011052 ZR75 (ma), MCF7 (SAGE, ?) +2A

NOLC1 9221 ENSG00000166197 ZR75 (ma) +1A

NRP1 8829 ENSG00000099250 ZR75 (ma) +1A

NRP2 8828 ENSG00000118257 T47D (ma) +1A

NTNG1 22854 ENSG00000162631 MCF7 (ma), T47D (ma) +2A

OLFM1 10439 ENSG00000130558 MCF7(ma), ZR75 (ma) +2A

OSTF1 26578 ENSG00000134996 MCF7 (ma), MCF7 (ma, PCR) +2A

PA2G4 5036 ENSG00000170515 MCF7 (SAGE, North) +1A

Table 2.2: Metalists from metaset; up-/down-regulated +/- score; A= early. cont’d
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PCNA 5111 ENSG00000132646 MCF7(ma) +1A

PPP2CA 5515 ENSG00000113575 T47D (ma) +1A

PTGER3 5733 ENSG00000050628 MCF7(SAGE,North) +1A

PTMA 5757 ENSG00000187514 MCF7(el.phgelassay, north,west), MDA-MB-231(idem) +12A

RAB31 11031 ENSG00000168461 MCF7(ma), MCF7 (ma) +2A

RAN 5901 ENSG00000132341 MCF7(SAGE,North), ZR75 +2A

RARA 5914 ENSG00000131759 MCF7(ma,PCR), MCF7 (ma),T47D, MDA-MB-436 +3A

RASGRP1 10125 ENSG00000172575 ma +1A

RBBP7 5931 ENSG00000102054 MCF7 (ma, PCR) +1A

RERG 85004 ENSG00000134533 ZR75 (ma) +1A

RET 5979 ENSG00000165731 ZR75 (ma), MCF7 (ma,PCR) +2A

RFC5 5985 ENSG00000111445 ZR75 (ma) +1A

RPL14 9045 ENSG00000188846 ZR75 (ma) +1A

RPS3 6188 ENSG00000149273 ZR75 (ma) +1A

RPSA 3921 ENSG00000168028 ZR75 (ma) +1A

RRM1 6240 ENSG00000167325 ZR75 (ma) +1A

RSAD2 91543 ENSG00000134321 ZR75 (ma) +1A

RUSC1 23623 ENSG00000160753 ZR75 (ma) +1A

SEPT2 4735 ENSG00000168385 ZR75 (ma) +1A

SERPINB6 5269 ENSG00000124570 ZR75 (ma) +1A

SFRS1 6426 ENSG00000136450 ZR75 (ma) +11A

SFRS7 6432 ENSG00000115875 ZR75 (ma) +1A

SKB1 10419 ENSG00000100462 ZR75 (ma) +1A

SLC16A6 9120 ENSG00000108932 ZR75 (ma) +1A

SLC1A2 6506 ENSG00000110436 MCF7 (ma), T47D (ma) +2A

NRIP1 8204 ENSG00000180530 MCF7 (ma, PCR); MCF7(EMSA); MCF7(ChIP, PCR) +12A

SLC26A2 1836 ENSG00000155850 ZR75 (ma) +2A

SLC7A5 8140 ENSG00000103257 ZR75 (ma), MCF7 (ma, PCR) +2A

SLC9A3R1 9368 ENSG00000109062 ZR75 (ma), MCF7 (ma) +2A

SLK 9748 ENSG00000065613 ma +1A

SNRPA 6626 ENSG00000077312 ZR75 (ma) + +1A

SOCS3 9021 ENSG00000184557 ZR75 (ma) +1A

SPRED1 161742 ENSG00000166068 MCF7 (ma), T47D (ma) +2A

STAR 6770 ENSG00000147465 MCF7 (ma), T47D (ma) +2A

STC2 8614 ENSG00000113739 MCF7 (ma), ZR75 (ma) +12A

STK6 6790 ENSG00000087586 ZR75 (ma) +1A

TFF1 7031 ENSG00000160182 ZR75(ma), MCF7 (SAGE, North) ++; MCF7(ChIP,PCR); MCF7(EMSA) +13A

TGIF2 60436 ENSG00000137801 MCF7 (ma) +1A

THBS1 7057 ENSG00000118707 MCF7 (ma) +1A

TMF1 7110 ENSG00000144747 MCF7 (ma, PCR) +1A

Table 2.3: Metalists from metaset; up-/down-regulated +/- score; A= early. cont’d
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TP53 7157 ENSG00000141510 ma +1A

TPBG 7162 ENSG00000146242 ZR75(ma) +11A

TPD52L1 7164 ENSG00000111907 ZR75 (ma), MCF7 (ma, PCR) +12A

TSPAN5 10098 ENSG00000168785 MCF7 (ma), MCF7 (ma, PCR) +2A

TXNIP 10628 ENSG00000117289 ZR75 (ma) +1A

ZNF703 80139 ENSG00000183779 MCF7 (ma), ZR75 (ma) +2A

ZNF9 7555 ENSG00000169714 MCF7(SAGE,North) +1A

CYP1B1 1545 ENSG00000138061 T47D (ma) +11A

FOXA1 3169 ENSG00000129514 MCF7(ChIP) +11A

PTGES 9536 ENSG00000148344 MCF7(ma) +1A

STS 412 ENSG00000101846 MCF7(ChIP) +1A

NR0B2 8431 ENSG00000131910 MCF7(ChIP) +1A

FEM1A 55527 ENSG00000141965 MCF7(ChIP) +11A

CYP4F11 57834 ENSG00000171903 MCF7(ChIP) +11A

RPS6KL1 83694 ENSG00000198208 MCF7(ChIP) +1A

ABCC5 10057 ENSG00000114770 MCF7 (ChIP)+ -10A

ABCG2 9429 ENSG00000118777 MCF7 (ChIP) -10A

ACHE 43 ENSG00000087085 ZR-75 (ma) -1A

ACPL2 92370 ENSG00000155893 T-47D (ma) -1A

ALOX12B 242 ENSG00000179477 T-47D (ma) -1A

ANGPTL4 51129 ENSG00000167772 MCF7 (ma) -1A

ANXA2 302 ENSG00000182718 ZR-75 (ma) -1A

ARF4L 379 ENSG00000113966 MCF7 (ma)+ -1A

ARID5B 84159 ENSG00000150347 T-47D (ma) -1A

ATP2A3 489 ENSG00000074370 MCF-7 (ma)+ -1A

ATP9A 10079 ENSG00000054793 ZR-75 (ma) -1A

BAK1 578 ENSG00000030110 MCF-7 (ma)+ -1A

BCL3 602 ENSG00000069399 ChIP+ -10A

BIK 638 ENSG00000100290 MCF-7 (ma)++ -1A

BIRC4BP 54739 ENSG00000132530 ZR-75 (ma) -1A

BLNK 29760 ENSG00000095585 MCF-7 (ma,RT-PCR) -1A

BMP7 655 ENSG00000101144 ChIP; T-47D(ma) -11A

BTG2 7832 ENSG00000159388 MCF-7 (ma,RT-PCR)++ -1A

C10ORF110 55853 no ensg MCF-7 (ma) -1A

C10ORF45 (FAM107B) 83641 no ensg MCF-7 (ma)+ -1A

C13ORF10 (RBM26) 64062 ENSG00000139746 MCF-7 (ma) -1A

C17ORF37 84299 ENSG00000141741 MCF-7 (ma) -1A

CBLB 868 ENSG00000114423 MCF-7 (ma)+ -1A

CCNG2 901 ENSG00000138764 MCF-7 (ma)++; T-47D(ma); ZR75(ma); ChIP -13A

CD7 924 ENSG00000173762 T-47D (ma) -1A

Table 2.4: Metalists from metaset; up-/down-regulated +/- score; A= early. cont’d
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CDC42EP3 10602 ENSG00000163171 T-47D (ma) -1A

CDC42EP4 23580 ENSG00000179604 T-47D(ma) -1A

CDK6 (MGC59692) 1021 ENSG00000105810 MCF-7 (ma);T-47D (ma) -2A

CDKN1A 1026 ENSG00000124762 MCF-7 (ma,RT-PCR)+ -1A

CEACAM6 4680 ENSG00000086548 MCF-7 (ma) -1A

CENTG1 116986 ENSG00000135439 T-47D (ma) -1A

CLDN4 1364 ENSG00000189143 ZR-75 (ma)+;+MCF7 -1A

COPA 1314 ENSG00000122218 MCF-7 (ma); ZR-75-1 (SAGE) -2A

CPS1 1373 ENSG00000021826 MCF-7 (ma) -1A

CRABP2 1382 ENSG00000143320 T-47D (ma) -1A

CREBBP 1387 ENSG00000005339 MCF-7 (ma) -1A

CRISP3 10321 ENSG00000096006 T-47D (ma) -1A

CTBS 1486 ENSG00000117151 T-47D (ma) -1A

CXCR4 7852 ENSG00000121966 MCF-7 (ma, RT-PCR) -1A

DDIT4 54541 ENSG00000168209 MCF-7 (ma)++, ChIP+ -11A

DNER 92737 ENSG00000187957 T-47D (ma) -1A

DUSP4 1846 ENSG00000120875 MCF-7 (ma, RT-PCR) -1A

EEF1G 1937 ENSG00000186676 MCF-7 (ma) -1A

EFEMP1 2202 ENSG00000115380 MCF-7 (ma)+ -1A

EFNA1 1942 ENSG00000169242 MCF-7 (ma)+ -1A

EGFL4 1954 ENSG00000105429 ZR-75 (ma) -1A

ENC1 8507 ENSG00000171617 MCF-7 (ma)+ -1A

EPB41L5 57669 ENSG00000115109 MCF-7 (ma) -1A

EPHA4 2043 ENSG00000116106 T-47D (ma); MCF-7 (ma)+ -2A

EPLIN 51474 ENSG00000050405 MCF-7 (ma)+ -1A

EPOR 2057 ENSG00000187266 MCF-7 (ma, RT-PCR) -1A

ERBB2 2064 ENSG00000141736 MCF-7 (ma, PCR)+ -1A

ERBB3 2065 ENSG00000065361 MCF-7 (ma)+; ZR-75-1 (SAGE) -2A

ERBP 30836 ENSG00000067334 ZR-75 (ma) -1A

ERF 2077 ENSG00000120705 MCF-7 (ma) -1A

F10 2159 ENSG00000126218 T-47D(ma) -1A

FBN1 2200 ENSG00000166147 T-47D (ma) -1A

FLJ11336 55346 ENSG00000176148 MCF-7 (ma) -1A

FLJ14201 81539 ENSG00000111371 MCF-7 (ma) -1A

FLJ14213 79899 ENSG00000135362 T-47D (ma) -1A

FLJ21963 79611 ENSG00000111058 MCF-7 (ma)++ -1A

FVT1 2531 ENSG00000119537 MCF-7 (ma) -1A

GRB10 2887 ENSG00000106070 MCF-7 (ma) -1A

GTF2H2 2966 ENSG00000145736 ZR-75 (ma) -1A

HBG1 3047 ENSG00000019655 T-47D (ma) -1A

Table 2.5: Metalists from metaset; up-/down-regulated +/- score; A= early. cont’d



GOS GID ensgID experiments scr

HBP1 26959 ENSG00000105856 MCF-7 (ma), ChIP+ -11A

HBQ1 3049 ENSG00000086506 T-47D (ma) -1A

HEATR1 55127 ENSG00000119285 MCF-7 (ma) -1A

HGS 9146 ENSG00000185359 ZR-75 (ma) -1A

HIG2 29923 ENSG00000135245 T-47D(ma) -1A

HUWE1 10075 ENSG00000086758 MCF-7 (ma) -1A

ID2 3398 ENSG00000115738 MCF-7 (ma) -1A

IDI1 3422 ENSG00000067064 ZR-75 (ma) -1A

IDS 3423 ENSG00000010404 ZR-75 (ma) -1A

IFNB1 3456 ENSG00000171855 T-47D(ma) -1A

IFT122 (WDR10) 55764 ENSG00000163913 MCF-7 (SAGE, )+ -1A

IGFBP5 3488 ENSG00000115461 ZR-75 (ma)+ -1A

IKIP 121457 ENSG00000166130 ZR-75 (ma) -1A

IL1R1 3554 ENSG00000115594 MCF-7 (ma, RT-PCR) -1A

IL1RL2 8808 ENSG00000115598 ZR-75 (ma) -1A

IL4 3565 ENSG00000113520 MCF-7 (ma) -1A

INHBA 3624 ENSG00000122641 T-47D(ma) -1A

IRX5 10265 ENSG00000176842 T-47D(ma) -1A

ISGF3G 10379 ENSG00000092098 ZR-75 (ma);++ -1A

KCNG1 3755 ENSG00000026559 T-47D (ma) -1A

KIAA0492 57238 no entry ZR-75 (ma) -1A

KIFAP3 (SMAP) 22920 ENSG00000075945 T-47D (ma);EMSA -2A

KLF6 1316 ENSG00000067082 MCF-7 (ma) -1A

KRT23 25984 ENSG00000108244 T-47D (ma) -1A

KYNU 8942 ENSG00000115919 MCF-7 (ma)+ -1A

LIM (PDLIM5) 10611 ENSG00000163110 MCF-7 (ma) -1A

LIMK2 3985 ENSG00000182541 MCF-7 (ma) -1A

LMCD1 29995 ENSG00000071282 T-47D (ma) -1A

LOC440281 440281 no entry ZR-75 (ma) -1A

LOC441027 (FLJ12993) 441027 no entry MCF-7 (ma) -1A

MAP2K6 5608 ENSG00000108984 MCF-7 (ma,RT-PCR) -1A

MFSD7 84179 ENSG00000169026 T-47D (ma) -1A

MGC10500 (YPEL3) 83719 ENSG00000090238 MCF-7 (ma)+ -1A

MGC12335 84830 ENSG00000111863 ZR-75 (ma) -1A

MKNK2 2872 ENSG00000099875 T-47D (ma) -1A

MYO1B 4430 ENSG00000128641 MCF-7 (ma)+ -1A

N4BP3 23138 ENSG00000145911 MCF-7 (SAGE, ); ZR-75-1 (SAGE) -2A

NCOA2 10499 ENSG00000140396 MCF-7 (ma,RT-PCR) -1A

NDRG1 10397 ENSG00000104419 T-47D (ma)+ -1A

NMA (BAMBI) 25805 ENSG00000095739 T-47D (ma) -1A

Table 2.6: Metalists from metaset; up-/down-regulated +/- score; A= early. cont’d



GOS GID ensgID experiments scr

NMSE1 84419 ENSG00000166920 T-47D (ma) -1A

NR2C1 7181 ENSG00000120798 MCF-7 (ma) -1A

OPHN1 4983 ENSG00000079482 MCF-7 (ma) -1A

PAFAH1B1 5048 ENSG00000007168 T-47D (ma)+ -1A

PCM1 5108 ENSG00000078674 MCF-7 (ma), ChIP+ -11A

PIK3R3 8503 ENSG00000117461 MCF-7 (ma) -1A

PLEKHF2 79666 ENSG00000175895 MCF-7 (ma)++ -1A

PRKCBP1 23613 ENSG00000101040 MCF-7 (ma)+ -1A

PTPN12 5782 ENSG00000127947 MCF-7 (ma) -1A

RAB9B 51209 ENSG00000123570 ZR-75 (ma) -1A

REA (PHB2) 11331 no ensg T-47D (ma) -1A

RERE 473 ENSG00000142599 MCF-7 (ma) -1A

RFPL2 10739 ENSG00000128253 T-47D (ma) -1A

RHOB 388 ENSG00000143878 T-47D (ma) -1A

RXRA 6256 ENSG00000186350 MCF-7 (ma)+; ZR-75-1 (PCR) -2A

SERPINE1 5054 ENSG00000106366 T-47D(ma) -1A

SIAT1 (STGGAL1) 6480 ENSG00000073849 T-47D (ma) -1A

SLC12A2 6558 ENSG00000064651 MCF-7 (ma)+ -1A

SMAD6 4091 ENSG00000137834 MCF-7 (ma)+ -1A

SNK 10769 ENSG00000145632 T-47D (ma); + -1A

SREC (SCARF1) 8578 ENSG00000074660 ZR-75 (ma) -1A

SYTL2 54843 ENSG00000137501 MCF-7 (ma)+ -1A

TAPBP (TAPBPL) 55080 ENSG00000139192 MCF-7 (ma); ZR-75-1 (SAGE) -2A

TNFSF10 8743 ENSG00000121858 MCF-7 (ma) -1A

TRIM24 (TIF1) 8805 ENSG00000122779 MCF-7 (ma,RT-PCR)+ -1A

TRPS1 7227 ENSG00000104447 MCF-7 (ma) -1A

TTC3 7267 ENSG00000182670 MCF-7 (ma) -1A

ZFN217 7764 ENSG00000171940 MCF-7 (ma)+ -1A

ZFYVE26 23503 ENSG00000072121 ZR-75 (ma) -1A

ZNF33A 7581 ENSG00000189180 MCF-7 (ma) -1A

Table 2.7: Metalists from metaset; up(+) and down(-) regulated gene score; A=early. cont’d



dataset repressed activated

1 97 125

2 392 332

3 131 174

4 132 234

5a 298 270

5b 226 473

Table 2.8: Number of genes in each dataset, annotated in Ensemble40! (h.g.

NCBI36)



2 ∩ 3 4 ∩ 2 2 ∩ 5a 2 ∩ 5b 3 ∩ 5a 3 ∩ 5b 4 ∩ 3 4 ∩ 5a 4 ∩ 5b

AMACR BAK1 CDC42EP4 ABCG1 BTG2 ARL4A BIK BTG2 ACAA2

BMP7 BCL9L GATA2 BAMBI RAB4B BIK BMP7 PCDH1 ATP6V0A4

CCNG2 BMP7 OASL BMP7 SOCS3 BLNK BTG2 SRPK2 BIK

EFNA1 BTG1 CASP9 WNT6 BMP7 CCNG2 BMP7

FZD2 CCNG2 CCNG2 BTG2 CDKN2B BTG2

GTF2IRD1 CGN CHD3 CCNG2 CTGF CCNG2

ID1 CTDSP2 CNP GTF2IRD1 CYP1A1 DKK1

ID3 EFNA1 COL9A2 IL1R1 EFNA1 GTF2IRD1

MXD4 FNBP1 DDIT4 KCNJ3 ENC1 LMNA

PIK3R3 FZD2 ELF3 MARCKS EVA1 MARCKS

SLC2A10 GPR30 ENTPD2 PIK3R3 FZD2 PLEKHF2

ZNF467 GTF2IRD1 GAS2L1 PNRC1 GTF2IRD1 PPFIBP2

ID3 GRB7 PPFIBP2 ID2 RAB26

JUB GTF2IRD1 PSD3 ID3 RAB9A

LMNA GUSB SOCS2 KYNU RXRA

MC1R ITGA3 SPDEF MARCKS SOCS2

MXD4 KIAA0247 MLLT3 TLE1

RAB26 LIMK2 MXD4

RAB3D LMNA OXTR

RXRA MB PMP22

SELENBP1 MKNK2 PPFIBP2

SLC17A5 PHF1 RBMS1

PIAS3 REL

PIK3R3 SALL4

RAB26 SLC6A14

RPRM SOCS2

RXRA SYTL2

SCN1B TACC1

SH3BP4 TNFRSF11B

SHC2 TP53INP1

SREBF1

SSH3

TBX2

TIMP3

TNFAIP1

ZDHHC7

ZNF580

Table 2.9: Dataset intersections: down-regulated genes, hugo codes. BMP7 and CCNG2 are also contained in

dataset1; GTF2IRD1, present in all homogeneous sets, is not contained in dataset1



2 ∩ 3 4 ∩ 2 2 ∩ 5a 2 ∩ 5b 3 ∩ 5a 3 ∩ 5b 4 ∩ 3 4 ∩ 5a 4 ∩ 5b

AKAP1 ABCE1 C10orf22 ABCE1 ADCY9 CBFA2T3 ADCY9 ABCA3 ABCE1

AMD1 AHSA1 CEBPZ ABHD2 AMD1 FUT4 AKAP1 CALM1 ADCY9

ASB13 AK3 DOCK5 AK3 ANXA9 KLF4 AMD1 CALM1 AK3

CA12 AMD1 EEF1E1 AKAP1 ASB13 MICAL2 AP1G1 CALM1 AMD1

CCND1 ASB13 EIF1AX AMD1 B4GALT1 MITF ASB13 CAMKK2 AREG

CDCA7 CA12 GTPBP4 ASB13 C1QTNF6 PDLIM3 CA12 CBFA2T3 AREG

CTPS CCND1 HNRPDL BYSL CA12 RAB31 CCND1 CDR2 ASB13

CXCL12 CXCL12 KLF4 CA12 CBFA2T3 RET CSPG5 CYP1B1 C6orf66

DDX21 DDX21 MTR CCND1 CCND1 SLC22A5 CTPS DICER1 CA12

FOS DDX55 RET COPS8 CELSR2 TRAF3 CXCL12 DNAJB9 CAMKK2

FZD7 DKC1 RHOBTB3 CTPS CHPT1 DDX10 E2F5 CCND1

HCK DNAJB6 RNF138 CUEDC1 CXCL12 DDX21 GFOD1 CXCL12

HEY2 ELF1 SH3BP5 CXCL12 DDX10 EGR3 GGA2 DDX10

IGFBP4 FAM8A1 SLC20A1 CYCS DDX21 FHL2 GTPBP4 DDX21

KLF4 FER1L3 SLC22A5 DDX21 FKBP4 FLNB KLF4 DICER1

NP FOS SLC25A24 DEPDC6 FLNB FUT4 MBD4 DKC1

NRIP1 GEMIN5 STK17A DKC1 FOS GADD45B PEX11A FER1L3

PKIB GTPBP4 SYNCRIP EEF1E1 FOXC1 HEY2 RAB31 FLNB

PMAIP1 HIF1A TGFA EIF1AX GAB2 HLA-DRB1 RFP — GADD45B

RET IGFBP4 TNPO1 FER1L3 GADD45B HSPB8 SFRS7 GEMIN4

RLN2 KLF4 TOMM20 GTPBP4 IGFBP4 IGFBP4 SH3BP5 GTPBP4

SGK KLK11 ZNF161 HEY2 KCNK5 KCNK5 SLC20A1 IGFBP4

SIAH2 MKI67IP ZNF239 HNRPAB KCNK6 LRIG1 SLC22A5 KCNK5

SLC22A5 MYC HPRT1 KLF4 MYBL1 TFB2M KIAA0133

SLC26A2 NCOA4 IFRD1 NCOR2 NP TRIM8 KIAA0182

SLC7A2 NOLC1 IGFBP4 NP NRIP1 ZNF239 KIAA0690

SLC9A3R1 NP LRP8 NRIP1 OLFM1 METTL1

TIPARP NPY1R LRPPRC OLFM1 PADI3 MYB

TPD52L1 NR4A2 LRRFIP2 OPN3 PDLIM3 MYBBP1A

NRIP1 MRPL39 PODXL PMAIP1 MYC

PAICS MYC PPP2R2C PODXL NOLC1

PCP4 NCKAP1 RAB31 PRSS23 NP

PHLDA1 NOLC1 RASGRP1 PTGES NPY1R

PLOD2 NP RLN2 RAPGEFL1 NRIP1

POLR1B NPY1R SIAH2 RASGRP1 NXT1

Table 2.10: Dataset intersections: most robust up-regulated genes, hugo codes.Cont’d.



2 ∩ 3 4 ∩ 2 2 ∩ 5a 2 ∩ 5b 3 ∩ 5a 3 ∩ 5b 4 ∩ 3 4 ∩ 5a 4 ∩ 5b

PPAT NRIP1 SLC22A5 RLN2 OLFM1

PUS1 OXR1 SLC26A2 SIAH2 PAK1IP1

RARA PEO1 SLC3A2 SLC1A4 PLOD2

RERG PFDN2 SLC7A5 SLC26A2 PODXL

RLN2 PLOD2 SLC9A3R1 SLC7A5 POGK

RRS1 PMAIP1 SMOX SLC9A3R1 POLG2

SH3BP5 PPAT SNX24 SNX24 POLR1C

SIAH2 PPIF SULT2B1 SVIL POLS

SLC20A1 PTK9 SVIL THBS1 PPAT

SLC22A5 PUS1 TPD52L1 TIAM1 PUS1

SLC26A2 RARA UNC119 TIPARP RARA

SLC9A3R1 RB1 WFS1 TMPRSS3 RASGRP1

SRM RHOBTB3 ZNF185 TPD52L1 RFP

STC2 RLN2 RLN2

TFF1 RRS1 RRS1

TPD52L1 SEH1L RUNX1

UGCG SFRS2 SDCCAG3

XBP1 SIAH2 SFRS7

ZNF239 SLC26A2 SIAH2

SLC7A1 SLC26A2

SLC9A3R1 SLC2A1

STC2 SLC7A5

STS SLC9A3R1

TFF1 SNAPC4

TFRC SNX24

TIPARP STC1

TNPO1 STC2

TOMM20 SVIL

TPBG TAF4B

TPD52L1 TFF1

UCHL5 TPD52L1

UCK2 UGCG

UGCG WDR12

WDR3 XBP1

XBP1 ZNF259

XPOT

Table 2.11: Cont’d. Dataset intersections: most robust up-regulated genes, hugo codes.



dataset1 dataset2 dataset3 dataset4 dataset5a dataset5b

ABCC5 ABCC5 GLRX CRIP2 ANKRD2 BCL3

BCL3 ANXA6 IGSF3 ESR1 COPE CITED2

HBP1 ANXA9 PTPN13 ZNF444 NR1D1 ELF3

PCM1 BAD YPEL3 VRK3 FAM13A1

ELF3 WDTC1 HBP1

PPP1R13L LTA4H

TSC22D3 SNX27

WBP2 TTC9

ZFYVE1 USP31

WDTC1

Table 2.12: Down-regulated genes which are found in the ChIP-DSL data [25]

dataset1 dataset2 dataset3 dataset4 dataset5a dataset5b

CD7 BMF CYP1A1(2) ATP1B1 ADCY9 CASP9

CDC42EP4 CASP9 PDK4 AXUD1 ANKRD2 CITED2

CDC42EP4 RAB27B CYP1A1(2) CDC42EP4 DMPK

CDKN2C(2) TGFB2 LMNA CHRNE LMNA

CSNK1D MATN2 CRHR1 MB

DDT(2) RARG(2) DMPK NUDT2

DLG3 DRD4 SOX13(2)

DPP7(2) ECM1 SREBF1

FADS3 FN3K VAT1

GALE GRAP

GRHPR HCK

HMGCL HEYL

IKBKG(2) IL18BP(2)

LCN2 KCNE1

LMNA KCNIP2

MB MSI1(3)

MVP(2) NOS3

NDRG2 NR1D1(2)

PTK6 PLD2

SLC4A2 POU5F1(3)

SOX9 RGS11(2)

SPAG4 SH3BP1

SREBF1 SOX13(2)

UPK1A TFR2

TP53

ZAP70

Table 2.13: Down-regulated genes which are found in supplemental data by

Bourdeau et al. [19]. Number between parenthesis indicates multiple EREs

were found.



dataset1 dataset2 dataset3 dataset4 dataset5a dataset5b

AKAP1 AGR2 ADORA1 ABCA3 ABCA3 AKAP1

CYP1B1 AHSA1 AKAP1 AHSA1 BICD2 DICER1

CYP4F11 AKAP1 ANXA9 ANXA9 C10orf22 HNRPA1

FEM1A ARL6IP2 BRI3BP BLVRB COX11 IFRD1

FOXA1 C10orf22 C1QTNF6 C1QTNF6 CYP1B1 KIAA0664

FOXC1 CBX3 CHPT1 CASP7 DICER1 MAX

PTMA HNRPDL FOXC1 CHPT1 DNAJB9 MXI1

SFRS1 IFRD1 MAP3K4 CRKL GARNL4 NMT1

STC2 PKIB MCM6 CYP1B1 HNRPDL PHB

TFF1 PUS1 MITF DICER1 ITPR1 PUS1

TPBG SLC7A2 PDZK1 DLG5 MAX QTRTD1

TPD52L1 STC2 PKIB DNAJB9 MITF SFRS1

TFF1 SLC25A25 ELF3 PEX1 STC2

TGFA SLC7A2 FOXC1 RBBP5 STCH

TIPARP TIPARP MORF4L2 RBL1 TFF1

TPBG TPD52L1 PUS1 TGFA TIPARP

TPD52L1 USP31 RAB30 ZNF571 TPBG

SEMA3B TPD52L1

SLC25A19 ZNF331

STC2

TFF1

TPD52L1

WISP2

Table 2.14: Up-regulated genes which are found in the ChIP-DSL data [25]



dataset1 dataset2 dataset3 dataset4 dataset5a dataset5b

ADCY9 CHML ADCY9 ADCY9 CBFA2T3 ADCY9

CAV1 DNAJB6 CBFA2T3 BIRC3 CDR2 ATP1A1(2)

CBFA2T3 GMFB CDT1 CASP7(18) CYP1A1(2) DHODH(2)

CTSD HCK CTSD CBFA2T3 CYP1B1(2) HNRPAB

CYP1B1(2) HNRPAB FKBP4 CDR2 HNRPDL IFRD1

EDG2(2) HNRPDL FOXC1 CYP1B1(2) LPIN1 IRS1

FKBP4 HSPA8(2) HCK DIRAS1(2) NDST2 KARS

FOXC1 IFRD1 KCNK5(2) DNAJB6 NETO2 KCNK5(2)

G6PD(4) MRPL15 LOXL4(2) FKBP4 PSEN2(2) KIAA0409

HSPA8(2) NRIP1 NRIP1 FOXC1 RFP(3) MTMR4

KCNAB1(2) RAB18 OPN3 KCNK5(2) SLC1A1 NRIP1

KCNIP2 SFRS2 P4HA2 NRIP1 SOX9 RFP(3)

LTF(2) TPBG TRAF3 OPN3 TRAF3 RPA1

TP53 UNC119 RFP(3) USP14 SDF2L1(2)

TPBG SLC12A4 ZNF142(2) SFRS2

TST SLC25A12(2)

UNC119 TFDP1

TPBG

ZNF142(2)

Table 2.15: Up-regulated genes which are found in supplemental data by

Bourdeau et al. [19]. Number between parenthesis indicates multiple EREs

were found.



Chapter 3

The pipeline of DNA sequence

analyses

We describe our method and discuss its advantages and its limitations.

3.1 Introduction

As described in Chapter 1, ChIP-on-Chip technique is a powerful tool for

defining transcription factor binding site profiles that has helped shed light

into the ERE-mapping issue. Generally speaking, ChIP-on-chip data is noisy

and incomplete due to the inadequate resolution of whole genomic arrays and

small number of transcription factors employed, especially in mammalian

studies (see [27] for a review of strengths and weakness of genome-wide

approaches for identification of nuclear receptor target genes). It requires

to be complemented by bioinformatics methods in order to identifying cis-

regulatory elements on genome-wide scale. There are two major bioinformat-

ics ways to address transcription factor profiling. One relies on determining

evolutionary conserved motif sequences through phylogenetic footprinting

(see [28]); the other one points to determining shared or similar motifs be-

tween co-expressed genes, assuming that these genes would be co-regulated

as well. The motifs searched can be either previously characterized, as in the

case of matrix-based methods; or entirely novel, as in the case of enumeration

algorithms. Bioinformatics approaches are flawed by several limitations as

40
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much as the experimental genome-wide counterparts. For a general account

of these problems, as well as of the state-of-the art, see references [28–35].

No significant difference in the number of estrogen responsive elements (EREs)

between up- and down-regulated genes emerged in a pilot study of ours, and

other computational studies proved ineffective as well (Pavesi’s and Katznel-

lenbogen’s personal communications). This reflects the underlying complex-

ity of the regulation in breast cancer cells, and, more in general, of the gene

regulation in eukaryotes. As a matter of fact, transcription factor bind-

ing sites (TFBSs) may be highly degenerated motifs, e.g. signal which are

very difficult to detect with the computational tools currently available. As

soon as algorithm sensitivity is increased, the number of false positives ex-

plodes (see futility theorem in Ref. [28]). No surprise, thus, if it is so difficult

to characterize DNA sequences using matrix-based algorithms when dealing

with detection of highly degenerated, long TFBSs such as the EREs. Besides,

transcription factor binding sites (TFBSs), are masked by chromatin –a fac-

tor that is not usually modeled by bioinformatics tool. It has been estimated

that only a small fraction (< 0.001%) of the whole number of putative TF-

BSs for retinoic acid receptor transcription factors in human genome (50x106)

are actually functional, due to the impact of the chromatin dynamics on ac-

cessibility of transcription factor binding sites (see Ref. [37] for a detailed

discussion).

We set up a bioinformatics pipeline which employs the two major approaches

(enumeration/matrix-based algorithms and phylogenetic conservation) in or-

der to explore the 5’-flanking regions of sets of genes that display homoge-

neous mode of regulation (co-regulons) by estrogen. The bioinformatics tools

provide patterns of motifs and hint at putative transcription factors which

may be involved in estrogenic regulation in conjuction with estrogen recep-

tor. The motifs are nucleotide strings of various length (’words’) which are

statistically over-represented (see ahead) –e.g. whose actual occurrences are

compared to to a background frequency. Denoting by U(g) the length of

the upstream region considered for a gene g and by n(m, g) the number of

occurrences of the motif m in such region and by b(m) the length of m, the
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background frequency of a motif m, f(m) , is defined as follows:

f(m) =

∑
g
n(m, g)

∑
g
u(g,m)

(3.1)

where both sums are taken over all the specific genome under consideration,

and where

u(g,m) ≡ U(g) − b(m) + 1 (3.2)

is the number of words of length b(m) that can be read in the upstream

region of g.

3.2 Pipeline architecture

Our pipeline combines traditional approaches focused on sequence analysis

of proximal regions with a method that allows for exploring distal conserved

nucleotide blocks of sequences upstream of the gene. We investigated 5’-

flanking regions of different sizes: (1) up to 15 Kbp from ATG (hg NCBI

36; Ensembl release 40); (2) [-800;+200] (hg NCBI 36; Ensembl release 40);

(3) [-100,+100] (from RIKEN experiments); (4) [-450,+50] (hg NCBI 36; mg

NCBI 37). Proximal regions (2), (3) and (4) are referred to as core-promoters

in the following.

For core-promoter analyses, both a matrix algorithm and exhaustive enu-

meration tool were employed. The matrix-based algorithm directly identi-

fied and localized transcription factor binding sites in the core-promoters of

co-regulated gene sets. Substrings of nucleotide sequences of different sizes,

the so-called motifs, were obtained with the other tools both for proximal

and distal regions. Each motif was associated with both a gene subset –that

is the genes that contain it in their regulatory region, and a chromosomal

position. Output motifs could match transcription factor binding sites con-

tained in repository databases –in particular, TRANSFAC Professional [46].

Validation of best match candidates is being performed in laboratory.

In detail, we employed three different procedures, and crossed all of the

output motif patterns afterwards. In order to explore the distal regulatory

regions, we exploited one method based on Ab initio identification of DNA

motifs by comparative genomics [60]. To investigate into proximal regions, we
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employed both the software package Weeder [43] –an exhaustive enumeration

algorithm; and, from the class of matrix-based algorithms, a novel tool [44].

The pipeline architecture is illustrated in Figure 3.1.

Figure 3.1: Pipeline architecture. Input: gene lists/regulatory regions. Out-

put: motifs associated with gene subsets; motif chromosomal location. Mo-

tifs may match transcription factor binding sites contained in TRANSFAC

database: validation of best matches is performed in laboratory

3.3 Input

Input of our pipeline comprised both gene lists and gene core-promoters of

different sizes. The genes taken from the genome-wide experiments lists

(see Chapter 2) were assigned ENSEMBL ID labels (ENSGIDs), in order

to prepare them for extraction of conserved motifs. Not all genes, how-

ever, could be assigned one ENSGID, so that this procedure resulted in

a partial resizing of the experimental lists. The 1000nt core-promoters ([-

800,+200]) were extracted from ENSEMBL database [56] using the ENS-
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GIDs. The 200nt core-promoters were extracted from the RIKEN database,

using repeated BLAST alignments of small probes (Bajic promoters [38]) to

extended sequences from the (entire) human genome, retaining the highest

score matches only. As a result, some gene in the lists could not be assigned

any [-100,+100] RIKEN core-promoter, while others obtained more than one

200nt core-promoter. Mammal genes, indeed, exhibit multiple Transcrip-

tional Start Sites (TSSs) [39]. The matrix-based algorithm directly acts on

500nt promoters from the NCBI DNA sequence database (RefSeq IDs re-

quired).

3.4 Collection of conserved motifs

Our conserved motifs collection was extracted from a larger collection ob-

tained with method by Corà et al. [55, 59, 60] with update to Ensembl!40

human-mouse genome version. This method clusters genes from an input

list, based on statistical over-representation of motifs from aligned 5’-flanking

regions defined as follows: upstream sequence that extends up to 15Kbp

(upper bound) from the start of translation of the longest transcript. So

the over-represented motifs come from upstream sequence contained in con-

served nucleotide blocks –the conserved non-coding sequence blocks, CNBs.

The upstream regions could be shorter than 15Kbp, depending on the size

of the intergenic region. In this procedure, some of the genes from the input

lists have been filtered out due to 1) lack of ENSGID label, as already men-

tioned above; and 2) lack of relevant mouse ortholog gene. The database of

conserved motifs is based on a universe of 12,381 genes.

Statistical over-representation of motifs in the distal conserved blocks was

defined with respect to the background frequency to which the number of

occurrences was compared. A motif m which occurs n times in the upstream

region of a gene is considered to be over-represented if the probability for the

motif to occur n or more times by chance is less than 0.01. This probability is

computed with the right tail of a binomial distribution, assuming that motifs

are randomly distributed, each with its background frequency [59].

The minimum score for an over-represented motif in output is 2.0 (score =

2.0 corresponds to p-value = 10−2), and higher scores correspond to lower
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p-values. All of the motifs obtained in output (a few hundreds depending

on dataset and on regulatory class) have been crossed with core-promoter

motifs. However, in the tables of Chapter 4, we only reported the motifs

whose scores are higher or equal to a threshold which we have called high-

score motifs : they were obtained arbitrarily setting a score threshold to 2.75

(a few tenths depending on dataset and on regulatory class).

Major limits of this method are as follows: 1) it only handles fixed motifs; 2)

the analyzed sequence starts from ATG of the longest gene transcript, which

occasionally does not guarantee it really extends in the upstream region of

the gene; 3) it does not provide motif localization straightforwardly; 4) it

is difficult to update when new genome releases become available; 5) when

multiple transcripts are available, it only takes into account the longest one;

6) the region that is actually explored is reduced with respect to the original

15Kbp, due to repeats masking and alignment to mouse. Despite of these

limitations –which determine a large number of false negatives, this method

proved effective by studies both in yeast and human [59, 60]. Besides, to

our knowledge is one of the very few available methods which enable distal

exploration of DNA regulatory regions.

3.5 Collection of core-promoter motifs

Weeder [43] is the best performer in the class of the exhaustive enumeration

approaches [35]. Weeder is a consensus-based method which enumerates

exhaustively all of the motifs up to a maximum length and collects their

occurrences with substitutions from input sequences in fasta format. Number

of motif mutations allowed by the algorithm in each run increases with length

of the motifs (1 for 6-mers, 2 for 8-mers, 2 for 10-mers and 3 for 12-mers). In

addition to enumerating motifs, the algorithm provides the location in the

specific sequences where these motifs were found.

Each motif is evaluated by Weeder according to the number of sequences

in which it appears and on how well conserved it is in each sequence –in

comparison to the expected values derived from the analysis of all of the

upstream sequences of the same organism. A weight matrix, which is built

using the discovered motifs, selects best instances of each motif. The top-
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scoring motifs of each run are analyzed and compared in order to detect

which one could be more likely to be a transcription factor binding site.

We applied Weeder to both strands of 1000nt core-promoters in all datasets,

and also of 200nt core-promoters of dataset1. We retrieved the first 30 motifs

for each of the 4 category in all datasets. This has produced a collection of

120 (30x4) motifs for the 1000nt core-promoters, and a collection of 80 (20x4)

motifs for the 200nt core-promoters of dataset1. Best advice motifs for each

dataset and regulatory class are reported in Chapter 4. We did not perform

a similar study on mouse orthologs.

3.6 Transcription factor profiling

The advantage of using Pscan [44] relies on the fact that – in contrast to other

matrix-based algorithms, it does not require the definition of a matching

threshold and even the use of homologous sequences. As other matrix-based

algorithms, it provides a straightforward way to identify putative transcrip-

tion factors involved in the regulation of a gene set in input. The algo-

rithm implements the following idea: the set of promoter sequences from

co-regulated genes (co-regulons) is a sample of a larger population –e.g. the

collection of all of the promoters from the genome of the same species; and

the ’random’ model is constituted by the whole set of promoters available for

the species.

The highest scoring binding value of a matrix M on sequence Si in the sam-

ple, B(M,i), is a random variable whose mean value is compared to the one of

the whole population through a z-test. The z-scores for matrix M given the

sample P and the population S are instances of a random variable which fol-

lows a normal distribution; the significance of the difference between sample

and population –that is, the associated p-values– is estimated by employing

the normal cumulative distribution function.

Matrix-based algorithm are known to be affected by large number of false

positives; after several tests, the authors suggest the outcomes should be con-

sidered reliable when their p-values stayed below 10−4. When the up- and

down- regulated classes were compared one to another directly, as for datasets

2,3,4, the p-value threshold was set to 0.01 (t-test). Pscan acts on core pro-



3.7. OUTPUT 47

moters of size 500nt, and employed matrix profiles based on JASPAR [45] and

TRANSFAC [46] databases. TRANSFAC profile contains many redundant

matrices, while JASPAR contains a limited number of matrices.

3.7 Output

Motifs. The size of the sequences extracted is variable. The conserved motifs

size always range between 5 to 8 nucleotides (nt); the core-promoter motifs

may reach 12 nt, depending on parameter T; for example, with parameter

T set to 30 they have length of 6 and 10 nt. Each motif was associated

with both a gene subset and a chromosomal position. Gene subsets. Gene

subset size varies from a few genes up to the entire collection in input, de-

pending on both the algorithm employed and specific motif. Typical output

size of gene subsets for conserved motifs is 3-7 –rarely above ten. Consider-

ing the procedure applied to core-promoters, number of associated sequences

where a motif is found is higher –usually, a large amount that can be al-

most the size of the input set.Transcription factor binding sites match-

ing. Output motifs could match transcription factor binding sites contained

in repository databases –in particular, TRANSFAC Professional [46]. We

mostly performed the matching on anecdotic basis, employing the program

PATCH available within TRANSFAC database [46]. We also exploited the

consensus tables published by Xie et al., 2005 [57].Motif localizations. The

matrix-based algorithm, PSCAN, directly identified and localized transcrip-

tion factor binding sites in core-promoters of co-regulated gene sets, and so

does Weeder with its unknown motifs. Conserved motifs must be localized

through an external procedure, such as for example fuzznuc within EMBOSS

package [58]. Validation of the best matches is being performed in laboratory.

3.8 Assumptions and limits of the pipeline

As common bioinformatics tools, our pipeline handles the DNA sequences as

linear strings where transcription binding sites are signals to be extracted

from a background noise (see [30] for a brief historical perspective). There
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are several levels of organization for the genetic material, from nucleosomes

as beads on a string to more compact forms resulting from the regular orga-

nization of several nucleosomes together. Packaging of eukaryotic genomes

must have a strong impact on gene regulation, and two studies have recently

addressed – with somehow discordant results– the issue of nucleosome po-

sitioning determination by DNA sequence analysis [40, 41]. We have not

attempted the dimensional perspective on a large scale for the moment.

Since co-expression does not always imply co-regulation, the set of sequences

we employed in our study are ’noisy’ by default –due to experimental artifacts

for example. This may affect the identification of the transcription factor

binding sites and, hence, of the relevant transcription factors which suppos-

edly regulate the input genes. Our pipeline also assumes that transcription

factor binding sites tend to be over-represented and to cluster in modules,

with evolutionary conservation being the key to their functionality. The uni-

versality of the first two assumptions has been recently challenged [42], while

the fact that site conservation does not guarantee functionality – at least in

the case of estrogen responsive elements, has been often reported in literature

(see [14] for example). Transcriptional cis-regulatory modules (CRMs) are

more complex than what previously thought, with binding sites scattered

over a large DNA segment, concentrated in one dense cluster, or even ar-

ranged in a composite way (for an orderly outlook, see fig.1 in ref. [42]). Our

approach cannot obviously handle ”composite signals”, e.g. the ones that re-

sult from the combination of two distinct, distant signals –each statistically

non over-represented.

These assumptions, though arguable, do not severely limit our analyses. We

estimate that this study should provide a reliable description of regulatory

regions of estrogen-responsive genes on first approximation, which is what is

achievable at the moment (see final discussion in Chapter 5). With the pro-

gression of experimental techniques targeting chromosome territories, it shall

become possible to include important information in the characterization of

regulatory regions of co-regulated genes, such as their chromosomal localiza-

tion. It should be also possible to take into account chromatin dynamics and

long range interactions.



Chapter 4

DNA sequence analyses

We compare motif patterns within each dataset/regulatory class and between

regulatory classes. We discuss a few instances of transcription factor binding

sites identification/localization in detail. See Chapter 3 for terminology.

4.1 Dataset1: Metaset

4.1.1 Conserved motifs

We found 200 conserved motifs in the 15kbp upstream sequences of up-

regulated genes and 177 motifs in the corresponding sequences of the down-

regulated ones. The intersection of these two DNA motif sets comprises four

words, as follows: AAGGTAGA, AGGGTG, ATAAG, and ATGCG motifs

(and reverse). In the up (dw)-regulated list, 24 (22) motifs out of 200 (177)

are statistically very significant (score threshold = 2.75; an arbitrary value:

see Chapter 3 for an explanation). The high-score motifs for both regulatory

classes are collected in Table 4.1. In both classes, 4 motifs are associated with

scores higher than 4.00, while all the others have score comprised between

2.78 and 3.91 (up-regulated), and between 2.79 and 3.96 (down-regulated).

Total number of these high-score motifs in the 5’-flanking regions of the up

- and down-regulated genes is 45 and 42 respectively. No high-score motif is

shared by the two lists.

Some of the output motifs differ by 2 or 3 mismatches; and, in principle, one

would think it possible to extend the corresponding gene subsets, considering

49
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these motifs as some variants of the same binding site. In order to illustrate

an example of this, in the up-regulated class, the two following instances

are provided: 1) motif GGCAAGGA, for genes ADCY9, NRP1, SPRED1,

ZNF9, score 3.91; 2) motif GGGAACAA, for genes CRKL, NRP2, ELL2,

score 3.08; where genes NRP1 and NRP2 are members of the same family,

the neurophilin family of receptor proteins involved in versatile roles –among

which angiogenesis, tumorigenesis and invasion. (almost all genes related to

signal transduction–AMPcyclic and MAPras). In the down-regulated class,

we observed, for example, the following associations: 1) motif GGTCGAAA,

for genes ALOX12B, EFEMP1, PCM1, score 2.79; 2) motif CCTCGGAG, for

ACHE, C6orf105, KCNG1, score 2.79. The safest motifs composition should

be performed when the relevant gene subsets overlap, at least partially, that

is when the same genes are present in subsets corresponding to the variant

motifs. In this dataset, nonetheless, there are no such instances.

4.1.2 Core-promoter motifs

The exhaustive enumeration algorithm was applied to both 1000nt and 200nt

core-promoters (see Chapter 3 for details). In this way, we obtained 120 mo-

tifs in each output (30x4). The entire set of motifs identified in both core-

promoter sets is not shown.

The best advice motifs in 1000nt core-promoters are as follows: in down-

regulated gene class, TCGTCGGG and reverse are highest ranking motifs

(2 redundant motifs: GGTCGTCGGG - GTTCGTCGGG) in all but 19

sequences (data not shown); in up-regulated gene class, highest ranking

motifs TCGCGCGT and reverse (9 redundant motifs: ACGCGCGAAC -

CGACGCGC - CGCGCGTA - TCGAGCGG - CGCGCGTT - GCGCGTTA

- TTCGCGCG - ACGCGCGT - GCGCGT) in all but 25 sequences (data

not shown). The core of this motif, CGCGCG, may represent either a Sp1

binding site or a portion of CpG islands.

The best advice motifs in 200nt core-promoters are as follows: in the down-

regulated gene class, highest-ranking GCGGAG and reverse (7 redundant

motifs: GGGCGGAG - CTCCGCGC - GCTCCGCG - GGCGGA - GCG-

GTG - CGGAGC - TCCGCG) in all of the 60 sequences but 1 which cor-
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responds to gene HEATR1; highest ranking are also TCGGCGGA and re-

verse (5 redundant motifs: TGCGCGGA - CCGCCGAG - TCGGCGGT -

GGCGGA - CGCCGA). In up-regulated class, CGAGCG and reverse are

highest ranking motifs (5 redundant ones: GCGAGCGG - GCCGCTCG -

CGCGAGCG - AGCGCG - GCGAGC) in all of the 81 sequences but 5

(HSPA5, GADD45B, FLJ13611, RSADD2, and FOS).

4.1.3 Intersections of motifs

Crossing the motif patterns of up- and down-regulated gene classes, we ob-

tained the collection reported in Table 4.2. We also crossed the motifs ob-

tained from 1000nt and 200nt promoters within the same regulatory class;

the result is collected in Table 4.3, where intersection of core-promoter and

conserved motifs (partially discussed above) is reported as well.

As an example of shared motif analysis, we report the following: in the up-

regulated class, the core-promoter motif CGCGTT is shared by all but eight

1000nt-gene flanking regions. NRIP1 and GREB1 –a gene found in the re-

cent list of ER-bound promoter genes of dataset4 [25], are two of the eight

up-regulated genes which do not hold this motif; their experimental scores

are +1A and +2A respectively. This motif, CGCGTT, is also found in the

conserved motif collection, as reverse complement AACGCG (score 2.1); it

is found in the regulatory regions of three genes: MYC, HS3ST3A1, and

CRKL, whose experimental scores are respectively +1A, +3A and +10A

(see table Table 2.1). CRKL is also contained in the ChIP data list of

dataset4 [25]. Additional interesting intersection motifs in the up-regulated

class are as follows: CTCGCG (all but 5 sequences) and CCCTCGCG a

conserved motif for 3 genes which are all in the larger set of sequences iden-

tified by the enumeration algorithm; GCGTCG (all but 5 1000nt-sequences)

and GCGTCG-AA (conserved), 2 genes, EGR1 and B4GALT1, also found

within the larger set. In the down-regulated class, we observed a partial

overlap between the GAACGG (1000nt core-promoters) and GAACGG-TA

(conserved motifs, score 2.94).

In the up- and down-regulated gene sequences, both in the core promoter

and conserved motif sets, different motif patterns are observed. This dataset
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is the most heterogeneous in our database, which likely explains why the

up-down intersection is more populated than in other datasets.

4.1.4 Transcription factor profiling

The study on human promoter of the genes in this dataset, where a direct

comparison between up- and down-regulated classes was performed, no differ-

ence in transcription factor profiles emerged (data not shown). The p-values

obtained could not guarantee the reported occurrences were not false posi-

tives; this is likely due to the fact that this set is highly inhomogeneous by

construction.

With the matrix-based algorithm and the same two different sets of matrices

applied to mouse ortholog core-promoters, we obtained the results summa-

rized in table Table 4.4 (down-regulated class) and Table 4.5 (up-regulated

lass). In the [-450,+50] core-promoter region of the dw-regulated genes, the

two best matrices (TRANSFAC), p53 and REBP1, have p-values that do not

guarantee absence of false positives (p-value more than 10−4). The former

is also identified by the corresponding JASPAR matrix, although with even

less significant p-value. Nonetheless, p53 is a nuclear protein which regulates

cell cycle; it is responsible for DNA repair and eventually for cell apopto-

sis. In the up-regulated class, p-values of some matrices are reasonably good

(p-value less or equal to 10−4). ZNF42 is the best score with JASPAR ma-

trices; TAXCREB, MZF1, SPZ1, MAZR with TRANSFAC profile. SPZ1,

MZF1, MAZ are reported in literature as transcription factors with binding

sites enriched in 1,234 ChIP-PET clusters [12]. We underline that the matrix

corresponding to the ERE binding site (ESR1, JASPAR) exhibited p-values

0.065 and 0.0033, respectively in the down/up-regulated classes.

4.2 Dataset2: M.Brown

4.2.1 Conserved motifs

There are 247 motifs in the up-regulated class and 254 the down-regulated

one. The 50 high-score motifs found in the up-regulated gene upstream
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regions and the 54 high-score motifs found in the down-regulated counterpart

are collected in Table 4.6 and Table 4.7 (threshold score=2.75), where 3

motifs are associated to score higher than 4.00 in both regulatory classes.

All of the others score between 2.76 and 3.95 (up-regulated) and 2.79 and

3.9 (down-regulated). Intersection of motif patterns from the two regulatory

classes comprises one motif: ACGGCCCA. In the down-regulated gene class,

the motif GCCCCCCCC, score: 3.57, is found in the regulatory regions of 5

genes; the motif GCCCCACC, score: 3.50, is found in 7 sequences. These two

gene subsets do not overlap. We found the same result when we considered

the gene subset (6 genes) associated with motif ACCGCCCC. Thus, it might

be not plausible that these three motifs are variations of the same motif

(by 1 and 2 mismatches). On the other hand, when considering the motif

CGCCCCCA (score: 3.39) we found two genes, in a gene subset of 6, which

also are in the gene subset associated with ACCGCCCC. These genes are as

follows: CASP9 and OTTHUMT00000077092(ENSG00000162755).

4.2.2 Core-promoter motifs

The enumeration algorithm was applied to 1000nt core-promoters (349 down-

regulated and 328 up-regulated), with parameter T set to 30. The 120 (30x4)

motifs identified in both classes of genes are not shown; all of them have been

crossed with the conserved motifs (see ahead). In this section we only report

the best advice motifs. These are as follows: down-regulated class, (sense)

GGTCCG and (antisense) CGGACC (10 redundant motifs: CTGGTCCG

- ACGGACCC - GGGTCCGG - CGGGTCCG - GGTCGG - CCGGAC -

CCCGGA - GTCCGC - GGACCG - GGACCG); (sense) CGCCATCG and

(antisense) CGATGGCG (1 redundant motifs: CGACGTCG); up-regulated

class, (sense) GTCGCG and (antisense) CGCGAC (21 redundant motifs:

GTCGCGAG - ACGTCGCG - GTCGCGTC - CGTCGCGA - TCGTCGCG

- CGTCGCGT - CGCGAT - CGCGGT - GCGACC - GCGCGA - CGCGAG

- CGCGTA - TCCGCG - GACGCG - GACGCG - TCGCGG - CGTCGC

- ACGCGA - TTCGCG - TTCGCG - AACGCG); (sense) CGACCGTTCG

and (antisense) CGAACGGTCG (8 redundant motifs: CGTCGATTCG -

CGGCGATTCG - CGACCTGTCG - CGTCGCTTCG - CGCACGTTCG -
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CGACTGGTCG - CGAACGATCG - AACGGTCG).

4.2.3 Intersections of motifs

Intersecting the motif patterns of up-regulated and down-regulated classes,

we obtained the results summarized in Table 4.8. There are no shared motifs

between conserved and 1000nt core-promoter patterns in the down-regulated

class; and only one motif, CGCACG, in the up-regulated one. This dataset

contains more genes than other ones in our database and also exhibits abun-

dance of motif patterns possibly presenting high redundancy.

4.2.4 Transcription factor profiling

The study on human core-promoters (same size:[-450,+50]), considering p-

value less than 10−4 which may guarantee no false positives, highlighted the

following:

down-regulated. With JASPAR matrix set, TFAP2A, NFKB1, ZNF42.1-

4, SP1, ESR1, Pax5, and NFkB are the best scores; the overlap with mouse is

good. Considering the TRANSFAC matrix set, SP1, ZNF219, MAZ, WT1,

ZIC2, AHRARNT, ZIC1, MFZ1, VDR, ZIC3, SP3, and HES1. The overlap

with mouse concerns SP1 only (see ahead).

up-regulated. With JASPAR matrix set, E2F1, CREB1, ELK4, ELK1,

Arnt, GABPA. The overlap with mouse is good. With TRANSFAC matrix

set, AHR, SP1, E4F1, ARNT, YY1, AHRARNT, STAT1, SP3, and WT1,

and the overlap with mouse concerns ARNT. This matrix corresponds to the

binding site of factor the aryl hydrocarbon (Ah) receptor.

Indeed, there is evidence that ARNT forms a complex with Sp1 and ER,

which is required for positive regulation of cathepsin D [54]. Cathepsin D

codes for a very important protease in estrogenic response and it is a tumor

marker. Arnt matrix (JASPAR M0004; TRANSFAC ARNT.01) is overrep-

resented when the analysis is performed up vs. down with both matrix sets

(but not when down vs. up was performed).

With the matrix-based algorithm and two different sets of matrices applied
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to mouse orthologs (see Chapter 3), we obtained the results summarized in

Table 4.9 (down-regulated), and Table 4.10 (up-regulated). In the 500nt

core-promoter region of the dw-regulated genes, TFAP2A, Roaz, NFKB1,

SP1 (JASPAR) have good p-values, while ESR1, the estrogen responsive ele-

ment is borderline along with NFkB. This finding partially overlaps with the

results obtained with the TRANSFAC set, which see SP1, AP2GAMMA,

AP2ALPHA, EGR3, MAZR (a repressor) highly overrepresented. In the

class of up-regulated, several matrices obtained good p-value: CREB1, Arnt,

Arnt-Ahr, TFAP2A, Mycn, USF1, ELK4, GABPA, ELK1,NHLH1, MYC-

MAX, MAX, E2F1 (JASPAR profile). Many matrices from the TRANSFAC

set display very significant p-values, with very good overlap with former set

(the MYC-related, AP2-related, CREB-related, E2F, etc.). Good statistics

may be due to the high number of genes in each list of this dataset.

4.3 Dataset3: K.Nephew

4.3.1 Conserved motifs

Total number of motifs is 272 for the up-regulated genes and 205 for the down-

regulated ones. As previously mentioned, the minimum score for a motif to

be reported in the pipeline output is 2.0, while there is no score upper limit.

The high-score motifs for both regulatory classes are collected in Table 4.11

and Table 4.12, where three motifs are associated to a score higher than 4

and all the others have score comprised between 2.76 and 3.83 (down) or

3.96 (up). Total number of these high-score motifs in the 5’-flanking regions

of the up-regulated genes is 53. Total number of these high-score motifs in

the 5’-flanking regions of the up-regulated genes is 43. No high-score motif

is shared by the two lists. Actually, no overlap of conserved motifs for up-

and down-regulated classes is found.

4.3.2 Core-promoter motifs

The enumeration algorithm was applied to 1000nt core-promoters, with pa-

rameter T set to 30. The 120 (30x4) motifs identified in both classes of genes
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are not all shown here. Nonetheless, they have been all crossed with the

conserved motifs. (best advice motifs)

4.3.3 Intersections of motifs

The intersection of the conserved motifs from the up-regulated and down-

regulated is empty, while 8 motifs from the 1000nt promoters are shared

between the two regulatory classes (Table 4.13). There are no motifs at the

intersection between conserved and core-promoter motif patterns within each

regulatory class.

4.3.4 Transcription factor profiling

In the study on human core-promoters, where the p-values are less than 10−4,

TFAP2 was overrepresented in the up-regulated class along with NHLH1,

ZNF42, and Pax5 using JASPAR set; with TRANSFAC profile, ZNF219,SP1,

WT1, HES1, USF2 and MAZ. In the down-regulated, JASPAR profile found:

En1, Fos, Foxq1, FOXD1, Prrx2, SOX9, FOXF2, Sox17, and HLF; and

TRANSFAC profile: SP1, ZNF219, MAZ, WT1, SP1, VDR, MZF1, SP3,

AHRARNT, ZIC1, ZIC2, and HES1.

WT1 binding site was also found in dataset2; WT1 protein might directly

interact with ER in repressing IGF-I receptor (IGF-IR), which has an impor-

tant role in breast cancer development and progression [47]. However, this

matrix is found overrepresented in both up and down- regulated lists. In-

deed, comparing up- vs. down- regulated class, two matrices emerged: USF2

and YY1; while comparing dw- vs. up-regulated class, HLF and TITF1 (p-

values less than 0.01, t-test). Anyways, WT1 is a tumor suppressor and an

oncogene [48], and plays multiple roles in several types of cancer [49]. With

JASPAR, direct comparison provided the follows: Arnt and Mycn (up- vs.

down- regulated class) and Fos, En1, Foxq1, FoxD1, SOX9 (down- vs. up-

regulated).

With the matrix-based algorithm and two different sets of matrices applied

to mouse ortholog 500nt core-promoters (see Chapter 3), we obtained the

results summarized in the following tables, Table 4.14 (up) and Table 4.15

(down). In the class of dw-regulated, ZNF42 and TFAP2A are best scores
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with JASPAR set; with TRANSFAC profile, MZF1, AP2alpha and SP1. In

the class of up-regulated, overrepresented JASPAR matrices are TFAP2A

and RREB1; the list of TRANSFAC matrices is much longer: SP1, AP2,

MAZR, SPZ1, RREB1, MZF1, AP2ALPHA, AP2GAMMA, EGR2, EGR3,

and more.

4.4 Dataset4: M.Rosenfeld

4.4.1 Conserved motifs

Total number of motifs is 233 for the up-regulated genes and 214 for the

down-regulated ones. As previously mentioned, the minimum score for a

motif to be reported in the pipeline output is 2.0, while there is no score

upper limit. The high-score motifs for the up-regulated class are collected in

Table 4.16, where three motifs are associated to a score higher than 4 and all

the others have score comprised between 2.76 and 3.87. Total number of these

high-score motifs in the 5’-flanking regions of the up-regulated genes is 34. In

the same table, Table 4.16, the high-score motifs for the down-regulated class

are collected as well; three motifs are associated to a score higher than 4 and

all the others have score comprised between 2.79 and 3.61. Total number of

these high-score motifs in the 5’-flanking regions of the up-regulated genes is

49. No high-score motif is shared by the two lists.

4.4.2 Core-promoter motifs

The enumeration algorithm was applied to 1000nt core-promoters, with pa-

rameter T set to 30. The 120 (30x4) motifs identified in both classes of genes

are not all shown here. Nonetheless, they have been all crossed with the

conserved motifs (see ahead). (best advice motifs)

4.4.3 Intersections of motifs

The intersection of motifs across the two regulatory classes is empty; and the

overlap of conserved and core-promoters motifs is minimal within each reg-

ulatory classes. In particular, three conserved motifs (CAGCCC, CCCAG,
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CCCAGAC) were found in both regulatory classes. The first of the three

has high score in the down-regulated class (score=3.48) and a medium score

in the up-regulated class (score=2.53). In the former class, 7 genes are asso-

ciated to the motif (IDH1, ENC1,TNFRSF11B, HOXC13, HEIS2, ZFP64),

and in the latter one there are 8 genes (BCL6, KLF4, BATF, CBFA2T3,

CEBPB, ZNF185, CXXC5, HSPB8). Mapping to consensus motifs in the

table of Xie et al. 2005 [57](see Chapter 3), this motif could match either

ER binding site (ERE) or CAC-BP (Sp1 and related). Localization of these

conserved motifs in each of the 15 genes’ flanking regions is the way to assess

the nature of each of them. Localization can also guide experiments when

the case is considered. Due to the total number of motifs, the size of the

intersection between up-regulated and down-regulated classes of genes is es-

sentially empty.

The intersection between the conserved and the 1000nt core-promoter motif

patterns within each regulatory class is as follows: for upregulated, AACGCG;

for downregulated, CCCGCA.

4.4.4 Transcription factor profiling

In the human 500nt core-promoters of up-regulated genes, MAX is the best

matrix, followed by Arnt (3.09 10−10), TFAP2A, Arnt-Ahr, Mycn, MYC-

MAX, USF1 (JASPAR profile); with TRANSFAC profile: best matrices are

SP1, AHRARNT, USF2; good matrices are HES1, AHR, ARNT, ZNF219,

WT1, MAZ, and MYC. In the human 500nt core-promoters of down-regulated

genes, we found: (JASPAR) TFAP2A, NHLH1, Pax5, SP1, E2F1, Arnt,

NFKB1; (TRANSFAC) ARNT, SP1,ZNF219, MAZ, WT1. When we com-

pared up- vs. down- regulated class, and viceversa, no matrix emerged as a

distintive one.

With the matrix-based algorithm and two different sets of matrices applied

to mouse orthologs, we obtained the results summarized in the following ta-

bles, Table 4.17 (down) and Table 4.18 (up). In the 500nt core-promoter

region of the dw-regulated genes, JASPAR profile identified NFKB1, SP1;

TRANSFAC finds SP1 and AP2. In the class of up-regulated, Arnt turns

out with both JASPAR and TRANSFAC profiles, as in dataset2.
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As pointed out above, this matrix (Arnt) corresponds to the binding site of

factor the aryl hydrocarbon (Ah) receptor. Indeed, there is evidence that

ARNT forms a complex with Sp1 and ER, which is required for positive reg-

ulation of cathepsin D [54]. Cathepsin D codes for an important protease in

estrogenic response which is also a tumor marker.

4.5 Dataset5: M.Rae

4.5.1 Conserved motifs

This dataset is composed by two subsets: dataset5a which contains the early

responders which do return to the baseline within 24h; and dataset5b which

contains the early genes whose repression/induction is sustained throughout

the 24h. Thus, dataset5a and dataset5b do not share genes by construction

(in principle!).

dataset5a

Number of output motifs is 191 for the up-regulated genes and 257 for the

down-regulated ones. Motifs with score higher than 2.75, for both regulatory

classes are collected in Table 4.19 and Table 4.20. There are 5 and 7 motifs

associated with score higher than 4.00 respectively in up- and down-regulated

classes, while other scores range between 2.76 and 3.97 (down-regulated) and

2.90 and 3.78 (up-regulated). Total number of these high-score motifs in the

5’-flanking regions of the up-regulated genes is 41; and total number of these

high-score motifs in the 5’-flanking regions of the down-regulated genes is 64.

No motif is shared by the two lists.

dataset5b

Number of output motifs is 230 for the up-regulated genes and 249 for the

down-regulated ones. The high-score motifs for the up- and down- regulated

class are collected in Table 4.21, where 5 motifs in down-regulated class and

2 motifs in up-regulated class are associated with score higher than 4. Other

motifs in the table are associated with score comprised between 2.76 and
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3.96 for the up-regulated class, and 2.77 and 3.97 for the down-regulated

one. Total number of these high-score motifs in the 5’-flanking regions of

the genes in both regulatory classes is 50. Two motifs are shared by the two

lists, ACACTCAG and CCCGGCCG –none of them are contained in table

4.21.

4.5.2 Core-promoter motifs

The best advice motifs (T=30) are as follows: from the down-regulated pro-

moters in dataset5a, ATCGGGGG and CCCCCGAT (5 redundant motifs:

GAATCGGGGG - TCGGGGGA - ATCCCCCG - AACGGGGG - CCC-

CGA); from the up-regulated promoters in dataset5a, (sense) GTCGCG and

(antisense) CGCGAC (15 redundant motifs: ACGCGACG - TCGTCGCG -

AACGCGAC - CGGTCGCG - TCGCGT - TCGCGC - CCGCGA - CGCGGT

- CGCGTC - GCGACC - CGCGTT - CGTCGC - TTCGCG - TTCGCG -

TACGCG). In all of 223 down-regulated sequences but 9 in dataset5b, the

algorithm adviced the following motifs: (sense) CGTCCG and (antisense)

CGGACG (6 redundant motifs: CGTCCGAG - GCGGACGA - TCCGCT -

CCGTCC - GCGGAC - CGACCG).

4.5.3 Intersections of motifs

The 1000nt core-promoter motifs and the conserved ones from dataset5a

and dataset5b have been crossed within each regulation class. Intersections

of conserved motifs and of 1000nt core-promoter motifs in dataset5a were

found empty. In dataset5b, instead, we found two motifs, CGCTTC and

CGTCGCGC, in the up-regulated class; no motifs in the down-regulated

class. In the same dataset, crossing 1000nt core promoter motif patterns

of regulatory classes produced the following intersection: CGGCGT and

CGACCG. (no table available).

4.5.4 Transcription factor profiling

With the matrix-based algorithm and two different sets of matrices applied

to mouse orthologs (see Chapter 3), we obtained the results summarized in
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Table 4.22. (study on human)

4.6 Meta-analyses

We looked for motifs shared by more than one dataset within each regulatory

class, analyzing gene subsets where the motif was identified, and providing

its chromosomal locations. We performed our meta-analyses in anecdotic

way, although the pipeline provided us with more than one example worth

investigating into (see tables Table 4.1-23).

4.6.1 Down-regulated class

GATA motif

There are 177 and 205 significant motifs in the down-regulated 15Kbp se-

quences of dataset1 and dataset3 respectively. Dataset1 and dataset3 share

13 genes (BIK, BLNK, BMP7, BTG2, CCNG2, CDC42EP3, EFNA1, ENC1,

EPHA4, ID2, IL1R1, KYNU, PIK3R3, SMAD6, SYTL2, TRPS1). Some

of the conserved motifs are common to both datasets and hold remarkably

high statistical/biological significance. One of these motifs, AGATAAAA,

strikingly resembles a binding site for GATA transcription factor (consensus

WGATAR, Xie et al. 2005 [57]). Genes associated with AGATAAAA in the

dataset1 are BMP7, CCNG2, TRPS1 and DDIT4; and in dataset3, BMP7,

CCNG2, TRPS1, GPC4, and LIN7A. Three genes are contained in both sub-

sets: BMP7, CCNG2 and TRPS1. Among them, BMP7 and CCNG2 possess

very high experimental scores and are shared by all of the datasets (see Chap-

ter 2). CCNG2 is a negative regulator of the cell cycle: when it is repressed

the cells divides more rapidly. Same conclusion holds for the repression

of BMP7 –a bone morphogenic factor that normally activates transduction

pathways involving SMAD proteins, which in turn are inhibitory signals of

proliferation. All of this is consistent with the effect of estrogen on breast

cancer cells. TRPS1 is also known as atypical GATA protein GC79; TRPS1

overexpression is correlated with breast cancer. Alteration of TRPS1 is asso-

ciated with a craniofacial malformation (tricho-rhino-phalangeal syndrome)

and mild skeletal dysplasia. It is worth noticing that GATA binding motifs
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have been found in both immediate upstream of TSS and distant enhancers

of various genes crucially involved in development, cell proliferation and dif-

ferentiation. None of these genes appear in the list of promoter regions where

ERs are bound (ChIP-DSL data [25]). As regard the other genes associated

with GATA motif, GPC4–a cell surface proteoglycan, may plays a role in the

control of cell division and growth regulation, while LIN7A encodes a protein

implicated in junction of the epithelial cells. DDIT4, DNA damage-induced,

is involved in cell cycle and apoptosis. This gene is also found in the list of

promoters where ER is bound to [25].

Common motifs shared by genes in dataset1 and dataset3 are collected in

Table 4.23. A few genes in the table appear in more than one set. It is the

case of ID2, which bears three different (non-redundant) motifs in its con-

served upstream region; and of SMAD6, CCNG2 and EPHA4, which hold

two different (non-redundant) motifs each. EPHA4 –a tyrosine kinase, ephrin

A, which is a negative regulator of tumorigenesis in glioma (signal transduc-

tion); SMAD6 is involved in growth control, and is one component of the

signal pathways controlled by the bone morphological factors (see above);

so it makes sense that it results down-regulated here, being BMP7 down-

regulated. ID2 is required for lobulo-alveolar differentiation of mammary

gland.

Localization of GATA motifs We localized the motif AGATAAAA (chro-

mosomal coordinates) in the conserved blocks of the upstream sequence of

the relevant genes, by applying fuzznuc –a module of EMBOSS package [58].

Relevant data are collected in Table 4.24, where the genomic location, along

with the one related to TSS (Ensembl!40), is provided for all of these sites

in BMP7, CCNG2 and TRPS1 flanking regions. In the upstream region of

CCNG2, we found three motif instances –all of them localized upstream more

or less in a range of 5,000 bp from the TSS. In the flanking regions of BMP7

gene, we identified two GATA motifs in the same conserved block. In the

case of TRPS1, GATA motifs are found in four different conserved blocks

located in the second intron. This is an unusual outcome, for the ATG of

TRPS1 is located in the 2nd exon and 1st and 2nd introns of this gene are

extremely wide. A correction based on RIKEN data to these locations, in
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the case of CCNG2, should be taken into account: the TSS shift is as follows:

TSS bajc=TSS ens40 -130nt (which is the TSS in the current Ensemble ver-

sion, by the way).

In the upstream sequence of DDIT4 gene, there were two (forward) motifs

in two different short conserved blocks. In GPC4, there were two (reverse)

motifs in two different large blocks; and in LIN7A, one (forward) motif in a

short block. Localization of these motifs is not shown.

Co-localization ERE-GATA Using a consensus definition by Xie et al.,

2005 [57], R-nnn-TGACCT, we could find a putative transcription factor

binding site for estrogen receptor, or estrogen receptor element ERE, near

to one of the GATA sites previously localized and reported in Table 4.24

for CCNG2 gene. This motif is the reverse of A-CCA-TGACCT (extended

motif found: TT. AGGTCA-TGG-T.T), as shown in Figure 4.1. The GATA

position related to TSS is -5443; the absolute distance between the two pu-

tative transcription factor binding sites, approximately 150nt, is compatible

with a hypothesis of direct interaction between the ER and GATA transcrip-

tion factors. A putative estrogen responsive element could be also found

downstream one of GATA motif in DDIT4 flanking regions. These two mo-

tifs, GATA and ERE, are separated by 4 nucleotides, more or less the space

for half helix turn (not shown). Our findings are being tested in labora-

tory (see conclusion and perspective also for a relevant biological hypothesis

about mammary gland development). It is important to note that GATA

binding sites have been repeatedly found in the surrounding of ERE sites in

ChIP-on-Chip experiments [12,22].

BMP7 and CCNG2: collection of conserved motifs and related

gene subsets

BMP7 and CCNG2 genes are down-regulated by estradiol in all of the exper-

imental datasets. Their functions are widely investigated, and many studies

report their role in cancer/inflammation. In addition to this, they share

at least one conserved motif, AGATAAAA, as outlined above. Here do we

provide the entire collection of the conserved motifs extracted from their 5’-

flanking regions, along with the gene subsets associated with them. In Table
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Figure 4.1: Localization of GATA motifs and ERE site in the regulatory

region of CCNG2, cyclin G2

4.25 we gathered all motifs for BMP7. In Tables 4.30-34, we collected the

motifs for CCNG2, dataset- by- dataset. Genes that are found in the ChIP

data [25] are indicated in bold. These tables highlight associations with sev-

eral interesting genes, among which GATA transcription factors. Specifically,

there is GATA2 in dataset2 (CCGGC, score=3.62; GCCCC, score=2.18);

and GATA3 in dataset4 (CGCCC, score=2.49). There is evidence CCNG2

is down-regulated by GATA-3 [61], and that a positive cross-regulatory loop

links GATA3 and ERα and regulates their own expression in breast cancer

cells [62].

We also noticed the presence of motifs shared by more than one dataset. For

example, CCGAGC in both dataset1 (score=2.44) and dataset3 (score=2.24).

In addition to CCNG2, the first gene subset (dataset1) comprises ACHE,

IFT122, EPH4 (tyrosine kinase, ephrin A; differentiation), PLK2 (Polo-like

kinase 2, Drosophila); and the second gene subsets (dataset3) EPHA4, VAV3

(Vav 3 oncogene), PLK2, PPAP2B (Phosphatidic acid phosphatase type 2B;
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activates among others, PKC). VAV3 exchanges GTP/GDP for small-G pro-

teins (especially Rho) of cytoskeleton in shape rearrangement and motility,

and replication. PLK2 is a kinase serum-inducible which regulates the pro-

liferative response. Thus EPHA4, PLK2 and CCNG2 form the subset core

associated with CCGAGC motif which seems to be associated with signal

transduction phosphorylative response. It might be possible that estrogen

down-regulates these genes in order to maintain the ratio of co-activator/co-

repressor concentration. An additional instance is taken from Table 4.27,

where GATGTTTA motif (score 2.63) is associated with JDP2, CRTC2 and

ZNF784, as well as CCNG2. JDP2, Jun dimerization protein, inhibits cell

transformation– it’s a cell survival protein; CRTC2 is a regulator of CREB

(cAMP response) and it regulates recruitment of certain co-activators to some

gene promoters in response to cAMP; and ZNF784 is a putative transcription

factor.

CACCC-binding motif We investigated into some other motifs collected

in Table 4.23, employing PATCH, an algorithm available within TRANS-

FAC Professional [46]. We set parameters as follows: minimum sequence

length= 5, max number of mismatches 1, mismatch penalty 98, lower score

boundary 87.5. CACCCTC could be associated with the CACCCC-binding

factor site through the CACCC portion. Besides, CACCCC-binding factor

is a transcription repressor. Typically, CACCC is a binding site for Sp1-4,

and for KLF (Kruppel-like factors) which are proteins involved in growth

control, apoptosis, and angiogenesis. One of them, KLF9, inhibits the estra-

diol transactivation in estrogen-responsive genes such as PR (progesteron

receptor), whose promoter contains a half-ERE surrounded by CG-rich sites

(Sp1) [63]

However, this motif may also match other matrices (for ex. Sp1, EKLF,

FKLF, GLI2alpha; EGR-1 and EGR-2, important factors in growth control

through reverse complement GGGTG site). The localization of this motif in

the specific conserved sequence block of the relevant genes could help assess

the nature of the putative binding site. The gene subset associated with

CACCCTC in dataset1 comprises: ATP2A3, NDRG1 and IL1R1; the corre-

sponding gene subset in dataset3 is composed by AFAP1, GAB1, EMP1, as
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well as IL1R1.

Interleukin 1 receptor type I, IL1R1, encodes a cytokine receptor that be-

longs to the interleukin 1 receptor family. It is an important mediator in-

volved in many cytokine-induced immune and inflammatory responses (in-

flammatory cytokine). Although IL1R1 is not in the list of the genes that

have ERs bound in the proximal regulatory region (ChIP-DSL) [25], the re-

sponse to IL-1 may affect the genomic response to estrogen. In particular, it

controls the re-localization of NCoR co-repressors from nucleus to cytoplasm,

in such a way that when IL1R1 is down-regulated the persistance of NCoR

in the nucleus helps select those genes that must be up-regulated vs. those

that must be down-regulated in response to estradiol [50]. Besides, IL1R1 is

one of the genes whose expression is altered due to promoter methylation in

MCF7-tamoxifen/raloxifene resistant cell lines [23]. In the regulatory region

of interleukin 1 receptor type I, there are 2 instances of CACCCTC in 2

different, short conserved blocks. The ATG of IL1R1 is unusually located in

the 3rd exon, and the first intron contains a bit less than 11,000 base pairs.

As a result, the first motif (chromosomal location: 102,136,840) is located

in the 2nd (untranslated) exon and the second one (chromosomal location:

102,137,335) is instead found within the 2nd intron. The TSS location of

IL1R1 is 102,125,678 on chromosome 2.

GAB1, GRB2-associated protein, and AFAP1, actin filament associated pro-

tein 1, both contain binding sites for SH2 and SH3; the latter can effectively

interact with SH2 and SH3, as well as with other non-receptor tyrosine ki-

nases (signal transduction). ATP2A3, ATPase Ca++ transporting, is a mem-

brane spanning protein found in sarco/endoplasmic reticulum. The ATPase

refills Ca++-stores in endoplasmic reticulum and it might have a critical role

here, for the cellular responses produced by the activation of some signalling

pathways is production of IP3 which in turn mobilizes Ca++ from the endo-

plasmic stores. NDRG1, N-myc downstream regulated gene 1, is supposed

to have a role in growth arrest and cell differentiation as a signaling protein

shuttling between cytoplasm and nucleus.
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Transcription factor profiling

With PSCAN, we investigated into DNA sequences of the genes which are

down-regulated in all of the homogeneous datasets, and of the gene subsets

associated with the GATA motif in both dataset1 and dataset3. Despite of

the fact that the number of genes does not guarantee significant statistics for

analyses of their core-promoters, we could observed that at least one matrix

was overrepresented in both situations.

Set of most robust genes The three genes found in all of the homoge-

neous datasets (BMP7, CCNG2, GTF2IRD1) share the CDP CR1 protein

transcription factor (Transfac matrix M00246), cut homeodomain protein,

also known as cux or cutl. The matrix-based algorithm identified CDP fac-

tor with p-value equals to 0.005 as best output. It is interesting that the

human cut homeodomain protein, CDP or CCAAT displacement protein,

represses transcription from the c-myc promoter [51] and it is also associated

with repression in H60 myeloid leukemia cells [52]. Besides, CDP expression

is inversely correlated with survival in breast cancer [53].

Set of GATA-motif associated genes The seven genes associated with

AGATAAAA motif share EGR-2 (M00246), early growth response 2, as best

output.

4.6.2 Up-regulated class

CGAAACAC motif

This conserved motif is shared by up-regulated class of dataset1 and dataset3.

In dataset1 (score 2.70), it is found in the flanking regions of 3 genes: HSPA5,

SLC9A3R1 and CDC6; in dataset3 (score 2.10), the motif is detected in

SLC9A3R1 and CDC6 flanking regions as well as in the one of PRKAG2.

All of these genes are not in the list of ER-bound core-promoters [25]. The

genes common to both subsets are as follows: SLC9A3R1 (experimental score

+2A) is a solute carrier (family 9, isoform 3 regulator1), and CDC6 (exper-

imental score +1A) is CDC6 cell division cycle 6 homolog (S. cerevisiae).
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The other ones are the following: PRKAG2 (dataset3) is an AMP-activated

protein kinase (gamma2 non-catalytic subunit); and HSPA5 (dataset1) is the

heat shock 70kDa protein 5 (glucose-regulated protein, 78kDa).

Allowing one mismatch, CGAAACAC motif could overlap the sequence CAAAACA,

which corresponds to the insuline responsive element, IRS. Binding fac-

tors provided by TRANSFAC are several –the most striking seems to be

either HNF-3alpha or FOXA1. The former, HNF-3, has consensus TRTT-

TRYTYW according to Xie et al. [57]. The latter, FOXA1, breast cancer

cell specific and capable of interaction with BRCA1, has been reported as a

key factor by all authors of the large-scale study [12,22]. FOXA1 is required

for nuclear clustering of genes in response to estradiol [20,65]. However, the

Forkhead motif slogo found by Carroll et al. [22] is AaGxAAAcAa, and the

consensus according to Xie et al. [57] is WAAAYAAACAATM. Localiza-

tion of the motif in the gene flanking regions can help filter the best match

and better describe the hit.

Transcription factor profiling

Less than a tenth of up-regulated genes are shared by all of the datasets –

once more a number not sufficient for good statistics employing Pscan algo-

rithm. The genes are as follows: AMD1, ASB13, CCND1, CXCL12, DDX21,

IGFBP4, NRIP1, NP, RLN2; and the matrix-based algorithm provided the

following results (TRANSFAC profile): RP58 or ZNF238 (p-value=0.004),

and HNF4 (pvalue=0.009).

We remind here of the matrix Arnt/ARNT, which turned out to be over-

represented in up-regulated class of both dataset2 and dataset4. This matrix

corresponds to the binding site of the aryl hydrocarbon (Ah) receptor (see

FIG 4.4). ARNT forms a complex with Sp1 and ER, which is required for

positive regulation of the tumor marker cathepsin D [54]. An additional piece

of evidence–which suggests experiments to be performed on our genes, is that

ligands of aryl hydrocarbon receptor may increase the occupancy of ER on

certain promoters [64].
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Figure 4.2: Slogo of matrix Arnt/ARNT, aryl hydrocarbon receptor.

4.7 Discussion

Presence of a distinctive conserved motif in the flanking regions of genes be-

longing to the same subset may indicate that these genes are co-regulated

through the same biochemical pathway, and that they share some func-

tion/ontology. This seems to be reasonable, based on the instances in which

the motifs did not look like CpG islands. However, the size of the gene sub-

sets did not enable us to carry out a systematic ontology study. A way to

handle this drawback may take advantage of clustering algorithms, which

help in generating motif subgroups based on a similarity measure. Thus,

each motif subgroup shall be associated with a consensus and a function to

be validated in laboratory. This seems to be mandatory in order to exploit

all information extracted from the sequences, for the conserved motifs might

also represent matrix attachment domains (MARs) or other biological signals

as important as transcription factor binding sites (TFBSs).

The overlap between conserved and core-promoter motifs depends upon the

dataset taken under consideration, but generally speaking is not high. This

was somehow expected due to the fact that the regions analyzed may not

always overlap and that fixed motifs were employed. Besides, the core-

promoter analysis was only performed on human promoters. The motifs

so identified did not apparently match any of the TFBSs in TRANSFAC

database. On the other hand, this inference generally proved very difficult.

The matrix-based algorithm helped identify a few interesting TBFSs, which

suggested working hypothesis to be tested in laboratory. Similarity of out-

comes in different datasets is not always cogent, likely due to the fact that
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the overlap between datasets is not very high (see Chapter 2). These results

seem to depend strongly on gene sets provided in input and on matrix pro-

files employed–which by the way contain redundant matrices at the moment.

It could be interesting to apply the algorithm to restricted sets of genes, for

example to the ones which are found in ChIP-DSL data [25], provided that

the size of subset is sufficiently high to produce sensible statistics. This is

certainly possible in the case of the up-regulated class (see Chapter 2, Table

2.10 and Table 2.13).

As seen in Chapter 2, very few genes (less than 10% in each list) in our

database seem to bear estrogen responsive elements (EREs) in their flanking

regions, according to both ChIP-DSL [25] and in-silico data [19] (Tables 2.12-

15). Accordingly, there are few of these genes in the Tables 4.25-30, which

contain all of the motifs and relevant associated gene subsets containing

CCNG2 and BMP7 genes. As argued in Chapter 2, primary targets directly

regulated by ER-ERE might be far more than the few ones we found crossing

this published data –CCNG2, for example, which is not in ChIP data list,

is directly down-regulated by ER-(half)ERE interaction [13]. Nevertheless,

genes in our database –a subpopulation of the estrogen-responsive genes in

breast cancer cells– seem to be strongly influenced by indirect mechanisms

(e.g. E2-ER interacting with DNA-bound proteins, non-genomic pathways

and secondary response).



motifs dw SSS score motifs up SSS score

ATGAACCG 6 6.47 ATATGG 5 4.35

CGATCTAC 4 4.36 AAGTTCTG 4 4.23

CACACGC 5 4.14 ACGCGG 6 4.09

TAGGGCCA 4 4.02 CTGCGCTC 4 4.01

CCAAACAC 4 3.96 GGCAAGGA 4 3.91

CGTCGAAA 3 3.92 AGGGTG 6 3.86

ATCTG 6 3.92 ATGCGTCA 4 3.86

CAACAA 5 3.71 AAATGAC 4 3.77

CATTCGC 4 3.70 GGGAA 6 3.54

ATCCCGTG 4 3.70 ATGACTG 4 3.45

GACGAGTA 3 3.53 GAGCGCA 4 3.45

ACGTCGAA 3 3.44 ACGCGCG 4 3.45

CCGGAC 5 3.41 CTGGTTTA 3 3.36

AGTCCGG 4 3.31 AGTTCTG 4 3.35

AGATAAAA 4 3.31 CTTATC 4 3.28

TAATGCTA 3 3.30 CTGAATAA 3 3.19

CAAAGTA 4 3.27 GAGATTCA 3 3.13

AGACCG 4 3.23 ATCCA 5 3.10

CCCGGAC 4 3.20 ATCTGGCG 3 3.08

GTCGCCTA 4 3.20 CCTATGCG 3 3.08

GTATGCGA 3 3.16 GGGAACAA 3 3.08

GCGATCTA 3 3.04 AAAGTTGC 3 3.08

CCCGG 12 2.98 GCAACC 4 3.08

TGAGCAAA 3 2.94 CACGCG 5 3.01

GAACGGTA 3 2.94 GATGAGAA 3 2.99

ACCGTAAT 3 2.94 AAGCCCTT 3 2.99

CGCCATAC 3 2.89 ACGCG 7 2.97

ATACACTC 3 2.89 CGCCCAG 4 2.97

ACCTGCC 4 2.88 ACAATACG 3 2.94

CCCTAGGC 3 2.84 ATGGTGAA 3 2.94

AACCCTGC 3 2.84 ACTTCTGC 3 2.94

AGTCACTG 3 2.84 ACGCTTAT 3 2.94

CGGACTAA 3 2.84 ACACGGC 3 2.90

CTCGCA 4 2.82 GTACGTCA 3 2.90

CTATA 5 2.82 CTTACCTC 3 2.86

AACAGAGT 3 2.79 GATTCAAA 3 2.86

ATTACG 3 2.79 GTTCTGCA 3 2.86

GGTCGAAA 3 2.79 GCTACAGC 3 2.81

CCTCGGAG 3 2.79 AGTCGGTC 3 2.81

ACGAAAGT 3 2.79 AATGGTCG 3 2.81

GCTGGTCA 3 2.79 CTGTAAAA 3 2.81

GCTGAAAC 3 2.79 AATCTCTG 3 2.78

GTGTTAA 3 2.78

ATATCTGA 3 2.78

ATCACTTC 3 2.78

Table 4.1: High-score conserved motifs from the 5’-flanking regions of genes

in metaset. Gene set size: dw=104, up=89; SSS=subset size



region type DW-UP motif

1000nt core CGCGAA

CGAACG

ACTCGC

TACGCG

TCGCGCGT

CGAACGGC

CGCTCGCG

GTCGAGCG

200nt core TCGCCG

CGCGGC

CGGCGG

conserved ATAAG

ATGCG

AGGGTG

AAGGTAGA

Table 4.2: Motifs from all flanking region sizes which are shared by both

regulatory classes in dataset1

type of intersection motif dw motif up

1000nt-200nt GGCGGT TCGCGG

AGCGCC CGACGC

CGGAGACCGC CGAGCG

GCGGAGACCGCG GCGCGT

ACGCCG

CGCGAACG

GCGGCGTA

GCTCGCGG

CGACGCGC

CGCTCGTCCG

GCGAACGGGCGG

conserved-1000nt CTCGCA none

conserved-200nt none CGCCGCCGC

Table 4.3: Intersection motifs from regulatory regions of different sizes within

each regultory class in dataset1



matrix p-value

JASPAR

TP53 0.00721277

ZNF42.5-13 0.00861142

TRANSFAC

P53.01 0.00276853

SREBP1.02 0.00365697

SP1.Q6 0.00756064

Table 4.4: Best p-value matrices in dw-regulated class of dataset1 (mouse

orthologs)

matrix p-value

JASPAR

ZNF42.5-13 0.000446069

ZNF42.1-4 0.00134352

CREB1 0.0129926

TRANSFAC

TAXCREB.02 5.25778e-05

MZF1.01 7.42287e-05

SPZ1.01 8.98066e-05

MAZR.01 0.000577514

MZF1.02 0.000626964

Table 4.5: Best p-value matrices in up-regulated class of dataset1 (mouse

orthologs)



motifs dw SSS score motifs up SSS score

GGCCC 20 4.63 AACTCTAG 6 4.85

CCAGG 23 4.50 CAGTCTAA 5 4.21

CAGACAGG 6 4.03 ACCACGT 6 4.10

CGGGTATC 5 3.98 ATCATACA 5 3.95

CCCAAAG 6 3.96 CGAACC 6 3.70

AGTCAC 8 3.89 AAGCAA 8 3.70

AAGGAGG 7 3.82 ACCGCGGG 6 3.60

CCCAG 22 3.67 CGGTCTA 5 3.58

CTGGGCC 9 3.63 CTAACGAA 5 3.52

CCGGC 21 3.62 CACGTGCA 5 3.46

AGGGGCA 6 3.60 CGCCTAC 5 3.46

AGTTCGAC 4 3.59 CAAAAAC 5 3.46

ATAGGCCG 5 3.57 CGCACG 8 3.38

GCCCCCCC 5 3.57 CGCTCCTA 5 3.34

GCCCCACC 7 3.50 CGTGCGGC 5 3.34

ACCGCCCC 6 3.44 CGGGCTCA 5 3.34

GGTGTCAA 5 3.42 AGTCGCG 5 3.28

AACCATAC 5 3.42 GGCGGTAA 5 3.28

CGCCCCCA 6 3.39 GAGCGTCC 5 3.28

GTCTCTGA 5 3.36 GAGTCCGA 5 3.28

CGCCGTAA 5 3.36 CGGAACAG 5 3.17

CCCGAACC 5 3.36 CTCTTTAC 4 3.14

ATATCGC 5 3.29 TAACCCA 4 3.14

CGGCCC 13 3.25 ACGCCGCT 5 3.12

GCCCGGA 6 3.24 AACTTTA 6 3.08

ATTGAGGC 5 3.23 CAATTCAC 4 3.06

CCGTGA 6 3.20 CGAGGAGA 4 3.06

ACCTAACC 4 3.20 ATGCGATC 4 3.06

CCCGGC 14 3.17 ATAAATTC 5 3.02

CCGCCCC 12 3.12 TAGACCGA 4 2.99

AGGTCCC 6 3.02 TCAACGAA 4 2.99

TGGCAA 6 2.98 ACGTTGTA 4 2.99

CAGGACA 6 2.98 AGCAATCA 4 2.99

Table 4.6: High-score conserved motifs from the 5’-flanking regions of genes

in dataset2. Gene set size: dw=226, up=253; SSS=subset size. cont’d on

the following table.



motifs dw SSS score motifs up SSS score

CGGGTCGA 4 2.95 GCGGAGAC 5 2.97

CCCTCACG 5 2.95 ACTATTGA 4 2.93

GCCTCAGC 5 2.95 AATTTTGA 5 2.93

ATTAAG 7 2.95 AACAGTA 5 2.93

GCGGGCC 7 2.95 GATTGA 5 2.88

GGAGGGA 8 2.94 ACTTAAAA 5 2.88

AGGCAG 9 2.91 CGGTAAA 4 2.87

CCGCCTCA 5 2.90 GTCAACGA 4 2.87

AGTCATAC 4 2.88 CCTCCGAA 4 2.87

CAAAGGGG 4 2.88 AACAAAAA 6 2.86

CCTGCGCG 6 2.86 CGGACTCC 5 2.84

GTGGCAA 5 2.85 ACGATCC 4 2.80

CCTGGCC 7 2.82 GATGAGCC 4 2.80

AGGACGA 4 2.81 GGCAAGA 5 2.80

AAACTGTG 4 2.81 CCGCACCG 5 2.80

AGTGGATC 4 2.81 CCCGACGC 5 2.76

CTTCCCAA 4 2.81 AACCCCGC 5 2.76

CGGCC 20 2.81

TCCTGAAA 5 2.80

CCACCGCC 5 2.80

AGGGTC 6 2.79

Table 4.7: cont’d from the previous table. High-score conserved motifs from

the 5’-flanking regions of genes in dataset2. Gene set size: dw=226, up=253;

SSS=subset size.

region type DW-UP motif

1000nt core CCGACG

GACCGC

CGCGTATCCG

conserved ACGGCCCA

Table 4.8: Motifs from all flanking region sizes which are shared by both

regulatory classes in dataset2.



matrix p-value

JASPAR

TFAP2A 7.61312e-06

Roaz 0.000147698

NFKB1 0.000800458

SP1 0.000999516

TRANSFAC

SP1.Q6 8.85719e-08

AP2GAMMA.01 9.53851e-07

MAZR.01 5.42933e-06

AP2ALPHA.01 7.61312e-06

SP1.01 7.74592e-06

EGR3.01 0.000166892

AP2.Q6 0.000215851

Table 4.9: Best p-value matrices in dw-regulated class of dataset2 (mouse

orthologs).



matrix p-value

JASPAR

CREB1 3.38008e-08

Arnt 1.18166e-06

Arnt-Ahr 6.67902e-06

TFAP2A 4.77396e-05

Mycn 9.29683e-05

USF1 0.000104534

ELK4 0.000320515

GABPA 0.000428103

ELK1 0.000496579

TRANSFAC

ATF.01 1.29886e-08

E2F.03 2.40471e-08

AP2.Q6 3.59769e-08

PAX4.01 5.44881e-07

AHRARNT.02 2.48205e-06

NMYC.01 3.23477e-06

SP1.Q6 7.21341e-06

AP2GAMMA.01 2.28992e-05

EGR3.01 3.54873e-05

AP2ALPHA.01 4.77396e-05

CREB.02 7.40373e-05

EGR1.01 8.38691e-05

SPZ1.01 0.000145442

MAZR.01 0.000158069

TAXCREB.01 0.000234645

PAX5.01 0.00025087

MYCMAX.01 0.000362072

NRF2.01 0.000428103

CREB.Q2 0.000533569

CREBP1.Q2 0.000556606

AHRARNT.01 0.000806279

ATF6.01 0.000936263

ARNT.02 0.000937415

SP1.01 0.000956468

Table 4.10: Best p-value matrices in up-regulated class of dataset2 (mouse

orthologs). cont’d on the following table



motifs dw SSS score motifs up SSS score

AGATAAAA 6 5.50 AGGGTG 9 5.21

AGCCAGAA 5 4.59 CTGGACGA 5 4.47

ATACGATC 4 4.25 GCGCATAA 4 4.01

CCCTGGGA 5 3.96 ACATTCC 5 3.83

TGCTCAAA 4 3.90 GCGCCAAA 5 3.69

CAGAACAC 4 3.84 CATTTA 7 3.63

AGATCG 4 3.67 CCGCG 17 3.54

TCCTTCA 4 3.61 ATTCCATG 4 3.50

ATGTTGAC 4 3.56 CGCCAAA 5 3.40

ATTAAGGG 4 3.56 AAGCAAGC 4 3.33

ACGATCTC 4 3.56 GGGTAAC 4 3.33

ACAAGAGA 4 3.51 ATTCCACA 4 3.33

AGCGTTAA 4 3.47 CGGGGGA 5 3.29

GACTTCGC 4 3.42 ACGTACTC 4 3.28

ACATGTC 4 3.37 AGCAAGCC 4 3.28

ATACG 4 3.37 CCCCAA 6 3.18

ACACGCG 4 3.25 AATTATG 5 3.18

ACATGTCA 3 3.23 CCGTTAGG 4 3.17

ACAGGCCT 4 3.21 GTCATTTA 3 3.17

ATAACAT 4 3.13 CGCCAA 5 3.15

CAAAGTA 4 3.09 AATTC 7 3.12

AAAATT 9 3.07 AGCCTGCA 4 3.12

GTATGCGA 3 3.03 ATGCA 6 3.11

AACGTTCG 3 3.03 AGATTGA 4 3.08

CTAGGCGA 4 3.02 GAGCATC 4 3.08

GATAATGC 3 2.97 AAATC 7 3.06

GTTCCATA 3 2.91 CAATGAC 4 3.03

ACGGACTA 3 2.91 AATTAAAG 4 3.03

CAGGCCTG 4 2.89 CGACGTCC 4 3.03

Table 4.11: High-score conserved motifs from the 5’-flanking regions of genes

in dataset3. Gene set size: dw = 116, up = 147 ; SSS=subset size. cont’d

on the following table



motifs dw SSS score motifs up SSS score

CACCCTC 4 2.85 GCGCA 13 3.01

GATCAA 4 2.85 CGCGCATA 3 3.01

AAAACCA 4 2.85 CATCCATG 3 3.01

ATCAACCG 3 2.85 GAGTGTCA 4 2.99

CGCCTATA 3 2.85 AACCCGC 4 2.99

CTCTACCC 3 2.80 CCCAG 14 2.91

ACGGCATA 3 2.80 TAGCAAA 4 2.90

ACACCTGA 3 2.80 GGCCCAA 4 2.90

ACCTCCC 4 2.79 AGAACCTG 4 2.90

ATGCAAA 4 2.79 CGCCGCAA 4 2.86

AATGC 5 2.79 ACGACCTA 3 2.86

AAATTC 5 2.79 AGGTCCTC 3 2.86

CGAGC 8 2.79 CATAATTA 3 2.86

GATAAAA 4 2.76 CCGCGC 10 2.85

CACCCTG 5 2.84

GCTGCAGA 4 2.82

GCTGAAC 4 2.82

CCGGTATA 3 2.79

CGAAC 6 2.79

AAGGCCAG 4 2.78

AGCGTGA 4 2.78

CACATTCC 4 2.78

ATGGAAT 4 2.78

CTGCAGC 5 2.76

Table 4.12: cont’d. High-score conserved motifs from the 5’-flanking regions

of genes in dataset3. Gene set size: dw = 116, up = 147 ; SSS=subset size

region type DW-UP motif

1000nt core CGCTCG

CGTTCG

GCGGAC

ACGCGCGT

CGAACGGG

CCGATCGC

CGGACGACCG

CGCTCGTCCG

conserved none

Table 4.13: Motifs identified in both regulatory classes in dataset3.



matrix p-value

JASPAR

ZNF42.5-13 0.000687222

TRANSFAC

MZF1.01 4.71939e-05

MZF1.02 0.000533595

Table 4.14: Best p-value matrices in down-regulated class of dataset3 (mouse

orthologs)

matrix p-value

JASPAR

TFAP2A 0.000153662

RREB1 0.000207429

Roaz 0.000528005

SP1 0.000551663

TRANSFAC

SP1.Q6 8.02992e-07

AP2.Q6 1.6064e-06

MAZR.01 2.83945e-06

SPZ1.01 3.7037e-05

RREB1.01 0.000108802

MZF1.02 0.000138269

AP2ALPHA.01 0.000153662

SP1.01 0.000268412

AP2GAMMA.01 0.000968987

Table 4.15: Best p-value matrices in up-regulated class of dataset3 (mouse

orthologs)



motifs dw SSS score motifs up SSS score

TGTAAACA 5 5.34 CCCAGAG 7 4.23

CCGGGGC 7 4.45 AAATCTCA 5 4.20

AACAACTA 4 4.33 ACTACG 6 4.10

GCCCC 12 3.61 CCCAG 18 3.87

AATAGT 5 3.55 ACTACGG 5 3.53

CAGCCC 7 3.48 CTAGACAC 4 3.45

CTTAAAAA 4 3.42 TGCCA 8 3.44

GCGCAAA 4 3.42 GTCATGGA 4 3.38

ACTTGCTA 3 3.32 TACAGCAA 4 3.31

GTAAAAAC 3 3.25 ACGTGCGC 5 3.30

CCCAGCC 6 3.21 CCGCGAGG 5 3.25

AGGAG 7 3.18 GCTCACAC 4 3.18

CGAGTTTA 3 3.13 TCTTGGCA 4 3.18

CTCCTA 4 3.11 CGGAAGGA 5 3.17

CCCCGCA 4 3.11 CCGGAAC 5 3.13

CCCAGC 7 3.10 ACCTGTGC 4 3.12

GTAAACA 4 3.08 TAAATTAA 5 3.09

AGTATCGA 3 3.08 GGCAAAAA 4 3.06

ACGAAAT 3 3.08 CGCAGACA 4 3.01

TGAAA 7 3.08 ACGCGCCC 4 3.01

AGGAGG 6 3.07 AAACCTGG 4 3.01

GGTACCGA 3 3.02 CAAGTCCC 4 3.01

AGCCCC 6 3.02 CAGAACCC 4 3.01

AGGGAG 6 2.99 ACTTCAAG 4 3.01

CAAATAA 4 2.94 AGGGTG 7 2.97

CCCGCA 5 2.93 AGAAACCT 4 2.96

ACAACTAA 3 2.92 CGCTTTAA 4 2.96

CGAACATA 3 2.92 GGATCTAA 4 2.90

GCTAGCA 3 2.92 ACCTCG 5 2.90

AGGGTACG 3 2.88 CACGTGGG 5 2.87

ATAATGTG 3 2.88 GAAAGTTC 4 2.86

GTACGTAA 3 2.88 AAGTCACC 4 2.86

AGCAAGCA 3 2.88 ACTACGA 4 2.76

AATCGTCC 3 2.88 CAAGCTAA 3 2.76

AGCCCCGG 3 2.88

CGGATATA 3 2.88

GTAAACAC 3 2.83

GCCACTTA 3 2.83

AATTAGGT 3 2.83

AATAAGTC 3 2.83

TACGTAA 3 2.83

CCCTTTGA 3 2.83

ATACACAT 3 2.83

TACGTACA 3 2.83

AATTGGGG 3 2.83

AAAAG 7 2.83

GTTTTA 5 2.82

AAGTTGG 3 2.79

ATCGCCTA 3 2.79

Table 4.16: High-score conserved motifs from the 5’-flanking regions genes of

dataset4. Gene set size: dw = 97, up = 179 ; SSS=subset size



matrix p-value

JASPAR

NFKB1 2.16947e-05

SP1 0.000263987

TRANSFAC

SP1.Q6 7.9656e-06

AP2.Q6 2.37965e-05

SP1.01 3.03465e-05

E2F.03 0.000298879

Table 4.17: Best p-value matrices in dw-regulated gene list of dataset4

(mouse orthologs).

matrix p-value

JASPAR

TFAP2A 9.71496e-06

Arnt-Ahr 1.04919e-05

SP1 6.64661e-05

Arnt 0.000131393

TRANSFAC

AP2ALPHA.01 9.71496e-06

AP2GAMMA.01 3.22254e-05

USF.Q6 3.2342e-05

SP1.01 3.90012e-05

MAZR.01 4.6936e-05

AP2.Q6 7.55904e-05

E2F.03 0.00016181

SP1.Q6 0.000352901

NMYC.01 0.000485396

AHR.01 0.000997355

Table 4.18: Best p-value matrices in up-regulated class of dataset4



4.7. DISCUSSION 83

motifs dw SSS score motifs up SSS score

GGGGA 18 5.86 CACTTTC 7 5.03

AGGGG 17 5.32 ACCGCGA 7 4.84

CCCCCG 13 4.80 GGCCGTAA 6 4.74

GATGCAA 6 4.21 AAAAATCG 5 4.28

CCCCACCC 9 4.18 ACCGCGAG 6 4.10

CCCCGG 13 4.08 CGGTGTC 5 3.90

CCCCCCAC 6 4.03 ACCCCTAA 4 3.77

CCCCCGG 7 3.97 CTGCTTCA 5 3.76

CCCCA 19 3.93 CCAATCGC 6 3.65

CCATCCCC 6 3.92 AGATTGAT 5 3.58

AGCTCCCC 5 3.81 GCCGTCCC 5 3.47

ACAGCCC 6 3.81 CGAGCACG 5 3.47

GCCCCC 12 3.80 GAAAGTCC 4 3.41

GAGGATTA 4 3.75 CCGCC 26 3.37

CCCCC 17 3.70 CGGCAGGC 5 3.31

CACACACG 5 3.67 GATCCGTA 4 3.26

CCCCCACC 7 3.56 CCTTACTA 4 3.26

CACACGC 6 3.56 CGCCGACC 5 3.26

CCCTTTCC 5 3.55 CGCAGCCA 5 3.17

ACACACGC 5 3.55 GTTGACGA 4 3.13

CACCCC 11 3.52 ACCTTGTA 4 3.13

CTTTATAC 5 3.49 CAAGTTA 5 3.12

CACCCCC 8 3.45 ACCACTCT 3 3.09

GCAGGGAC 5 3.43 TACAAAGA 5 3.08

CCACTGCC 5 3.37 AAAGCTAA 4 3.06

CCCCGGGG 5 3.37 TCAAGAGA 4 3.00

GCCCC 19 3.34 ATCGTCAA 4 3.00

CAGAGC 8 3.34 CCACGGGA 4 3.00

GCAGAGC 6 3.26 CAATCGC 5 2.99

ATTCACC 5 3.21 CAGATGCA 4 2.89

AGGAGGGA 6 3.18 CAAAGATC 4 2.89

AGGGGC 9 3.18 AAGTGTAT 4 2.89

CAATGTA 5 3.16 GCCGCCGA 5 2.87

GAGCACA 5 3.11 CCGCCGA 5 2.87

AGGGGTCA 5 3.11 CGCCGCGA 5 2.87

GACAGGC 5 3.11 GAGCGGCA 4 2.83

GTTTGGA 5 3.11 CGTGAGAA 4 2.78

CGATCCTA 4 3.07 CGGGTGTC 4 2.78

GAACTGCC 4 3.07 ATACAAAG 4 2.78

CACAGCCC 5 3.06 AGGGCGAT 4 2.78

ACCCC 12 3.05 AGGGAATG 4 2.78

GGGACCC 6 3.04

Table 4.19: High-score conserved motifs from the 5’-flanking regions of genes

in dataset5a. Gene set size: dw = 216, up = 200; SSS=subset size. cont’d.



motifs dw SSS score

GTTTGCA 5 3.02

ACACACG 5 3.02

GGGACC 7 3.01

CTGTGCTC 4 2.94

CGATGTGC 4 2.94

ATTAGTTA 4 2.94

CCCCTC 10 2.89

GCTGAAA 5 2.88

GACTGATA 4 2.88

AGGTATGG 4 2.88

ACCCCCAC 5 2.84

GTGAGCCA 4 2.82

ATAAATCG 4 2.82

ACCTACTG 4 2.82

ACCACAAG 4 2.82

CAGGGAC 5 2.80

GGACCC 7 2.79

GGGAA 8 2.79

TCTGGGAA 5 2.76

CCCTGGCC 5 2.76

CGGGAACA 4 2.76

CAGCAAGC 4 2.76

Table 4.20: cont’d. High-score conserved motifs from the 5’-flanking regions

of down-regulated genes in dataset5a. In this dataset, there are more motifs

in the down-regulated class than in the up-regulated one. Gene set size: dw

= 216, up = 200; SSS=subset size.



motifs dw SSS score motifs up SSS score

TCCGATAA 5 4.75 CGCTCCA 8 4.66

CCCGG 18 4.50 AGGAGCA 8 4.26

CCGATGAA 5 4.38 CCGTTCGC 7 3.96

CCCCG 18 4.16 GTTCACA 6 3.81

CAGTCGGA 5 4.08 AAGCGTTC 6 3.74

CGGCACCA 5 3.97 CGCTTC 10 3.67

CGGCC 16 3.82 CCGTAGC 6 3.66

GCCCCCC 6 3.73 ATTTAGCG 6 3.66

CCGGCC 10 3.66 CGCGGGAA 8 3.66

CGCCCCCA 5 3.59 AAGTCGCC 6 3.52

AAAACAC 5 3.50 ACGTAC 6 3.52

AGAGGGCC 4 3.49 CGAACGGA 6 3.52

CCCCGC 12 3.49 CACTTGG 6 3.45

CGGCCGCC 6 3.48 AGCAGGGC 6 3.39

AGCCGATG 4 3.43 AAGTAGTA 6 3.39

GCCCC 15 3.39 GCGTCCGA 6 3.39

ACGGGATG 4 3.37 ACCGCAC 6 3.39

ATCGGGGG 4 3.37 AGGAAAGC 5 3.23

CCCGC 19 3.36 CGCTTCCG 9 3.19

GCCCGGAC 4 3.32 GTACTGTA 5 3.15

ACATGGAA 4 3.32 AGGACG 7 3.09

CCGGGAG 6 3.30 ATACGGAG 5 3.08

TATTTGAA 4 3.26 CCGAATAG 5 3.08

CCGATAAA 4 3.26 ATTTGCG 5 3.08

CCGCCCC 9 3.21 ACCTCTGA 5 3.08

CCCGGCC 7 3.21 CGCCAAG 5 3.08

ATGGAGTA 4 3.16 CTCCCGCA 5 3.01

ATCCCGTG 4 3.11 AGTCGC 6 2.98

CCATCAA 4 3.11 CACAAGAC 5 2.94

ATCGCCG 4 3.11 CCGCGAAA 5 2.94

AGCGTTAA 4 3.07 ACTCTGGA 5 2.94

GGGGCGGA 5 3.04 CGTCCTCC 5 2.94

GTAAGCA 4 3.02 AGTAGTAC 5 2.94

TAAGCAAA 4 3.02 CGGGAGTC 5 2.94

CCGCCC 12 2.96 TCACGGA 5 2.94

AAGGAAG 5 2.95 CCGACCG 6 2.93

ATCCGCGC 4 2.93 AGTCCCGC 7 2.91

AAGCGGAC 4 2.89 TCTGTGCA 5 2.88

GGAGGGA 6 2.86 CTCGCGAA 5 2.88

ATACGAGC 3 2.85 CTCGCTAA 5 2.88

CGAGAGTC 4 2.85 TAATGCA 5 2.88

TATTTCAA 4 2.81 CTAAGAC 5 2.88

GCCGATGA 4 2.81 ACCGTA 5 2.88

CGGGGC 10 2.79 AGGGCGAT 5 2.88

CTATATTC 3 2.78 GCGGGATA 5 2.82

CCAGCGGG 4 2.77 CCTTGGCG 5 2.82

CCGGACTC 4 2.77 AACACCAC 5 2.82

CCGGACCG 4 2.77 AAAACACC 5 2.82

CCGGGA 7 2.77 AAGTGGTA 4 2.80

ACCCCGCT 4 2.77 AAATCTCT 5 2.76

Table 4.21: High-score conserved motifs from the 5’-flanking regions of genes

in dataset5b. Gene set size: dw = 148, up = 323; SSS=subset size.



profile dw5a up5a dw5b up5b

JASPAR ZNF42 TFAP2A ZNF42 (0.0033) E2F1

Arnt ELK4

Mycn Arnt

TFAP2A

p300 AP2ALPHA SP1 E2F

TRANSFAC MAZR AP2GAMMA NFKAPPAB50 AHRRARNT

AP2 AP2 AP2

NMYC SP1

TAXCREB NMYC

SP1 EGR3

NGFIC AP2GAMMA

AP2ALPHA

Table 4.22: Best matrices in dataset5a and dataset5b (mouse orthologs)

motifs genes

CTCGC SMAD6

AGACCG EPHA4

CCGAGC CCNG2,SNK

CAAAGTA ID2, KYNU,EPHA4

CACCCTC IL1R1

AGATAAAA BMP7,TRPS1,CCNG2

GACTTCGC none

GTATGCGA ID2,ARID5B

GTCGTCGA ID2,SMAD6

Table 4.23: Conserved motifs shared by down-regulated genes in dataset1

and dataset3.

gene motif C T

BMP7 (-; chr20) TTTTATCT 55,286,958 -11,867

TTTTATCT 55,287,015 -11,924

CCNG2 (+; chr4) AGATAAAA 78,292,308 -5,443

AGATAAAA 78,295,722 -2,029

TTTTATCT 78,295,784 -1,967

TRPS1 (-; chr8) TTTTATCT 116,704,152 +184,787

TTTTATCT 116,704,365 +184,574

AGATAAAA 116,706,201 +184,738

TTTTATCT 116,707,986 +184,953

Table 4.24: Chromosomal positions of conserved motif AGATAAAA. C: lo-

cation in absolute coordinates of first nucleotide. T: location relative to

TSSensemble.



dataset motif score gene subset

Dataset1 AGATAAAA 3.31 BMP7,DDIT4, TRPS1,CCNG2

Dataset2 ACGTGAC 2.07 ERP29,BMP7,UBXD1, MTHFR,CCNG2

AACCATAC 3.42 C190RF21,BMP7,OR10B1P, POR,PKIG

ACCATACC 2.41 C190RF21,BMP7, OR10B1P,POR

CAGAGGAA 2.27 BMP7,ST14, FAM83H,C7orf20

CTGGGTGC 2.27 XRCC1,BMP7,JUNB, PHLDA3

Dataset3 AAATTC 2.79 BMP7,OXTR,LIN7A,TMEM45B, PSD3

ATAAAA 2.11 BMP7,TRPS1,LIN7A,SPINK5,LYN,CCDC68, SLITRK6

AAAACCA 2.85 BMP7,LGALS8,TM4SF1,MLLT3

CTGTAAA 2.49 BMP7, WNT6,PPFIBP2

GATAAAA 2.76 BMP7,ALAD,TMED4, GRB14

ACAGGCCT 3.21 BMP7,ID1, CDK9,PPFIBP2

ACCTGGCA 2.34 BMP7,NRP1,CTGF

AGATAAAA 5.5 GPC4,BMP7,TMED4,TRPS1, LIN7A,CCNG2

CAGGCCTG 2.89 BMP7,ID1,BLNK,TMEM45B

Dataset4 CAAAA 2.38 BMP7, LHX2, ID2, CN004. HUMAN, CT11. HUMAN,TMEM49

GTTTTA 2.82 BMP7,LHX2,PQLC1,OXTR,SNX7

AAAACCA 2.11 BMP7, TRAFD1,MLLT3

ATAAAAC 2.73 BMP7,LHX2,PQLC1,SNX7

Dataset5b AATGGCC 2.31 BMP7, CNP,RXRA

AAAGTCGT 2.05 ACHE,BMP7,CD226

ACCTGGCA 2.05 BMP7, MMP15,MYH14

CAGGCCTG 2.5 BMP7,PHF1,BLNK,TCF2

CGACACAA 2.12 BMP7, PHF1,CASKIN2

TGTGAAAA 2.15 BMP7,ANXA5,TLE1

Table 4.25: Gene subsets associated with all conserved motifs found in the

5’-flanking region of gene BMP7

motif score gene subset

CGTCGAAA 3.92 CCNG2,RBM26,PDLIM5

AGATAAAA 3.31 BMP7,DDIT4,TRPS1,CCNG2

GTCGCCTA 3.2 KIFAP3,BAMBI,CCNG2,IFNB1

CGGACTAA 2.84 ARL6,PIK3R3,CCNG2

ATTACG 2.79 BAMBI,CCNG2,RERE

ATGCCGGA 2.62 ACHE,KRT23,CCNG2

CGGAC 2.53 ACHE,MKNK2,KLF6,ZFYVE26,PIK3R3,CCNG2

CCGAGC 2.44 ACHE,IFT122,EPHA4,CCNG2,PLK2

CGGGGCTC 2.25 BIK, HBP1,CCNG2

GGTAGAA 2.23 HUWE1,SLC38A1,CCNG2

CCCTCTGA 2.23 IL1R1,MYO1B,CCNG2

CCCGTCC 2.12 CREBBP,CBLB,CCNG2

CGGGGC 2.09 CREBBP,BCL3,MKNK2,KLF6,BAMBI,EPHA4,CCNG2

ATAAG 2.05 FLJ14213,PAFAH1B1,CPS1,CCNG2

Table 4.26: Gene subsets associated with all conserved motifs found in the

5́-flanking region of gene CCNG2: dataset1



motif score gene subset

CCGGC 3.62 NCAPD2,TLE2,RPRC1,TBX2,MXD4,PVRL2,BHLHB2,CSNK1D,

N4BP3,TLCD1,SLC43A2,TMEM142C,GATA2,MAF1,RGAG4,LOC727800,

BAMBI,PIK3R3,CCNG2,FAM84A,RPRM

CGCCGTAA 3.36 CTNNBL1,TBC1D2,BAMBI,LRP16,CCNG2

GCCTCAGC 2.95 TLE2,RASAL1,GALE,CCNG2,RNASEH2C

GGAGGGA 2.94 TMEM132A,GTF2IRD1,TLE2,TMEPAI,BHLHB2,COL9A2,CCNG2,FAM53B

GGGGCAC 2.63 POR,GRB7,SLC4A2,BCL9L,CCNG2

GATGTTTA 2.63 JDP2,CRTC2,ZNF784,CCNG2

CGGAC 2.61 PARP12,MKNK2,SYNGR3,CSNK1D,SLC43A2,GATA2,MAF1,PIK3R3,

CCNG2,FNBP1

TCTAAGCA 2.51 LSR,SOX9,DPP7,CCNG2

CCCGACAA 2.27 CCNG2,ZFYVE1,FAM53B,NMB

CAGTCGCG 2.18 XRCC1,IER2,BAP1,CCNG2

GCCCC 2.18 ITPKC,ERP29,C19orf21,MKNK2,HSPF2,MCG18,DNAJC4,PHF2, PHF1,

GLIS2,CASP9,N4BP3,INPPL1,JUNB,TMEM142C,GATA2,ADSSL1,BCL9L,

ANKRD35,RHOV,CCNG2

CGCCCC 2.16 TP53INP2,ERP29,MKNK2,PSCD2,GALE,MXD4,CASP9,

CSNK1D,INPPL1,FBXW4,BTG1,CCNG2,SLC35C1

GCTCTGCA 2.1 HIG2,C1orf210,CCNG2,FAM53B

ACGTGAC 2.07 ERP29,BMP7,UBXD1,MTHFR,CCNG2

AGAACCTG 2.06 PARP12,ATAD4,CCNG2,TMEM140

Table 4.27: Gene subsets associated with the conserved motifs found in the

5́-flanking region of gene CCNG2: dataset2

motif score gene subset

AGATAAAA 5.5 GPC4,BMP7,TMED4,TRPS1,LIN7A,CCNG2

ACGATCTC 3.56 LYPD1,OXTR,KCNJ8,CCNG2

CGCCTATA 2.85 SOCS3,NR3C1,CCNG2

AGGGTACG 2.65 BIK,CYP1A1,CCNG2

CAATTCGG 2.49 CCNG2,IGSF3,LOC649698,FAM84A

CCGAGC 2.24 EPHA4,VAV3,CCNG2,PLK2,PPAP2B

AATCAGA 2.04 CCNG2,AMIGO2,CDKN2B

GTCGCCTA 2.02 LYPD1,SPINK5,CCNG2

CAATCAGA 2.02 PDK4,ST8SIA4,CCNG2

Table 4.28: Gene subsets associated with all conserved motifs found in the

5́-flanking region of gene CCNG2: dataset3



motif score gene subset

GCCCC 3.61 C19orf21,ABTB1,JUP,TMEM142C,BCL9L,HOXC13,MEIS2,

CCNG2,CG018,EVA1,TP53INP1

AGCCCC 3.02 CYP1A1,BCL9L,EDN1,MEIS2,CCNG2

AGCCCCGG 2.88 TMEM142C,FAM20C,CCNG2

AGGGTACG 2.88 BIK,CYP1A1,CCNG2

TACGTAA 2.83 JUB,C20orf111,CCNG2

AATAAGTC 2.83 SLC6A14,MEIS2,CCNG2

ATTGCGCA 2.67 C20orf111,ACAA2 LOC648603,CCNG2

ACCGTGCC 2.56 C19orf21,LHX2,CCNG2

AGCCCCG 2.51 ABTB1,TMEM142C,CCNG2,CG018

AGAACCTG 2.43 BIK,ATAD4,CCNG2

GGGGCAC 2.26 IRF1,BCL9L,CCNG2

GGAGGGA 2.08 GTF2IRD1,HOXC13,MEIS2,CCNG2

CAGCCCCG 2.06 ABTB1,BCL9L,CCNG2

CCCCG 2.04 ABTB1,DNAJB1,TMEM142C,FAM20C,EPOR,CCNG2,TP53INP1,

ENC1 LOC730775,ENPP1

GCGTCGAA 2.02 IRF1,CCNG2

Table 4.29: Gene subsets associated with the conserved motifs found in the

5́-flanking region of gene CCNG2: dataset4



motif score gene subset

CCCCG 4.16 BCL3,POLB,ACHE,MKNK2,MMP15,DYRK1B,MYH14,SHC2,CASP9,FLOT1,

PDLIM7,UBE2A,BAMBI,CCNG2,ADAM17,MAOA,SPTAN1

CCCCGC 3.49 ACHE,MKNK2,DYRK1B,IQCE,CASP9,

PDLIM7,BAMBI,CCNG2,

TGFBR2,MAOA,SPTAN1

GCCCC 3.39 BCL3,POLB,MKNK2,ABCD1 hCG 2042779,DYRK1B,GNG13,SHC2,CASP9,

CASKIN2,PDLIM7,CCNG2,CITED2,CA5B,MAOA

CCCGC 3.36 BCL3,MKNK2,MMP15,DYRK1B,IQCE,VAT1,TBX2,CASP9,FLOT1,CASKIN2,

PDLIM7,BAMBI,CCNG2,PNRC1,TGFBR2,CITED2,TLE1,SPTAN1

GGAGGGA 2.86 GTF2IRD1,BCL3,TGFB3,COL9A2,CCNG2

CGGGGC 2.79 BCL3,POLB,MKNK2,MYH14,PQLC1,PDLIM7,BAMBI,CCNG2,SPTAN1

CCGGACCG 2.77 SMARCD1,TBX2,TNK1,CCNG2

CGCCCC 2.59 MKNK2,IQCE,PQLC1,CASP9,CASKIN2,CCNG2,CA5B,MAOA,SPTAN1

CGCCC 2.49 SMARCD1,POLB,MKNK2,IQCE,GATA3,SHC2,CASP9,FLOT1,CASKIN2,

PDLIM7,CCNG2,PNRC1,CITED2,MAOA,SPTAN1

CCCCC 2.39 BCL3,PHF1,CASP9,CNP,CASKIN2,HBP1,CCNG2,ADAM17,CITED2,CHD3

AGGGTACG 2.36 BIK,RNF103,CCNG2

ATTACG 2.36 BAMBI,CCNG2,RERE

GGACC 2.35 TBX2,TCF2,PIK3R3,CCNG2,CITED2

ACGTACCC 2.27 BIK,CCNG2,CITED2

ACCCGCAT 2.12 CNP,VAMP2,CCNG2

CTTAACAA 2.08 SMAD9,CCNG2,NUDT2

Table 4.30: Gene subsets associated with the conserved motifs found in the

5́-flanking region of gene CCNG2: dataset5b. In italics, a gene that is found

in both ChIP data [25] and in the in-silico screening by Bourdeau et al. [19]

(see Chap2, discussion section).



Chapter 5

Conclusion and perspectives

The remarkable difference between motif patterns found in the DNA up-

stream regions of up- and down-regulated estrogen-responsive genes suggest

that regulative mechanisms for the two classes of early responsive genes differ

accordingly, involving several proteins in addition to the estrogen receptor.

We have identified and illustrated a few of them. In the down-regulated

class, we identified two factors, GATA and CACCC-binding factor, which

are consistent with down-regulation by estrogen according to data in litera-

ture. In particular, we focused our attention on GATA transcription factor

(GATA3), which is involved in differentiation, in the expression of estrogen

receptor [62], and which is prognostic of invasive tumor. We localized the

relevant conserved motif in the upstream sequence of cyclin G2, a robust

gene which is down-regulated by GATA3 [61]. We also localized an estrogen

responsive element in the vicinity of this GATA binding site. We proposed

a direct interaction between estrogen receptor and GATA3 factor is feasible,

and may contribute the down-regulation of CCNG2 by estrogen. This hy-

pothesis is being tested in laboratory by ChIP and siRNA techniques. In

the up-regulated class, we identified ARNT factor as an important positive

regulator in response to estrogen and we plan to perform appropriate exper-

iments.

We may also raise a developmental hypothesis based upon our findings of

conserved GATA binding sites in the class of down-regulated genes. A very

relevant role for the GATA-3 transcription factor in mammary gland devel-
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opment has been recently evidenced [66]. The mammary gland is formed by

branched ducts encased in muoepithelial cells on the exterior and lined with

ductal luminal cells along their length. The genetic abrogation of GATA-3

results in loss of the luminal component of the gland and inability to lactate.

Furthermore, epithelial progenitors do not divide any longer. Luminal cells

are also unique to express ER alpha and other markers of epithelial differen-

tiation, while myoepithelial components are ERalpha negative.

The presence of GATA-3, therefore, seems necessary for estrogen to evoke the

transcriptional response required for luminal cells to divide and establish the

tissue. Thus, it is possible that co-presence of ERalpha and GATA factors

on the same gene regulatory sequences may cooperate specifically in order to

obtain the desired transcriptional response. In the example of the CCNG2

gene illustrated here, it may be hypothesized that ER alone, in the absence

of GATA-3, is not able to shut-down the transcription of this cell cycle in-

hibitor (CCNG2). The same may be true for other genes such as BMP7.

Interestingly,there is evidence that ER and GATA-3 sustain their reciprocal

expression and also that these two protein interact physically, making the

hypothesis of a direct involvement in the same gene contexts realistic.

Our approach proved effective in identifying meaningful motifs/factors whose

validation was found in literature before than in laboratory. This approach

can be applied to other sets of experimentally-defined and/or clinically rel-

evant co-regulated genes. In order to infer pathways –an additional goal of

the thesis– we plan to employ clustering algorithms in order to create motif

subgroups to be associated with a consensus/function. This will also enable

us to address systematically the combinatorial layer of estrogen regulation

through co-localization of multiple motifs in the gene flanking regions. A

topographic inspection performed on a large scale–employing algorithms for

nucleosome positioning prediction, shall complete our analyses.
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