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INTRODUCTION 5
Introdu
tionThe ability to dynami
ally adapt to the external stimuli and to retain the memory of pastevents are among the brain's most striking and 
ru
ial features, and are one of the most a
tive�elds of past and 
urrent resear
h, both on the theoreti
al and on the experimantal side. Bothpro
esses of learning from experien
e and of memory formation are widely believed to o

urthrough me
hanisms of synapti
 plasti
ity, i.e. of modulations of the signal transmission betweenneurons. However, due to the huge degree of 
omplexity of the pro
esses involved, des
ribingtheir properties is a major 
hallenge for both theroeti
ians and experimentalists.In fa
t, an established framework about the synapses' dynami
s is still la
king, despite thehuge amount of experimental data 
olle
ted, and many aspe
ts of brain 
omputations are yetun
lear, in
luding the signal en
oding and whether the synapti
 e�
a
ies have a dis
rete or
ontinuous nature.On the other hand, at least some of the modi�
ations indu
ed through synapti
 plasti
ityhave to be permanent, while the biologi
al environment in whi
h these pro
esses happen issubje
t to a very high level of noise; thus, the existen
e of a dis
rete set of stable states in asynapse would signi�
antly improve its robustness. Multistability 
ould be indu
ed by positivefeedba
k loops in protein intera
tion networks of the post-synapti
 density, the small and highlyspe
ialized stru
ture whi
h is found in the dendriti
 spines [18, 35, 6℄. This is in agreementwith some re
ent experiments, whi
h have suggested single synapses 
ould be similar to noisybinary swit
hes [26, 23℄, meaning that ea
h synapse would have only two states, one with high
ondu
tan
e and one with low 
ondu
tan
e.From the theoreti
al point of view, however, there is an important di�eren
e between modelswhi
h use 
ontinuous synapti
 e�
a
ies and those whi
h use binary synapses, sin
e it is in generalmu
h easier to develop e�
ient and plausible learning proto
ols in the 
ontinuous 
ase, both inthe unsupervised learning s
enario (in whi
h synapti
 modi�
ations are only indu
ed by the preand post-synapti
 a
tivities) and in the supervised s
enario (in whi
h an external `tea
hing' or`error' signal is present).In fa
t, it has been shown [32, 4, 5, 11℄ that the performan
e of binary synapses systems (interms of information stored per synapse) in the unsupervised s
enario is very poor, unless two
onditions are met: (1) a
tivity in the network is sparse (very low fra
tion of neurons a
tive at agiven time); and (2) transitions are sto
hasti
, with in average a balan
e between up and downtransitions. This poor performan
e has motivated further studies [12℄ in whi
h hidden statesare added to the synapse in order to provide it with a multipli
ity of time s
ales, allowing forboth fast learning and slow forgetting. The hidden synapti
 states are not dire
tly involved inthe unit's ele
tri
al properties, but rather they in�uen
e its plasti
ity properties; modi�
ationsof the hidden states are thus 
alled �meta-plasti
�. As for the visible synapti
 states, the hiddenstates 
ould be represented by stable points of a protein intera
tion network.In the supervised learning s
enario, for the prototypi
al network in whi
h this type oflearning has been studied, the one-layer per
eptron whi
h has to perform a set of input-outputasso
iations, no e�
ient algorithms are known to exist when synapses have a �nite number ofstates, in the 
ase the number of input-output asso
iations to be learned s
ales with the numberof synapses. In fa
t, while learning in systems with analog synapse 
an always be a
hievedwith simple algorithms if a solution exists, learning in systems with binary synapses is knownto be a NP-
omplete task [2, 3℄, meaning that in the general 
ase it belongs to the hardest
omputational 
lass of 
ombinatorial optimization problems. Moreover, even the easier 
ase inwhi
h the patterns whi
h have to be 
lassi�ed are supposed to be generated at random, and
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we 
onsider the typi
al performan
e over an instantiation of the problem rather than the worstpossible 
ase, no learning algorithms are known to a
hieve the goal in a time whi
h goes as apolynomial of the number of synapses, in
luding models whi
h make use of meta-plasti
ity.Re
ently, `message passing' algorithms have been devised that solve e�
iently non-trivialrandom instan
es of NP-
omplete optimization problems, like e.g. K-satis�ability or graph
oloring [19, 20, 1, 7℄. One su
h algorithm, Belief Propagation (BP), has been applied to thebinary per
eptron problem and has been shown to be able to �nd e�
iently synapti
 weightve
tors that solve the 
lassi�
ation problem for a number of patterns 
lose to the maximal
apa
ity (above 0.7 bits per synapse)[8℄. However, this algorithm has a number of biologi
allyunrealisti
 features (e.g. memory stored in several analog variables).Here, we present a novel algorithm, 
alled SBPI, that is inspired from the BP algorithmbut is modi�ed in order to make it simpler and biologi
ally realisti
, while keeping very goodperforman
es, both in terms of learning time and of information storage 
apa
ity. This algorithmrequires meta-plasiti
ity, and introdu
es also a new learning rule, dire
tly inherited from theBP algorithm, whi
h also proves to be able to boost the performan
e of other algorithms. Weprovide eviden
e about the qualitatively superior performan
e of SBPI with respe
t to otherwell known algorithms both using extensive 
omputer simulations, in the 
ase of learning a setof pattern 
lassi�
ations, and by an analyti
al mean �eld study, in the 
ase of learning a rulefrom a tea
her devi
e.



CHAPTER 1The binary per
eptron learning problem1. Synapti
 plasti
ity and long-term learning1.1. Neuronal 
ommuni
ation. The 
ommuni
ation between neurons in a neuronal tis-sue 
an happen through many 
hannels, depending on the neuronal spe
ies involved and thespe
i�
 area under 
onsideration. Ea
h 
ommuni
ation ve
tor will in general have pe
uliar spa-tial and time s
ales. As a general pi
ture, it is widely believed that information is transmittedin the brain through the propagation of ele
tri
al signals, modulated by the presen
e of parti
-ular 
hemi
al spe
ies, generally referred to as �neurotransmitters�; there is also the possibilitythat the individual ele
tri
 behavior is modi�ed by the overall magneti
 �elds produ
ed by thesurrounding areas (e.g. in the 
ortex, where many ele
tri
al signals �ow along parallel dire
tionsand global �eld os
illations are observed), but the role of su
h modulation, if any, is not yet
lear.There are essentially two ways of ele
tri
al signal propagation between neurons, a dire
tone and a 
hemi
al one. The dire
t one happens through stru
tures known as �gap jun
tions�,whi
h are stru
tures whi
h dire
tly 
onne
t the neurons' membranes and let the ele
tri
al �eldpropagate from one neuron's membrane to another, just as a resistor would do in an ele
tri
al
ir
uit. These stru
tures are very simple: as for their internal state, they 
an only be open or
losed, but there is the possibility of further global modulation by neuromodulators; furthermore,the signal transmitted through the gap jun
tions is essentially analog in nature, sin
e the ele
tri
potential �ows passively from one neuron's membrane to its neighbor's. One well known exampleof a brain area in whi
h the gap jun
tions are of great importan
e is the eye's retina[31℄, whi
his a very spe
ialized stru
ture; their role in other brain areas is generally more obs
ure.The se
ond and most prominent kind of signal propagation happens instead through thesynapses, whi
h are spe
ialized stru
tures 
apable of transforming an ele
tri
al in
oming signalinto a 
hemi
al one and ba
k to an ele
tri
al outgoing one, allowing mu
h spa
e for modulationin the intermediate steps. In ea
h neuron, synapti
 outputs o

urs typi
ally at the end of axons,where the a
tively transported ele
tri
al signals, the �a
tion potentials� or �spikes�, eli
ited at thelevel of the soma, need to get transmitted to another neuron; these signals are intrinsi
ally binaryin nature, at least as long as the axons are longer than about 1mm: at a �rst-level des
ription,they are eli
ited when the neuron's membrane potential rea
hes a given threshold, whi
h triggersan a
tive me
hanism (a short positive-feedba
k period followed by a refra
tory period) resultingin a sharp peak of the membrane potential (the �spike�), whi
h is then propagated along theaxon by the a
tion of the Na-K 
hannels whi
h are present in the axon's membrane, while thesub-threshold os
illations of the potential are too weak to propagate with this me
hanism, anddie out rapidly.When an a
tion potential rea
hes a synapse, it triggers the opening, in the inter-synapti
medium, of some neurotransmitter vesi
les (as this is a sto
hasti
 pro
ess, the exa
t numbervaries at ea
h repetition); the neurotransmitter rea
hes some post-synapti
 re
eptors on the
7



8 1. THE BINARY PERCEPTRON LEARNING PROBLEM
post-synapti
 side, whi
h in turn determine the opening of some ioni
 
hannels on the post-synapti
 membrane whi
h produ
e an ele
tri
al signal (either depolarizing or hyper-polarizing),whi
h then propagates (mostly passively) through the post-synapti
 neuron.On
e again, the e�e
t of this pro
ess 
an be represented as that of a (dire
tional) resistor inan ele
tri
al 
ir
uit, so that we 
an 
hara
terize ea
h synapse by the value of its 
ondu
tan
e,whi
h is also 
alled �synapti
 weight� or �synapti
 e�
a
y�. Experimentally, the value of thesynapti
 
ondu
tan
e 
an be determined by the peak value of the post-synapti
 potential (PSP)eli
ited by the arrival of a single spike (the in
oming spikes being 
onsidered all equal).In 
ontrast to gap jun
tions, whi
h a
t passively, synapti
 
onne
tions 
an either exert anex
itatory or an inhibitory a
tion, depending on the neurotransmitter (whi
h in turn depends onthe pre-synapti
 neuronal spe
ies) and the post-synapti
 re
eptors. Mathemati
ally, inhibitorysynapses are often modeled as negative-weighted synapses. The sign of synapse 
annot 
hangeover time, ex
ept in some 
ases during brain development.1.2. Plasti
ity and learning. The whole synapti
 signal transmission pro
ess, thoughbeing slower than the dire
t transmission by the gap jun
tions (on the millise
onds time s
ale),subje
t to random �u
tuations and (nearly) unable to transmit the information 
ontained in thesub-threshold ele
tri
al �u
tuations of the soma, has the enormous advantage of being highlymodulable, both by 
hemi
al a
tion (e.g. of neuromodulators) and by alteration of the internalsynapti
 state, or even by synapse 
reation-removal pro
esses.This is the main reason for whi
h synapses are widely believed to be the pla
es where learningtakes pla
e, as experien
e 
an shape their properties and thus alter the signal transmission ina sensible way, a property whi
h goes under the name of �synapti
 plasti
ity�. The signaltransdu
tion modulation 
an, and indeed does, happen both on the pre-synapti
 side (e.g. by
hanging the average number of vesi
les released upon a
tion potential arrival, or the amountof neurotransmitter 
ontained in ea
h of them[27, 30℄) and on the post-synapti
 side (e.g. by
hanging the number of neurotransmitter re
eptors inserted in the membrane, or their state);ea
h neuronal spe
ies 
an in prin
iple be subje
t to di�erent 
ombinations of all these forms ofplasti
ity, all of whi
h 
an o

ur on di�erent time s
ales and have pe
uliar results on the signaltransmission and on the plasti
ity pro
ess itself. Nevertheless, the post-synapti
 side looks morepromising for the kind of learning we are going to address here, mainly be
ause of the existen
eof the �dendriti
 spines�, whi
h are very spe
ialized stru
tures present on many post-synapti
neuron's dendriti
 trees; also, the post-synapti
 part of the synapse 
an easily a

ess the relevantinformation about both pre- and post-synapti
 neurons potentials, while the pre-synapti
 partrequires the mediation of retrograde messengers.The main distin
tion among di�erent types of plasti
ity is the times
ale by whi
h the synap-ti
 modi�
ations last; plasti
ity is thereby usually divided into short-term and long-term, theformer being typi
ally asso
iated with transitory synapti
 modulation, and the latter with long-lasting modi�
ation of the synapse internal state. Of 
ourse, there is no pre
ise boundary be-tween these two forms, and their meaning 
an 
hange depending on the 
ontext; in the presentwork, nonetheless, we will only address long-term plasti
ity, by whi
h we mean that form ofplasti
ity whi
h indu
es a permanent modi�
ation in the synapti
 
ondu
tan
e, on the times
ale of years, and su
h that only another long-term plasti
ity event 
an alter it again.If the plasti
 modi�
ation is in the dire
tion of enhan
ing the synapti
 
ondu
tan
e, the
orresponding event goes under the name of �long-term potentiation�, or LTP, while the oppositeevent is 
alled �long-term depression� or LTD.
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1.3. Learning experiments. The study of the plasti
ity properties of the synapses isbelieved to be of 
entral importan
e in the study of the brain and neural tissues in general, andthe number of theoreti
al and experimental studies whi
h tried to address this issue is virtually
ountless. On the experimental side, nevertheless, due to the extremely di�
ult 
onditionsrequired in order to have full 
ontrol of the plasti
ity events, the synapti
 ma
hinery is stillrather obs
ure. Also, the di�
ulty of re
ording the transmission of the signal through a singlesynapse is su
h that most experiments deal with statisti
al properties of some synapti
 ensemble.Plasti
ity and learning experiments are typi
ally very di�erent depending whether they areperformed in vitro or in vivo: the former ones normally 
onsist in the study of the e�e
t of theappli
ation of some ele
tri
al stimulation on brain sli
es (several stimulation proto
ols are knownwhi
h 
an eli
it LTP/LTD in su
h situations), the latter ones involve instead behaving animals,learning to perform some task (or even just being subje
t to some stimulus) a
ross a period ofsome days or months. As is normally the 
ase, in vitro experiments have the obvious advantageof a better 
ontrol over the 
onditions of the experiments, but the learning proto
ols used 
ouldin prin
iple have nothing to do with the in vivo situation; furthermore, the interpretation ofthe experiments relies on a theoreti
al framework, and the groundings are not yet stable on thisside as well.1.4. Di�
ulties arising in the development of a theory of learning. On the the-oreti
al side, the di�
ulty in understanding the learning pro
ess arises from the overwhelming
omplexity of the networks and of their 
onstituents, whi
h makes it impra
ti
al to perform de-tailed simulations and impossible to obtain an a

urate analyti
al des
ription; ea
h theoreti
almodel has to deal with some simpli�
ations. On the simulations side, for example, it is possibleto simulate the ele
tri
 properties of single neurons with a very high level of a

ura
y, but itis still impossible to in
lude into the model all the aspe
ts whi
h 
ontribute to the synapti
dynami
s (e.g. gene expression); furthermore, experimental data is not 
omplete, and detailsoften vary between one neuronal spe
ies and another. Even worse, simulating or analyzing anetwork with tens of thousands of neurons be
omes impossible without further, 
rude simpli�
a-tions, and again di�erent neuronal spe
ies or neurons belonging to di�erent brain areas may besubje
t to di�erent working regimes, 
ompletely 
hanging their properties 
on
erning learning.Even the same neurons in the same brain area 
an work under di�erent regimes under di�erentexternal or internal 
onditions (e.g. in di�erent times of the day), swit
hing between two ormore di�erent behaviors.In fa
t, neural 
oding, i.e. the way information is stored in the membrane's ele
tri
 potentialstravelling along the axons, is still a matter of intense debate in the �eld, as it is not yet 
learthe degree up to whi
h the exa
t timing of the spikes is relevant: one popular assumption isthat the information transmitted is rate-
oded, i.e. that its nature is sto
hasti
, and that onlythe average spike rate is meaningful for the sake of neural 
omputing or neural de
oding; theopposite view is that ea
h single spike is relevant, and that the exa
t timing en
odes valuableinformation up to the millise
ond or even sub-millise
ond s
ale. Another kind of neural 
odewhi
h has been proposed and for whi
h eviden
e has been 
olle
ted in many di�erent situations
onsists in expressing some information by the timing of the spikes relative to the phase of someundergoing rhythm (i.e. global os
illation) in the area: for example, the in
oming spikes re
eivednear the top of the �eld os
illation 
ould 
arry a di�erent amount or kind of information withrespe
t to the ones re
eived near the trough [22℄.
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Indeed, the a
tual neural 
oding has a big in�uen
e over the learning model that one de
idesto 
onsider, and the fa
t that none of su
h models 
an be regarded as paradigmati
 in
reasesthe un
ertainty about the evaluation of the single learning models.1.5. Continuous vs dis
rete synapses. Assuming that the brain learns by altering the
onne
tions between its units, and that ea
h synapse 
an be 
hara
terized by a single e�
a
yvalue, it be
omes very important to determine whether those values are 
ontinuous or dis
retevariables. Indeed, as mentioned before, many neuronal spe
ies exist, and it may well be thatthe answer to this question depend on the brain area under 
onsideration, but there's a generalargument suggesting that the dis
rete model is more appropriate for long-term memory: if theinformation stored in a synapse has to last for a time of the order of tens of years, the problem ofreliability of the storing devi
es be
omes of great importan
e, and 
ontinuous-valued quantitiesare more prone to this problem than dis
rete-valued ones. In fa
t, most synapti
 
onne
tions atthe dendriti
 level are lo
ated onto stru
tures 
alled �dendriti
 spines�, whi
h are so small that,for ea
h 
hemi
al spe
ies present, there's a number of the order of 10 or 100 mole
ules[24℄; thisimplies that for any 
hemi
al rea
tion there is a mu
h higher degree of sto
hasti
ity than inbigger stru
tures as the soma, and that storing a value in the form of an average 
on
entrationvalue, for example, be
omes impossible over long time s
ales. On the other hand, it has beenshown [35, 6, 24℄ that it is possible to devise simple 
hemi
al networks whi
h exhibit a smallnumber of stable states and whi
h turn out to be stable for a time of the order of 100 yearseven in presen
e of the extremely high 
hemi
al noise present in the synapti
 boutons. Thesimplest and most stable situation is that in whi
h there are only two di�erent states, whi
hwould indu
e to look at the synapses as (noisy) binary swit
hes.On the experimental side, determining the dis
rete or 
ontinuous nature of a single synapse
an be an awkward task, due to the great di�
ulty of performing simultaneous measurementsin two 
ells undergoing plasti
ity, and it is 
urrently possible only for in vitro experiments.These give indeed pre
ious information, but have some big disadvantages: �rst, the networkenvironment might be di�erent from that of the living brain (for example, in brain sli
es manylong-range 
onne
tions are 
ut, and the a
tivity state of the network 
ould be di�erent fromthat of the inta
t stru
ture, and this 
ould in turn be relevant for the learning me
hanism).Furthermore, plasti
ity is indu
ed during in vitro experiments by applying standard stimulationproto
ols, whi
h are known to eli
it 
hanges in the synapti
 strengths, but whi
h are probablydi�erent form the ones that o

ur in a living animal, and it is not 
lear if the mole
ular underlyingme
hanisms are a
tually the same.Re
ently, in a remarkable in vitro experiment [23℄, O'Connor and 
olleagues managed todete
t single synapti
 plasti
ity events in hippo
ampal pyramidal 
ells, and their eviden
e sup-ports the idea that those synapses, though being very noisy, exhibit all-or-none potentiation,i.e. that they are binary, and that the state 
hange o

urs on very fast times
ales, of the or-der of less than 10ms. During this experiment, it was shown that ea
h synapse 
ould only bepotentiated (or depressed) at most on
e in a row, and that the net e�e
t of depressing afterpotentiation, or the inverse, was non-dete
table, supporting the idea that no intermediate statesare present.The dis
rete nature of the synapti
 e�
a
ies would thus solve the issue of long-term memoryreliability, but at the same time it would impinge the unit's learning 
apability if standardlearning algorithms were used. The purpose of the present work is to propose a novel learnings
heme whi
h would allow to over
ome su
h di�
ulty, and we will 
ome ba
k on this problemafter the introdu
tion of the per
eptron neuronal models.
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2. Per
eptron models2.1. Simpli�ed neuronal models. As mentioned above, neuronal models exist whi
h
an a
hieve a great degree of a

ura
y in simulating the 
ell membrane's depolarization (not
on
erning synapti
 plasti
ity nor neuronal development). In su
h models the 
ell body is repre-sented as a 
olle
tion of 
ompartments, the geometry of whi
h 
an be taken from a real neuronby three dimensional s
anning, over whi
h both the passive and a
tive ele
tri
al properties ofthe membrane are modeled, the a
tive ones being due to the ioni
 
hannels inserted in themembrane itself. Virtually all of these models make use of the Hodgkin-Huxley equations, withex
ellent results; other variants 
an use Markov-
hain models of the ioni
 
hannels to a
hievean even better a

ura
y.Unfortunately, su
h a

urate models su�er from the drawba
ks exposed in se
tion 1.4 aboutplasti
ity and large networks; in order to over
ome some of these di�
ulties and get moretheoreti
al insight in the learning pro
ess (e.g. in view of ele
troni
 implementations), theoristsnormally deal with very simpli�ed models, su
h that some analyti
al treatment is possible andthat large-s
ale simulations be
ome feasible. The most popular among su
h models are the�leaky integrate-and-�re� (LIF) and its generalizations, but histori
ally these were pre
eded bythe (even simpler) �per
eptrons�.All of these models represent the neuron as a �point-like� unit, meaning that the pre
isegeometry of the 
ell is not represented; the membrane depolarization is simply obtained bysumming up the di�erent 
ontributions from all the neuronal inputs.2.2. The LIF model. In the basi
 LIF model, the set of partial di�erential equations ofthe Hodgkin-Huxley model is drasti
ally redu
ed to a single di�erential equation, des
ribing thesub-threshold passive working regime, with an external instantaneous spiking me
hanism addedon top of it, in order to mimi
 the a
tion potential pro
ess.More spe
i�
ally, the membrane voltage V (t) obeys the following equation:
CV ′ (t) = −gLV (t) + I (t)where C is the 
apa
ity 
onstant of the membrane, gL its leak 
ondu
tan
e, and I (t) is thein
oming 
urrent on the neuron. The model is 
ompleted by the pres
ription that when thevoltage V (t) rea
hes the spiking threshold θs a spike is emitted and the potential drops instan-taneously to the reset potential θr. Sin
e the rise and fall of the voltage in a
tual neurons duringthe a
tion potential emission is typi
ally mu
h faster than the sub-threshold regime times
ale,the spiking in the LIF model is represented mathemati
ally as a Dira
 delta in the voltage tra
e.Additionally, a refra
tory period τr during whi
h the voltage is kept �xed at θr 
an beadded after the spike emission pro
ess, to a

ount for the fa
t that the output �ring rate ofreal neurons is bounded by the time 
onstants of the mole
ular me
hanisms and the need ofregeneration after spike emission.The LIF model is ideal for the study of large and 
omplex networks, in whi
h the in
oming
urrent on ea
h unit 
an be divided into an �external� part, 
oming from outside the network, andan �internal� part, due to other units of the network itself. Thanks to the linearity of the devi
e,this se
ond 
ontribution 
an be obtained as the sum, over all of the inputs, of the individualsynapti
 responses eli
ited by ea
h in
oming spike, the so-
alled �post synapti
 potential� (PSP).Sin
e ea
h individual synapse i has a 
orresponding synapti
 e�
a
y wi asso
iated with it, the
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overall depolarization due to the internal input 
urrent 
an be written as:

VI (t) =

N
∑

i=1

∑

j

wiK
(

t − t
(j)
i

)where N is the number of synapses, t
(j)
i is the arrival time of the j-th spike on the i-th synapseand K (t) is the PSP kernel, whi
h is an alpha fun
tion (with the additional 
onstraint that itis 
ausal, i.e. that K (t) = 0 if t ≤ 0). Of 
ourse, this equation has to be 
ompleted with thespiking me
hanism des
ribed above.In the above equation, the synapti
 e�
a
ies wi are not expli
itly dependent on time; itis very simple, however, to modify the model in order to a

ount for the possibility that thesequantities 
hange their value, and this allows for simulation of any kind of learning pro
ess.Indeed, apart from the issues arising from the 
ell geometry (whi
h a�e
t the linearity ofthe input summation), the dynami
al range of the LIF model is mu
h redu
ed with respe
tto that of an a
tual neuron, and the behavior is not as ri
h; some examples may in
lude thefa
t that in real 
ells the spiking threshold is not really �xed, but varies dynami
ally, and thespiking itself is not instantaneous; that the spiking rate, even in presen
e of a 
onstant input, isnot stable during time but de
reases as a result of the so-
alled �adaptation me
hanism�; thatreal neurons 
an work in di�erent regimes (e.g. spiking or bursting) while LIF neurons 
annot.Some of these issues and others 
an be addressed by applying spe
i�
 modi�
ations to the baseLIF model, depending on the situation under study and the a
tual need to reprodu
e the fulldynami
al range of the neurons.2.3. The per
eptron model. The simplest neuronal model, expli
itly invented with thepurpose of gaining insight into the amazing learning properties of the neural tissue, is the�per
eptron�, �rst proposed by Rosenblatt [28℄; many di�erent variants have been proposed sin
ethen, but they all share some properties, namely that the time in su
h models is dis
retized,and that the instantaneous depolarization is 
omputed as the s
alar produ
t of the ve
tor ofthe inputs with that of the synapti
 weights; the output of the unit is then 
omputed upon thedepolarization by means of some simple fun
tion. In symbols:(1) σt = χ

(

N
∑

i=1

wt
iξ

t
i

)where N is the number of synapses, ξt
i is the input in
oming on the i-th synapse at time t, wt

i isthe i-th synapti
 e�
a
y at time t, χ is the output fun
tion and σt is the unit output at time t.The di�erent variants of the model 
an be divided into two main 
ategories, one in whi
hboth inputs and outputs are 
ontinuous variables, and another one in whi
h they are binary.Making the parallel with the real neurons, the quantities that the input and output variablesrepresent would be the �ring rates in the 
ontinuous 
ase, and either the spiking 
ondition or anup/down state in the binary 
ase. In the present work we will only deal with the latter s
enario.The most natural 
hoi
e, from the biologi
al point of view, is to 
hoose the inputs andoutputs to take the values 0 or 1. For example, after time dis
retization, it is possible to assignthe value ξt
i = 1 to those synapses i for whi
h at time t there has been at least one in
omingspike, and ξt

i = 0 to those for whi
h there has been none; in the same way, if the output is
σt = 1, the unit �res at time t, and if σt = 0 it doesn't. The expli
it form of the output fun
tion
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is in this 
ase:(2) σt = Θ

(

N
∑

i=1

wt
iξ

t
i − θs

)where θs represents a spiking threshold and Θ is the Heaviside step fun
tion, Θ (x) = 1 if x ≥ 0and 0 otherwise.In order to further simplify the devi
e, mainly in view of analyti
al 
al
ulations, and forhistori
al reasons as well, the most popular binary per
eptron models use instead the values +1and −1 for both the inputs and the outputs, and the following input-output relationship:(3) σt = sign( N
∑

i=1

wt
iξ

t
i

)In order to avoid the possibility of having a zero overall depolarization, whi
h would requirean inessential 
ompli
ation in the model de�nition, we also assume the number of synapses Nto be odd when 
onsidering this ±1 model.The ±1 model is not stri
tly equivalent to the 0/1 model, but its general properties are verysimilar. In this work, we will mostly deal with the ±1 model, but resort to the 0/1 model insome spe
ial 
ases.The main di�eren
e between the per
eptron model and the LIF model des
ribed above
onsists in the way in whi
h the in
oming information is temporally integrated; although thelatter is more a

urate as a neuronal model, the per
eptron is, in its simpli
ity, still 
omplexenough to a
hieve remarkable results and to raise nontrivial 
hallenges, o�ering a frameworkfor developing simple and e�
ient learning proto
ols, and to allow for analyti
al 
al
ulationsabout their intrinsi
 properties; another issue, 
onsidered in the 
on
lusions, is the fa
t thatper
eptron models are more 
onvenient than integrate and �re (or more 
ompli
ated) modelsfor realizing ele
troni
 implementations.2.4. Di�erent kinds of learning. Given the model de�nition, it is possible to give a morepre
ise meaning to what is meant by �learning�; still, di�erent options are possible, dependingon the network stru
ture and on its purpose.A �rst, fundamental distin
tion 
an be made between �supervised� and �unsupervised� learn-ing proto
ols: the former ones are 
hara
terized by the presen
e of an external error signal, whi
his instead absent in the latter ones. Supervised learning models are intended at simulating thekind of learning whi
h is a
hieved by trial and error, while unsupervised ones try to retain orexploit the information they read without any feedba
k from the exterior, as 
ould be the 
asefor transient memories for example, or for a pre-pro
essing step in the elaboration of sensoryinformation.In turn, supervised learning s
enarios 
an use global error signals, external to the networkand delivered to all or many of its units, in whi
h 
ase is more appropriate to speak of �rein-for
ement learning�, or they 
an use lo
al signals, whi
h a
t on the single units individually. Inthe present work, we deal with this last s
enario.2.5. Di�erent kinds of network stru
tures. The simplest network stru
ture is of 
oursegiven by a single unit, whi
h 
ould be used to extra
t some information from the inputs. Letting
M di�erent units operate in parallel on the same inputs would then allow to extra
t any numberof features from an input stream, and the whole network would a
t as a mapping from the spa
eof N bit numbers to the spa
e of M bits numbers.
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In this 
ase, a supervised proto
ol would be used in order for the network to learn how to doa spe
i�
 mapping, while an unsupervised proto
ol 
ould serve the purpose of elaborating theinput stream, for example by trying to 
ompress it without loosing information while adaptingto the inputs distribution. In both 
ases, the degree up to whi
h the task 
an be a

omplisheddepends on the units' stru
ture, the learning algorithm and the task itself.Another widely studied arrangement is the �fully-
onne
ted� network, in whi
h N +1 units,ea
h having N synapses, re
eive their inputs from all the others, and in turn deliver their outputto all the others. Ea
h unit is also supposed to be subje
t do an external drive whi
h may for
eit in a spe
i�
 state, and to be readable from outside the network. Su
h a network has theproperty that, after initialization, it 
an undergo its own internal dynami
s and rea
h, after atransient phase, a stable state, 
alled an �attra
tor� of the network, whi
h may be then readout. The possibility to shape the attra
tors of the network 
ould then be viewed as a learningpro
ess: ea
h attra
tor is a memory whi
h 
an be re
alled if the network's state gets su�
iently
lose to it. The region of the network's phase spa
e whi
h has a given attra
tor as the endpointof the dynami
s is 
alled the �basin of attra
tion� of that memory; the bigger this region is, thebetter will perform the network in retrieving partial or 
orrupted information and re
ognizinga previously stored memory, but there is a trade-o� between the number and the size of theattra
tors in any given network.In order to distinguish between memorization and retrieval, two distin
t operation modes
an be used: during the learning session, the memories are presented to the network throughthe external drive and the re
urrent 
onne
tions are weakened and plasti
, while during theretrieval session the external input may be only partial and the re
urrent 
onne
tions are strongand non plasti
.In this 
ase the di�eren
e between supervised and unsupervised learning s
enarios is that inthe former the attra
tors to be stored are known from the beginning, and repeatedly presentedto the network, while in the latter there may be a 
ontinuous stream of memories, the goal beingto keep a fading tra
e, storing more strongly the most re
ent ones and gradually forgetting theold ones.A very simple variant of this arrangement allows the memorization of dynami
al attra
tors,in the form of ordered sequen
es of patterns: it is su�
ient to introdu
e a delay betweenthe outputs emission and their re
eival as other units' inputs: in this way, the network 
an beinstru
ted about the next step to take in response to a given input, and if this pro
ess is iterateda whole su

ession of network states 
an be learned and subsequently triggered by initialization.Of 
ourse, there's a trade-o� between the number of sequen
es whi
h is possible to store in thisway and their length.2.6. Per
eptrons storage 
apa
ity. The paradigmati
 supervised learning s
enario 
on-sists of a single per
eptron, for whi
h the inputs are all taken from a subset of the possibleinputs, and whose goal is to a
hieve a 
orre
t 
lassi�
ation of the inputs into two predetermined
ategories. Due to the extremely simple stru
ture of the per
eptrons, a
hieving a perfe
t 
las-si�
ation might be impossible, and either more units or a more 
omplex stru
tures might beneeded. More pre
isely, the requirement for perfe
t learning to be possible is that the inputsbelonging to the two 
ategories 
an be separated by a hyperplane in the N -dimensional spa
eof the inputs, a property known as �linear separability�. The ve
tor of synapti
 weights whi
hsolves the learning problem would then be orthogonal to the separating hyperplane, but if thesynapti
 weights are not allowed to take arbitrary 
ontinuous values, it 
ould be still impossibleto a
hieve perfe
t learning even in presen
e of linear separability. Furthermore, it is important
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to point out that the theoreti
al possibility to rea
h a solution is a di�erent problem from �ndinga way to �nd su
h a solution. These issues will be 
onsidered in the next se
tion.If the inputs are taken from a known distribution, it is possible to de�ne a �storage 
apa
ity�of the model as the average number of patterns per synapse whi
h the devi
e 
an learn to 
lassifywithout errors. Unfortunately, no means of 
al
ulating su
h a 
apa
ity in the general 
ase isknown; still, it is possible to derive an asymptoti
 value in the limit in whi
h the number ofsynapses N grows very large (known as �thermodynami
 limit�) for the simplest 
ase, namelythat of evenly random and independent inputs, by using te
hniques derived from the statisti
alphysi
s of disordered system and information theory.The most straightforward strategy adopted to 
al
ulate the maximum 
apa
ity of a devi
ewould be the following: �rst, suppose that the number of patterns to be learned is αN , then
al
ulate the average number of solutions 〈Nsol〉{ξ} to the learning problem (where 〈·〉{ξ} denotesthe average over the inputs) in the limit of large N , and �nally �nd the value of α at whi
h Nsolgoes to zero. The number of solutions for a given α 
an be expressed as:(4) Nsol (α) =

∫ N
∏

i=1

dµ (wi)

(

αN
∏

µ=1

Θ

(

σµ
Esign( N

∑

i=1

wiξ
µ
i

)))where we used the binary ±1model of eq. 3, letting σµ
E denote the expe
ted output for pattern

µ, and where dµ (wi) denotes a measure for the synapti
 weights, whi
h 
an be used to spe
ifyif the synapses are 
ontinuous, in whi
h 
ase we would substitute:
dµ (w) = dw(in this 
ase the number of solutions Nsol is a
tually the volume of the solution spa
e) or binary,in whi
h 
ase we would use:

dµ (w) = (δ (w + 1) + δ (w − 1)) dwwhere δ (x)is the Dira
 delta distribution. The rest of the 
omputation would follow in a straight-forward way by the assumption that the inputs are independent.However, using the average 〈Nsol〉{ξ} does not yield the desired results. This happensbe
ause the distribution of Nsol presents a very sharp peak but also a very long tail, so thatits average is di�erent from its mode. As a result, the dire
t 
al
ulation overestimates the
apa
ity with respe
t to the observations, sin
e every instan
e of the problem will fall withoverwhelming probability in the region of the peak. This is re�e
ted by the fa
t that the widthof the distribution of Nsol/ 〈Nsol〉{ξ} does not tend to zero in the thermodynami
 limit, thusmaking the average a non informative quantity (it is said to be �non self-averaging�).The �rst su

essful approa
h towards this problem [13, 14℄ is based on a te
hnique knownas �repli
a method� [21℄. The method assumes that the 
orre
t self-averaging quantity is not thenumber of solutions, but its logarithm, whi
h is normally 
alled �entropy�, making the parallelwith the statisti
al physi
s framework in whi
h the repli
a theory was developed. This meansthat, in the thermodynami
 limit, the average of the entropy per synapse ε = log (Nsol) /N tendsto a �nite asymptoti
 value, and that the varian
e of its distribution tends to zero. Thus, forsu�
iently large N , ε is almost the same for every instantiation of the problem, and is obviouslyequal to its average:(5) 〈ε (α)〉{ξ} =
1

N
〈log (Nsol (α))〉{ξ}.
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From the mathemati
al point of view, this approa
h introdu
es the di�
ulty that it isimpossible to 
ommute the operators 〈·〉{ξ}and log (·) dire
tly. The repli
a method gives apres
ription whi
h 
an be used to over
ome this problem, by exploiting the identity

log (x) = lim
n→0

(

xn − 1

n

)Having the logarithm expressed in this form, it is possible to 
ommute the average and thelimit operator:(6) ε (α) = lim
n→0

1

Nn

(

〈(Nsol (α))n〉{ξ} − 1
)The next step is to 
ompute the average over the inputs in the 
ase in whi
h n is a positiveinteger value: if one su

eeds in �nding an analyti
al expression for this 
ase, the limit 
anbe subsequently taken by performing an analyti
 
ontinuation. Although this step is not (yet)provably safe from the mathemati
al point of view, the results obtained are in perfe
t agreementwith the observations and with other methods (see e.g. [25℄ and referen
es therein).The limitation that n be an integer number, allows the n-th power in eq. 6 to be substitutedby the produ
t of n identi
al non intera
ting repli
as of the system, and �nally, after somealgebrai
 manipulation, to express the integrand as a fun
tion of a number of order parameters.One su
h parameter is for example the �overlap� between two arbitrary repli
as, de�ned as

qab =
1

N

N
∑

i=1

wa
i wb

jwhere a and b are (di�erent) repli
a indi
es, and wa
i , wb

i are the repli
ated synapti
 weightsve
tors. At this point, a 
ru
ial assumption has to be made about the stru
ture of these orderparameters in the repli
ated phase spa
e; the simplest and most natural is to assume that, sin
eall the repli
as are equivalent, su
h spa
e is perfe
tly symmetri
, and redu
e all the overlaps toa single parameter: ∀a, b : qab = q. This 
hoi
e goes under the name of �repli
a symmetri
�(RS) Ansatz; with it, one 
an redu
e the integrand under study to an expression in whi
h n isnot required to be a dis
rete variable any more, and the limit for n → 0 
an be taken. Theresult is an expression of the form(7) ε (α) =
1

N
log

∫

dqdq̂ exp (NF (α, q, q̂))where q̂ is the 
onjugated order parameter with respe
t to the overlap, and for simpli
ity weomitted any other order parameter. As N diverges, we 
an approximate the integral by meansof the saddle point method, whi
h amounts at �nding a solution to the system of equations
∂

∂q
F = 0(8)

∂

∂q̂
F = 0whi
h is usually done numeri
ally. Having found the solution q0 and q̂0, expression 7 �nallybe
omes:

ε (α) = F (α, q0, q̂0)In some 
ases the RS assumption is su�
ient to obtain the exa
t analyti
al result. Deter-mining whether the results obtained in this way represent the 
orre
t solution or they are an



2. PERCEPTRON MODELS 17
approximation is possible by inspe
ting the stability of the saddle point towards the breakingof the repli
a symmetry, but the 
al
ulation is more involved than the one sket
hed above. Thetheory of how to treat situations in whi
h the repli
a symmetry is broken and how to per-form su
h a 
al
ulation, along with the physi
al interpretation of the order parameters and therepli
a symmetry breaking itself, was �rst developed by Parisi, Mézard and Virasoro in [21℄ andsu

essfully applied to many di�erent problems [25℄.For what 
on
erns per
eptron models, the RS assumption is su�
ient to obtain the exa
tresult both for 
ontinuous and binary synapses, but there's a 
aveat about the latter whi
h willbe explained in the next se
tion. However, in both 
ases, the maximum 
apa
ity is given bythe value of α for whi
h ε (α) = 0: for 
ontinuous, unbounded synapses this is α = 2 [10℄; forbinary ±1 synapses it is α = 0.83 [17, ?℄and for 0/1 valued binary synapses it is α = 0.59,provided that the threshold is set to its optimal value (whi
h is also found by the saddle pointmethod)[15℄.2.7. Continuous vs binary synapses in supervised per
eptron models. Even if thetheoreti
al maximal 
apa
ity of the binary synapses model is not mu
h redu
ed with respe
tto that of the 
ontinuous synapses model, there's still a big di�eren
e between the two modelswith respe
t to the di�
ulty of a
tually �nding a solution to the learning problem. For the
ontinuous-valued model, many simple and e�
ient algorithms are known to perform well onthis task, the simplest being the �standard per
eptron algorithm� (SP). It is a simple updateproto
ol, whi
h pres
ribes the modi�
ation that the synapses have to undergo every time apattern is presented to the devi
e:(1) If the 
lassi�
ation of the pattern is 
orre
t, nothing is 
hanged(2) If an error is made, update all the synapses as: wt+1

i = wt
i + ησt

Ewhere η is a �xed, small learning 
onstant, and σt is the expe
ted output for the patternpresented at time t. The patterns 
an be presented sequentially or randomly.It 
an be easily demonstrated that, whenever a solution to the problem exists, there exists asmall enough value of the parameter η su
h that the SP algorithm 
onverges in a �nite numberof steps, and that the maximum learning time is a polynomial in N . This applies to any inputpattern set, regardless of the underlying distribution[28℄. More 
ompli
ated algorithms, likee.g. the adatron algorithm or the ba
k-propagation algorithm, 
an have better performan
esunder appropriate 
ir
umstan
es.The situation is 
ompletely di�erent for binary models: in this 
ase, the learning problem hasbeen proved to be a non-polynomial 
omplete (NP-C) 
lass problem from the algorithmi
 pointof view [2, 3℄. The NP-C 
lass of problems in
ludes many well known optimization problemslike the travelling salesman problem, the satis�ability problem or the 
oloring problem, and hasthe property that being able to solve all of the instan
es of one of the problems of this 
lassin polynomial time (with respe
t to the size of the input) would allow to solve all of them inpolynomial time. It is widely believed that a general solution for any of the NP-C problems whi
h
ould always su

eed in polynomial time does not exist; thus, NP-C problems are 
onsidered tobe hard from the algorithmi
 point of view.On the other hand, the requirement to �nd a solution for any possible instan
e of a problem(worst-
ase s
enario) is not always of interest, espe
ially if a very large number of variables isinvolved. In many situations, the typi
al learning time would be more important for pra
ti
alpurposes. De�ning this quantity requires that a distribution is spe
i�ed on the parameters of theproblem. When the parameters are taken randomly and independently, many 
omplex problemsbe
ome tra
table by 
leverly exploiting their statisti
al properties. Statisti
al physi
s methods
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have been remarkably useful in this �eld: one well known algorithm inspired by the analogiesbetween optimization problems and the statisti
al physi
s is simulated annealing [29, 9℄. Thismethod makes a parallel between the quantity to optimize and the intera
tion energy of amaterial, and simulates a 
ooling pro
ess towards zero temperature, assuming that, eventually,the material will be in its ground state, i.e. the problem will have rea
hed an optimal solution.The e�e
tiveness of this approa
h is impressive in some 
ases, e.g. in the travelling salesmanproblem with randomly and uniformly distributed nodes, but is of little help in other 
ases,amongst whi
h is the binary per
eptron problem. Keeping the parallel with statisti
al physi
s,in some 
ases the 
ooling would require to be in�nitely slow in order to rea
h the solution; if the
ooling down is too fast, the system 
an have a transition from a liquid to a glassy, disorderedphase, and get stu
k. Another way to see the same phenomenon is to say that, for too lowtemperatures, the energy lands
ape in the phase spa
e has an overwhelming number of verydeep lo
al minima, su
h that, on
e one is rea
hed, it be
omes impossible to get out of it andrea
h the global minimum.In order to be more pre
ise, the exa
t terms of the problem 
an be de�ned by using the
on
epts of repli
a symmetry breaking theory and their physi
al interpretation. The RS analysisof the previous se
tion is exa
t when the synapses are allowed to assume 
ontinuous values: thesolutions to the learning problem form a 
onne
ted 
omponent in the phase spa
e, whi
h isa big lo
al minimum in the energy lands
ape, if we de�ne the energy of the problem as thenumber of errors the devi
e makes. However, when the synapses are binary, repli
a symmetryis a
tually broken, and a �one-step-symmetry-breaking� analysis (1RSB) is needed: the spa
e ofall the repli
as is assumed to have a 
lustered stru
ture, so that, given any two repli
as a and
b, they will either belong to the same 
luster and have overlap q1, or belong to di�erent 
lustersand have overlap qo < q1. The same applies to any other order parameters, even though theinequality relation may be reversed. A new parameter also enters into this 1RSB des
ription,whi
h 
an be interpreted as expressing a 
lusterization degree, and whi
h mathemati
ally hasthe role of a temperature; its thermodynami
 
onjugate is 
alled the �
omplexity� (an analog tothe entropy for the ordinary temperature), and expresses the logarithm of the number of 
lustersof the solution. Geometri
ally, the 
lusters are 
onne
ted 
omponents in the phase spa
e, sothat two solution of the problem belonging to the same 
luster 
an be transformed one into theother by small steps without getting out of the 
luster itself. Solutions belonging to di�erent
lusters will on the 
ontrary be far apart in the phase spa
e, so that ma
ros
opi
 modi�
ationswould be needed to transform one solution in the other. This same stru
ture does not only holdfor the solutions, but also for states of higher energy; what's worse, the number of 
lusters ata given energy is exponentially greater than the number of 
lusters at a lower energy, whi
hexplains why lo
al sear
h algorithms as SP or even simulated annealing get trapped in thoseexponentially numerous lo
al minima.The reason for whi
h the RS value α = 0.83 for the maximum storage 
apa
ity is neverthelessexa
t is that the 1RSB solution for this spe
i�
 problem has q1 → 1, whi
h means that the
lusters of solutions tend to be
ome point-like; thus, the overall stru
ture of the solutions hasin pra
ti
e the same symmetry properties it would have if it would be RS, and the saddle pointsolutions are in one to one 
orresponden
e to those of the RS 
al
ulation. Nevertheless, it still isa hard problem algorithmi
ally. Algorithms 
able of solving problems in the 1RSB phase havebeen developed only re
ently [19, 20, 1, 7℄, showing that �nding a solution by lo
al sear
h isnot impossible even though the energy lands
ape is as des
ribed above. The logi
 behind su
halgorithms is to explore the spa
e of the 
lusters, rather than that of the single states, and togradually restri
t the dynami
s to one su
h 
luster until a solution is found.
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Using the standard per
eptron algorithm SP and its variants on the binary per
eptronproblem gives indeed very poor results: the learning time grows at least exponentially with thenumber of synapses N , and the problem be
omes intra
table very rapidly. This will be shown inthe next 
hapter, where we present a novel simple algorithm whi
h outperforms all other knownalgorithms on this task, being 
apable of almost saturating the storage 
apa
ity bound, with a
onvergen
e time whi
h we estimated to grow as O (N log (N)1.5

), i.e. almost linearly.2.8. Continuous vs binary synapses in unsupervised models. The problem of learn-ing with dis
rete synapses is mu
h harder than that of learning with 
ontinuous synapses alsoin the unsupervised s
enario. Analogously to what happens in the supervised learning s
enario,
ontinuous re
urrent networks 
an in prin
iple store a number of attra
tors of order N , butlearning with a limited number of synapti
 states only allows to rea
h an order log (N) mem-ories, if the fra
tion of a
tive units at ea
h time does not s
ale with N . The reason for thisbad performan
e is that in the dis
rete 
ase ea
h �jump� of the synapti
 state overwrites thepreviously stored information. This has been shown in [4, 5℄ using per
eptron models, andfurther generalized by means of theoreti
al information te
hniques in [11℄, where it is pointedout that some degree of meta-plasti
ity is required in order to prevent the information tra
e leftin ea
h synapse from being erased at an exponential rate, i.e. in order for memories to last morethan a logarithmi
 time.A binary per
eptron model whi
h is able to 
onsiderably improve performan
e in the unsu-pervised s
enario, the �
as
ade model�, has been proposed in [12℄. In this model, ea
h synapsehas only 2 visible states, but 
an have multiple hidden states, ea
h 
orresponding to a di�erentdegree of plasti
ity. The transition s
heme of the model is shown in Fig. 2. Using the 
as
ademodel, a memory tra
e in a re
urrent network undergoes a phase during whi
h the signal de-
ays as a power law, whose duration depends on the number of internal states of ea
h variable,followed by a phase of exponential de
ay. The exponential tail may be undete
table, and thusnegligible, if the transition happens when the tra
e is already fainter than the noise.From the biologi
al point of view, meta-plasti
ity is a quite reasonable hypothesis, sin
ethere's no reason for the synapti
 strength to be the only variable that enters the plasti
ity up-date rules. On the 
ontrary, the synapti
 terminals are highly spe
ialized stru
tures with 
om-plex dynami
s and multiple time s
ales; representing the internal protein network as a 
olle
tionof dis
rete stable states with some transition rule among them is a �rst-order approximationtowards a more biologi
ally plausible des
ription.The algorithm whi
h we present in the next 
hapter similarly takes advantage of meta-plasti
 transitions in order to in
rease the amount of information retained about its history, butthis feature alone is not yet su�
ient to a
hieve satisfa
tory results in the supervised s
enario.





CHAPTER 2The SBPI algorithm1. Cavity algorithms1.1. Cavity methods for statisti
al physi
s. The 
al
ulation of se
tion 2.6 is basedon the repli
a theory approa
h to the problem of studying the thermodynami
s of disorderedsystems. Even though its mathemati
al foundations are not yet assessed, this method has provedto yield the 
orre
t results in all the situations in whi
h it has been tested.Disordered systems are 
hara
terized by depending on a large number of parameters, whi
hare 
onsidered to be �xed on a single instan
e of the problem, but whi
h are supposed to beextra
ted form a probability distribution when looking at the problem in its generality (of 
ourse,this approa
h is only useful thanks to the existen
e of the self-averaging quantities, i.e. the fa
tthat all systems behave in the same way in the thermodynami
 limit). For this reason, theseparameters are also 
alled �quen
hed variables�: in the 
ase of the per
eptron, it is the set ofpatterns whi
h has to be learned (both the inputs and their asso
iated outputs). The quen
hedvariables are the sour
e of the disorder.In the repli
a method, the average over the quen
hed variables is performed at the verybeginning of the 
al
ulation, prior to the Ansatz about the symmetry stru
ture in the repli
aspa
e. For this reason, the results whi
h are obtained by this method are only able to des
ribethe general properties of the problem under study, but give no information about the spe
i�
instan
es of the problem: in order to obtain those, a di�erent approa
h is ne
essary, whi
his provided by the the �
avity method�. The 
al
ulations in this 
ase are performed on singleinstan
es of the problems, and the average over the quen
hed variables 
an (if needed) beperformed afterwards, by 
olle
ting the results obtained on many di�erent instan
es. The �nalresults are equivalent with those of the repli
a method, but the single instan
e results 
ontaininformation about the phase spa
e whi
h is spe
i�
 to that realization of the quen
hed disorder,and 
an be used to �nd the global minima (the solutions) of the problem. The two methods 
anthus be seen as 
omplementary, one being more suitable for investigation of the global propertiesof the problem (in
luding the study of the symmetry breaking of the repli
ated phase spa
e),the other one allowing to inspe
t single instan
es.Virtually all optimization problems 
an be represented as bipartite graphs, in whi
h there aretwo types of nodes: the ones representing the variables and the ones representing the 
onstraints,or intera
tions, among variables, with edges 
onne
ting nodes of one type to nodes of the othertype (see Fig. 1). Graphs provide a general framework, but their usefulness depends on thespe
i�
 problem under 
onsideration. All 
avity method algorithms are based on message passingalong the lines of su
h graphs: the messages 
an represent a binary information, a probability,a probability distribution, a distribution of a distribution and so on, depending on the repli
asymmetry breaking Ansatz. In the 
ase of the Belief Propagation algorithm (BP), whi
h willbe dis
ussed in the next se
tion, they represent marginal probabilities over the spa
e of thesolutions.
21
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Figure 1. Di�erent kinds of bipartite graphs. Rounds represent variables,squares represent 
onstraints or intera
tions over variables, the edges showwhi
h variables the 
onstraints a
t upon. The red and green arrows representthe two kinds of 
avity messages �ow; green arrows are messages originatedfrom in
oming red arrows, and vi
e-versa. A. Sparse graph. Ea
h intera
tioninvolves exa
tly 3 variables. This 
ould represent for example a 3-SAT problem.B. Fully 
onne
ted graph. Ea
h intera
tion involves all of the variables. This
ould represent the supervised learning problem, in whi
h ea
h variable is asynapse and ea
h intera
tion a pattern to be 
lassi�ed.The term �
avity� in the name of the method refers to the fa
t that they exploit the in-formation whi
h 
an be obtained about the stru
ture of the energy spe
trum by taking awayone node from the graph at a time and 
arefully tra
king the reshu�ing of the energy levelsindu
ed by this modi�
ation. Of 
ourse, everything is simpler in the RS 
ase than in the repli
asymmetry broken phases, sin
e the 
lusterization stru
ture is trivial, but still the 
al
ulationrelies on the fa
t that the messages �owing through the links 
onne
ted to the removed node areun
orrelated. This would be stri
tly true only in a tree-like graph, in whi
h there are no loops,but the absen
e of loops is never the 
ase for optimization problems or disordered systems.However, if the length of the loops in the problem diverges in the thermodynami
 limit, theassumption 
an be taken as applying asymptoti
ally, and to be a good approximation for large
N . In fa
t, the 
avity message passing algorithms prove su

essful in su
h situations (Fig. 1A).On the other hand, looking at the representation of a per
eptron problem as a graph(Fig. 1B), it is apparent that the situation is exa
tly opposite to the tree-like one: the graph is�fully 
onne
ted�, and the loops 
ouldn't be more numerous neither shorter. Despite this fa
t,the 
avity method still works, thanks to the fa
t that the 
orrelations, due to the very largenumber of the 
ontributions, tends to 
an
el out [34℄.1.2. The Belief Propagation algorithm. The BP algorithm (also known as Bethe-Pierlsapproximation in statisti
al physi
s), has been developed independently in the 
ontext of statis-ti
al physi
s of disordered systems and of information theory, in the 
ontext of error 
orre
tion
odes for signal transmission (see [16℄). Its results are equivalent with an RS des
ription of
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the problem under study, and it is suitable to des
ribe the per
eptron problem for the reasonsexposed in se
tions 2.7 and 1.1. In this s
heme, the learning problem is 
onverted in the problemof 
omputing some probability marginals: let us 
onsider the set W of all the possible weightve
tors, and the subset W∗ of all the (unknown) synapti
 weights ve
tors whi
h properly im-plement the input/output mapping of the patterns. A uniform sampling of this set de�nes aprobability spa
e spa
e over the set W∗ of all the solutions to the problem. Over this spa
e weare interested in single marginals, that is in the probabilities(9) p±i = PW (wi = ±1) = |{w ∈ W∗ : wi = ±1}| / |W∗|that the single synapses take a 
ertain binary value in a randomly 
hosen solution (here |·|denotes number of element of a �nite set).The 
omputation of these marginals 
onstitutes the �rst step in the pro
ess of �nding theoptimal synapti
 weights, after whi
h one typi
ally pro
eeds iteratively by �xing the synapti
weights a

ordingly.Under the weak 
orrelations assumption, it is possible to write a 
losed set of equations forthe marginals whi
h 
an be solved e�
iently by iteration. In turn, the iteration s
heme 
an beimplemented as a distributed 
omputation, a fa
t whi
h opens the possibility of implementing adynami
al s
heme governed by lo
al rules whi
h a
tually solves the equation and hen
e providesthe marginals we are interested in. This is the feature whi
h allows to revert the BP into asimple enough s
heme, to be 
onsidered of potential biologi
al interest.The BP approa
h 
onsists �rst in �nding the marginal probabilities for synapti
 weights wion the solutions of restri
ted (
avity) problems. Thanks to the symmetry of the ±1 per
eptron,we 
an simplify the notation and assume without loss of generality that, for all patterns µ,
σµ

exp = +1. Let us �rst remove pattern µ from the intera
tions of synapse i. We 
an de�ne aspa
e of the solutions to the restri
ted problem as(10) W∗
i→µ =







w ∈ W :
∑

j

wjξ
ν
j > 0 ∀ν 6= µ,

∑

j 6=i

wjξ
µ
j > 0





and write the probability that, if the synapse i has synapti
 weight wi, it belongs to su
h asolution, as
pwi

i→µ = PW∗
i→µ

(wi)where PX is the uniform measure over X .Then, on the original graph, let us remove variable i from all patterns but µ. The restri
tedspa
e of the solutions is de�ned as
W∗

µ→i =







w ∈ W :
∑

j 6=i

wjξ
ν
j > 0 ∀ν 6= µ,

∑

j

wjξ
µ
j > 0





and the 
orresponding 
avity probability is
ηwi

µ→i = PW∗
µ→i

(wi)where PX is de�ned as above.These variables 
an be thought of as messages sent along the graph edges. The two typeof messages �ow in opposite dire
tions. The BP equations des
ribe how the message form anode to another depends on all the other in
oming messages on the sender node, ex
ept for the
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message 
oming from the re
eiver node. Thus, the two signals �owing on ea
h link should inprin
iple 
arry di�erent pie
es of information. In symbols, BP equations read:

ηwi

µ→i ∝
∑

{wj :j 6=i}

∏

j 6=i

p
wj

j→µΘ





∑

j

wjξ
µ
j



(11)
pwi

i→µ ∝
∏

ν 6=µ

ηwi

ν→i(12)where Θ [x] denotes the Heaviside fun
tion (Θ [x] = 1 if x ≥ 0, Θ [x] = 0 otherwise), i, j indi
esrun over 1, . . . , N and µ, ν are pattern indi
es. The ∝ symbol indi
ates normalization prefa
torsthat ensure η+
µ→i + η−

µ→i = 1 and p+
i→µ + p−i→µ = 1.On a solution of Eqs. 11-12, BP estimation of marginals in Eq. 9 
an be 
omputed as:

pwi

i ∝
∏

µ

ηwi

µ→i(13)The standard way to solve Eqs. 11-12 is by iteration. Calling S = ({ηµ→i} , {pµ→i})µ,i and
onsidering the fun
tion f : S 7→ f (S) de�ned by right-hand sides of Eqs. 11-12, we 
an build thesequen
e St from the iteration St = f (t) (S0), where S0 represents some initial 
ondition (eitherrandom or for instan
e uniform), until the distan
e of two 
onse
utive terms ‖St+1 − St‖ is zeroor small enough; then , we 
an 
onsistently evaluate Eq. 13. From the single variables marginalswe 
an derive other thermodynami
 quantities, in parti
ular we 
an evaluate the entropy of thesolution spa
e (whi
h in this 
ase has to be interpreted as a 
omplexity). Computing the averageover many di�erent samples at large N , this method yields the same results as the 
omputationperformed by means of the repli
a method.The information obtained from the marginals in the single instan
es also allows to �nd asolution to the learning problem. One approa
h 
ould be a de
imation s
heme, in whi
h themost polarized variable (the one for whi
h ∣∣p+
i − p−i

∣

∣ is greatest) is �xed, the 
orrespondinggraph is redu
ed, and the iteration s
heme is restarted on the redu
ed graph, until a solutionis (eventually) found. A better approa
h for this problem is to introdu
e in the equation areinfor
ement term, gradually polarizing all the variables at the same time.In this for
ed s
heme, the right-hand term in Equation 12 has to be repla
ed by pwi

i

∏

ν 6=µ ηwi

ν→isoto drive the system to 
onverge to a single 
on�guration. With weak 
orrelation assumptions,the reinfor
ed equations in terms of h = tanh−1 (p+ − p−) and u = η+−η− be
ome in a leadingorder approximation:
ht+1

i =
∑

t′≤t

∑

ν

ut′

ν→i(14)
mt+1

i = tanh
(

ht+1
i

)(15)
ut

µ→i =
1√
N

f





1√
N

∑

j 6=i

ξµ
j mt

j ,
1

N

∑

j 6=i

(

1 − (mt
j)

2
)



(16)where(17) f (a, b) =
1√
b

G
(

a√
b

)

H
(

− a√
b

)
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and the auxiliary fun
tions G and H are de�ned by:

G (x) =
1√
2π

e−
1

2
x2(18)

H (x) =

∫ ∞

x

G (y) dy(19)The idea is that in the 
ourse of the learning pro
ess the `hidden variables' hi go progressivelytowards large positive or negative values, and hen
e variables mi be
ome 
loser and 
loser to
+1 or −1. Hen
e, at the end of the learning pro
ess, the synapti
 weights 
an be set to the signof mi.The algorithm as des
ribed is able to �nd a solution in a reasonable time (i.e. not expo-nentially growing with N) up to α ∼ 0.6, but higher values 
an be rea
hed by weakening thereinfor
ement term of eq. 14, thus produ
ing a slower, but more a

urate algorithm, whi
h 
anstore more than αN ∼ 0.7 patterns, very 
lose to the maximum storage 
apa
ity 0.83. In any
ase, whatever the values of the parameters, the number of steps required for 
onvergen
e is, upto α ∼ 0.6, sub-linear in N , thus extremely fast. Note that all other known algorithm's learningtime grows exponentially with N for any value of α, thus their storage 
apa
ity, to the leadingorder, is 0.The attra
tiveness of the BP s
heme 
omes from its distributed nature, allowing to �nd aglobal optimal solution from lo
al 
omputations only. However, from a pra
ti
al point of view,the above presented algorithm is o�-line in nature: at ea
h step, all patterns have to intera
twith the devi
e at on
e, and ea
h variable has to tra
k an extensive number of analog quantities.This would ex
lude in pra
ti
e the possibility of using su
h a s
heme in a biologi
ally plausible
ontext, or more generally in a 
ontext in whi
h the input patterns 
ome in sequen
e, one afterthe other. However, as we shall see, the fully-reinfor
ed equation set 
an be easily reverted toan on-line learning s
heme.1.3. BP on 0/1 per
eptron. The derivation of the for
ed BP algorithm for the 0/1per
eptron from the BP s
heme 
losely follows the tra
k of the previous se
tion. The maindi�eren
es are that in this 
ase the threshold θ is di�erent from 0 and that we need to takeexpli
itly into a

ount what the expe
ted output for the patterns is.The 0/1 per
eptron model was de�ned in se
tion 2.3; here we add a parameter to thedes
ription, the �
oding level� f , whi
h represents the average fra
tion of a
tive inputs (ξµ

i = 1)and a
tive outputs (σµ = 1) per pattern. Both the maximal 
apa
ity and the optimal thresholddepend on this parameter.The optimal threshold θ 
an be 
omputed by means of the repli
a method, as done in [15℄(it amounts at adding the equation ∂θF = 0 in the saddle point equations of se
. 2.6), and is afun
tion of α. In the dense 
oding 
ase f = 0.5, the maximal theoreti
al 
apa
ity is αmax ≈ 0.59,whi
h 
an be obtained by optimally setting the threshold as θ ≈ 0.16N . For lower values of
α, the optimal threshold (with respe
t to the number of solutions of the learning problem) ishigher, and rea
hes 0.25N at α = 0. However, the simulation results whi
h we will show in thefollowing do not take this into a

ount, as we have found that they were not mu
h a�e
ted bythe value of θ, and that setting it to the value 
orresponding to αmax was optimal even at lowervalues of α.When varying f the pi
ture is similar; furthermore, the ratio between the optimal value of
θ (taken at αmax) with respe
t to the average number of a
tive inputs in ea
h pattern fN isalmost 
onstant, going from 0.32 for f = 0.5 to 0.30 for f = 3 · 10−3. Thus, with these settings,about 30% of the synapses will be a
tive after learning in all 
ases.
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1.4. Reverting BP to an on-line algorithm. The reinfor
ed BP equations 
an des
ribean on-line learning proto
ol by swit
hing to asyn
hronous update, 
hoosing a time s
ale τ de�nedby Nατ = t, and pi
king the pattern randomly at time τ , giving:

mτ
i = tanh (hτ

i )(20)
hτ+1

i = hτ
i +

ξτ
i√
N

f





1√
N

∑

j 6=i

ξτ
j mτ

j ,
1

N

∑

j 6=i

(

1 − (mτ
j )2
)



(21)
wτ+1

i = sign (ht+1
i

)(22)This (on-line) algorithm is fast and solves the learning pro
ess up to large values of α, butit still has some unpra
ti
al features:
• It requires that ea
h synapse keeps a memory of an analog variable (mi or hi);
• The two arguments of the fun
tion f have to be 
omputed individually for ea
h synapse.The se
ond issue 
an be partly �xed by 
onsidering that the fun
tion f 
an be 
omputed at on
e,and the single synapse values 
an be obtained as 
orre
tions based on purely lo
al information.Then, the algorithm 
an be further simpli�ed in order to get rid of all the analog variables,while keeping a high 
apa
ity and fast 
onvergen
e; however, the lo
al 
orre
tion to the globalsignal is a 
ru
ial step for the algorithm's performan
e.The 
orresponding on-line BP-inspired equations for the 0/1 per
eptron model are:

mτ
i = tanh (hτ

i )(23)
hτ+1

i = hτ
i + ξτ

i f01



στ
exp,

1

2

∑

j 6=i

ξτ
j

(

1 + mτ
j

)

,
1

4

∑

j 6=i

ξτ
j

(

1 − (mτ
j )2
)



(24)
wτ+1

i = Θ
[

hτ+1
i

](25)where(26) f01 (σ, a, b) =
1

2
√

b





G
(

(a + σ − θ) /
√

b
)

σ − (2σ − 1)H
(

(a + σ − θ) /
√

b
)



As before, we only need to keep the internal variables hi, updating them at ea
h time stepupon presentation of a pattern (ξτ , στ
exp

).1.5. Dis
retization. The problem of storing and managing 
ontinuous variables 
an beover
ome by 
rudely simplifying f as a Heaviside step fun
tion of the �rst argument, and repla
ethe tanh with a sign fun
tion:
mτ

i = sign (hτ
i )(27)

hτ+1
i = hτ

i + ξτ
i Θ



−
∑

j 6=i

ξτ
j mτ

j



(28)where we removed two inessential fa
tors N− 1

2 . This algorithm is roughly equivalent to the
ontinuous one in the last part of the learning pro
ess, when all the variables are almost fullypolarized. As a last step, we identify the mi �elds with the synapti
 weights wi and avoid the
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ambiguous hi = 0 
ase by initializing all the hi's to odd values and introdu
ing a fa
tor 2 intheir update term, so that they 
an only assume odd values (this does not a�e
t the results):

hτ+1
i = hτ

i + 2ξτ
i Θ



−
∑

j 6=i

ξτ
j wτ

j



(29)
wτ+1

i = sign (hτ+1
i

)(30)In this way, we are left with a single dis
rete variable for ea
h synapse, and the updatingsignal is mu
h simpler. The performan
e of this algorithm, whi
h we refer to as �BP-inspired�algorithm (BPI), is still good, but it a
hieves a lower 
apa
ity then the 
ontinuous one (about
α ∼ 0.3). Using a sto
hasti
 version of the Θ fun
tion turned out to be su�
ient to re
overthe same 
apa
ity as the 
ontinuous reinfor
ed BP. The pro
edure will be explained in detail innext se
tion.The same dis
retization pro
ess 
an be applied to eqs. 23-26 for the 0/1 per
eptron, bysubstituting mi by its sign and the fun
tion f01 by a step fun
tion, so that the internal hiddenvariables hi 
an only take integer values; we further restri
t them to take odd values, and theequations be
ome:

hτ+1
i = hτ

i + 2ξτ
i

(

2στ
exp − 1

)

Θ



−
(

2στ
exp − 1

)





∑

j 6=i

ξτ
j wτ

j − θ







(31)
wτ+1

i = Θ
[

hτ+1
i

](32)1.6. Algorithms de�nitions. The standard per
eptron algorithm presented in se
tion2.7 uses 
ontinuous weights and a learning step parameter η. However, if the synapti
 weightsare unbounded, this algorithm 
an be dis
retized by simply res
aling everything by a fa
tor η−1.Thus, we 
an rede�ne the SP algorithm by the single equation(33) wτ+1
i = wτ

i + 2ξτ
i Θ



−
∑

j

ξτ
j wτ

j



whi
h is very similar to Eq. 29. The main di�eren
e is of 
ourse given by the fa
t that in the SPalgorithm the variables are not binary and no hidden values are present. The single equation33 
an be split in a two-rules pres
ription for 
larity:SP algorithm. Upon presentation of a pattern, the overall depolarization is 
omputed as
∆ =

∑

j ξτ
j wτ

j , then(1) If ∆ > 0, then wτ+1
i = wτ

i (do nothing)(2) If ∆ < 0, then wτ+1
i = wτ

i + 2ξτ
j (update all the synapses)Note that the depolarization 
an only assume odd values, due to the simplifying assumptionthat N is odd. The straightforward way to turn this algorithm to work on a binary devi
e wouldbe to simply bound the weights to assume only the values ±1, but the results of this strategy,and of its variants, are extremely poor. Another possibility is to turn the synapti
 weights whi
hundergo the updating to hidden variables, while using their sign as the a
tual synapti
 weights.This is known as �
lipped per
eptron� algorithm (CP):
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CP algorithm. Upon presentation of a pattern, the overall depolarization is 
omputed as

∆ = −∑j ξτ
j wτ

j , then(1) If ∆ > 0, then hτ+1
i = hτ

i (do nothing)(2) If ∆ < 0, then hτ+1
i = hτ

i + 2ξτ
j (update all the synapses)Then update the synapti
 weights as wτ
i = sign (hτ

i ).This algorithm performs mu
h better than the �
ropped� one in whi
h there are only twostates; nevertheless, 
onvergen
e still takes an exponential time in N . The hidden variables hiimplement a form of meta-plasti
ity, sin
e they parti
ipate in the learning pro
ess, but theydon't alter the unit's output but by their sign.Another algorithm whi
h uses meta-plasti
 states to boost learning in a binary synapses
ontext is the 
as
ade model mentioned in se
tion 2.8, but su
h model was introdu
ed in anunsupervised learning s
enario, and, though being better than the �
ropped� model, it performsworse than CP in the supervised 
ontext.In fa
t, the CP algorithm and the BPI algorithm des
ribed by eqs. 29-30 are very similar,the only di�eren
e o

urring when ∆ = 1:BPI algorithm. Upon presentation of a pattern, the overall depolarization is 
omputed as
∆ = −∑j ξτ

j wτ
j , then(1) If ∆ > 2, then hτ+1

i = hτ
i (do nothing)(2) If ∆ = 1, then hτ+1

i = hτ
i +2ξτ

j Θ
[

hτ
i ξτ

j

] (update only the synapses for whi
h wτ
i = ξτ

i )(3) If ∆ < 0, then hτ+1
i = hτ

i + 2ξτ
j (update all the synapses)Then update the synapti
 weights as wτ
i = sign (hτ

i ).Rule 2 in the BPI algorithm is only applied when the unit's output is barely 
orre
t, meaningthat a single synapti
 �ip 
ould potentially produ
e a 
lassi�
ation error. In this 
ase, thosesynapses whi
h are 
ru
ial for the 
orre
t response are updated by pushing them away from 0,thus redu
ing the 
han
e of a swit
h. Even though this rule is applied when a spe
i�
 valueof ∆ is found, the overall e�e
t is not negligible. Note that this rule is dire
tly inherited fromthe 
avity pro
edure, be
ause it a
ts on those variables whi
h, if removed, would 
hange theout
ome of the devi
e.In order to investigate the e�e
t of rule 2 on performan
e, we also simulated a sto
hasti
version of the BPI algorithm, in whi
h su
h a rule is only applied with probability ps for ea
hpresented pattern:SBPI algorithm. The same as BPI, but rule 2 be
omes:2.: If ∆ = 1, then
• with probability ps: hτ+1

i = hτ
i +2ξτ

j Θ
[

hτ
i ξτ

j

] (update only the synapses for whi
h
wτ

i = ξτ
i )

• with probability 1 − ps: hτ+1
i = hτ

i (do nothing)The SBPI algorithm thus a
tually 
omprises both the BPI algorithm, when ps = 1, and theCP algorithm, when ps = 0.The CP, BPI and 
as
ade algorithms are sket
hed in Fig. 2.



1. CAVITY ALGORITHMS 29
CP BPI Cas
ade

ξ ·w < 0 ξ · w < 0 ξ · w = 1 ξ ·w < 0

Figure 2. S
hemati
 representation of transitions between synapti
 states inthe CP algorithm and the BPI algorithm. The 
as
ade model introdu
ed byFusi et al [12℄ is shown for 
omparison. Cir
les represent the possible states ofthe internal synapti
 variable hi. Grey 
ir
les 
orrespond to wi = −1, whiteones to wi = 1. Clo
kwise transitions happen when ξi = 1, 
ounter-
lo
kwisewhen ξi = −1. Horizontal transitions are plasti
 (
hange value of synapti
e�
a
y wi), verti
al ones meta-plasti
 (
hange internal state only). Downwardstransitions make the synapse less plasti
, upward ones more plasti
. Whenthe output of the neuron is erroneous, ξ · w < 0: transitions o

ur to thenearest neighbor internal state. In the CP algorithm, when the output is 
orre
t,
ξ ·w > 0: no transitions o

ur. In the BPI algorithm, when the output is barely
orre
t ξ ·w = 1 (a single synapti
 �ip 
ould have 
aused an error): transitionsare made towards less plasti
 states only. When the output is safely 
orre
t,
ξ · w > 1: no transitions o

ur. In the 
as
ade model, `down' transitions aretowards nearest neighbors, while `up' transitions are towards the highest statewith opposite sign. Transition probabilities de
rease with in
reasing |h|, see[12℄for more details1.7. Performan
e 
omparison. The performan
e of the SBPI algorithm was �rst inves-tigated numeri
ally with unbounded hidden variables, for di�erent values of α, N and ps. Itturns out that it performs remarkably well, provided the probability ps is 
hosen appropriately- with ps ≈ 0.3 the system 
an rea
h a 
apa
ity of order 0.65 with a 
onvergen
e time thatin
reases with N in a sub-linear fashion (see Fig. 3). On the other hand, the deterministi
 BPI(ps = 1) has a signi�
antly lower 
apa
ity (α ≈ 0.3), but for those lower values of α it performssigni�
antly faster than the SBPI algorithm - for α = 0.3 the time in
reases approximately as

(log N)1.5, as shown in Fig. 3D. As an example, the algorithm perfe
tly 
lassi�es 38400 patternswith 128001 synapses with around 35 presentations of ea
h pattern only. By eliminating 
om-pletely rule 2 (i.e. CP) 
onvergen
e time be
omes exponential in N rather than logarithmi
, forevery tested value of α, as shown by the supra-linearity of the blue 
urves in Fig. 3. Hen
e,the spe
i�
ity of rule 2 with respe
t to synapses (only synapses that a
tually went in the rightdire
tion for the 
urrent pattern should be modi�ed) is a 
ru
ial feature whi
h makes the BPIalgorithm qualitatively superior. Moreover the 
onvergen
e time in
reases only mildly with α,as shown in Fig. 3.We also �nd that there is a tradeo� between 
onvergen
e speed and 
apa
ity: for ea
h valueof α, there is an optimal value of ps that minimizes average 
onvergen
e time. This optimal
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8001

16001
32001
64001

128001Figure 3. Performan
e of the BPI algorithm with unbounded hidden vari-ables: A-C 
onvergen
e time vs. N for di�erent values and α (indi
ated onea
h graph). Points 
orrespond to number of iterations per pattern until thealgorithm 
onverges averaged over 200 pattern sets, verti
al bars are standarddeviations. Blue lines: CP, Red lines: BPI, Green lines: SBPI with ps = 0.3.The latter is the only one whi
h 
an rea
h α = 0.6, but performs worse thanBPI for α ≤ 0.3 (it is absent from panel A for 
larity). D. Probability that theBPI algorithm learns perfe
tly 0.3 · N patterns in less than T = x · log(N)1.5iterations per pattern vs x for various values of Nvalue de
reases with α; for α = 0.3 it is 
lose to 1, and de
reases to 0.3 at α = 0.65. Hen
e,de
reasing ps enhan
es the 
apa
ity, at the 
ost of a slower 
onvergen
e; nevertheless Fig. 3Cshows that for values of α ≤ 0.60 SBPI (ps = 0.3) learns perfe
tly the set of input-outputasso
iations in a time that s
ales sub-linearly with N . Above α ≥ 0.7 the algorithm fails tosolve instan
es in a time shorter than the 
hosen 
uto� time of 104. Note that for ps = 0.3 the
onvergen
e time depends in a more pronoun
ed way on α than in the ps = 1 
ase.We have also investigated an algorithm in whi
h ps is itself a dynami
al variable that dependson the fra
tion of errors averaged over a long time window - su
h an algorithm with an adaptive
ps is able to 
ombine faster 
onvergen
e at low values of α with high 
apa
ity asso
iated withlow values of ps (not shown).
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1.8. Bounded hidden variables. We now turn to the situation when there is only alimited number of states K of the hidden variables hi, sin
e it is unrealisti
 to assume that asingle synapse 
an maintain an arbitrarily large number of hidden states. Thus, we investigatedthe performan
e of an algorithm with symmetri
al hard bounds on the values of the hiddenstates, |hi| ≤ K − 1 for all i.Figure 4 shows what happens when the number of internal states is kept �xed while varying

N . For the number of states we have 
onsidered, (10 ≤ K ≤ 40), the optimal value of ps is
1, sin
e in general the sto
hasti
 version of the algorithm requires a larger number of states tobe e�
ient. Here, we de�ned the 
apa
ity as the number of patterns for whi
h there is 90%probability of perfe
t learning in 104 iterations, and plotted in Fig. 4 the 
orresponding 
riti
al
α against N for di�erent values of the states number K, 
omparing BPI, CP, and the 
as
ademodel (de�ned as in Fig. 2). We also 
ompared these algorithms that have only 2 `visible'synapti
 states but K hidden states, with the SP algorithm with K `visible' states, wi = hi.It turns out that BPI a
hieves a higher 
apa
ity than the SP algorithm with K visiblestates, when K is �xed and N is su�
iently large, even though the maximal 
apa
ity of thebinary devi
e is lower. Interestingly, adding an equivalent of rule 2 to the SP algorithm allowsit to over
ome BPI. This issue is further dis
ussed in se
tion 1.13.It is also interesting to note that at very low values of N , performan
e is better using 20states than with an in�nite number of states. Intuitively, this may be due to the fa
t that in theunbounded 
ase some synapses are pushed too far and get stu
k at high values of hi, i.e. theylose all their plasti
ity, while a solution to the learning problem would require them to 
omeba
k to the opposite value of wi.The last panel in Fig. 4 
ompares how 
onvergen
e time 
hanges with α for the samefour algorithms, with the same number of synapses and same number of states per synapse:while the 
as
ade model has a 
lear exponential behavior, the BPI and SP algorithms maintainnearly 
onstant performan
e almost up to their 
riti
al point. The CP algorithm is somehow inbetween, its performan
e degrading rapidly with in
reasing α (note the logarithmi
 s
ale).1.9. Distribution of hidden variables. Fig. 5A shows the �nal distribution histogramof the hidden variables hi for one sample with N = 64001 after learning with α = 0.3, for theBPI algorithm. When the number of allowed states is in�nite, the distribution has the shape oftwo bell-like 
urves. The width of the distribution is proportional to √

N , as shown in Fig. 5B.The shape and the s
aling will be dis
ussed in the generalization 
ontext, where they �nd ananalyti
al explanation (se
tion 2).Introdu
ing an upper and lower bound on h leads to the appearan
e of two peaks in thedistributions at these bounds. These bounds stop the synapses that would otherwise tend to goto very large positive or negative values. If the bounds are large enough, this has no adversee�e
t on learning be
ause those synapses that rea
h su
h large values of h never 
hange signduring the learning pro
ess. Redu
ing further the number of states starts to a�e
t the shape ofthe whole distribution when the value of the bounds be
omes smaller than the lo
ation of thepeaks of the distribution in the unbounded 
ase. At this point the whole distribution 
hanges,and the 
onvergen
e time starts to 
hange 
ompared to the unbounded 
ase.1.10. Optimal value of the number of hidden states K. In order to determine theoptimal number of internal states K for a given number of synapses N , we performed some testwith N ranging from 1001 to 32001 and looked for the value of K whi
h maximized 
apa
ity.Fig. 6 shows that the optimal number of internal states K s
ales roughly like √
N , both in the

±1 and in the 0,1 s
enarios.
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Figure 4. Performan
e of various algorithms with hard-bounded hidden vari-ables. Red: BPI, green: CP, blue: SP, purple: 
as
ade model. A, B,C. Criti
al
apa
ity vs N , with �xed number of internal states K. D. Convergen
e timevs α at N = 1415, K = 40, averaged over 100 samples. Figures for di�erentnumber of states and synapses are qualitatively similarFollowing the observation that an appropriate number of internal states K 
an in
rease BPI
apa
ity, we sear
hed for the value of K that optimizes 
apa
ity, and found that it s
ales as√
N , 
onsistent with the distribution of hidden states. The fa
t that the 
apa
ity is optimal fora �nite value of K makes the BPI algorithm qualitatively di�erent from the other three, whoseperforman
e in
reases monotoni
ally with K.For a system with a number of states that optimizes 
apa
ity, the optimal value for psis 0.4, rather than 0.3 as in the unbounded 
ase. With these settings it is possible to rea
ha 
apa
ity αc of almost 0.7 bits per synapse, very 
lose to the theoreti
al limit αmax ≃ 0.83.Convergen
e time at high values of α s
ales roughly linearly with N , but with a very smallprefa
tor (≈ 2 · 10−3).1.11. A more biologi
ally plausible algorithm. The ±1 per
eptron model with dense
oding (equal probability of + or −1 inputs) is studied mainly for its simpli
ity, but it has
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the biologi
ally implausible feature of symmetry between the two states of a
tivity. Thus, forbiologi
al modeling purposes, the 0/1 model is surely more appropriate.Comparing Eqs. 29-30 and Eqs. 31-32 it is immediate to see the di�eren
es between the twomodels: (i) The quantity to be evaluated at ea
h pattern presentation is no longer∆ =

∑

j ξτ
j wτ

j ,but rather ∆ =
(

2στ
exp − 1

)

(

∑

j ξτ
j wτ

j − θ
), whi
h is positive if the pattern is 
orre
tly 
lassi�edand negative otherwise. (ii) Synapti
 weights are now 
omputed as wτ

i = Θ [hτ
i ], makingthe synapse a
tive (ina
tive) if the hidden variable is positive (negative), respe
tively. Theperforman
e of this algorithm is qualitatively very similar to the one for the ±1 
ase, with alower 
apa
ity - about 0.25, to be 
ompared with a theoreti
al limit of 0.59 [15℄.Like before, we have studied a sto
hasti
 version of the algorithm in whi
h rule 2 is appliedwith probability ps, but we also found out that for this algorithm it was optimal to use this ruleonly for those patterns whi
h require σµ

exp = 0. We have also introdu
ed a new parameter, θm,the threshold for applying rule 2. The SBPI01 algorithm was then de�ned as:SBPI01 Algorithm. Compute∆ =
(

2στ
exp − 1

)

(

∑

j ξτ
j wτ

j − θ
), then(1) If ∆ ≥ θm = 1, then hτ+1

i = hτ
i (do nothing)(2) If 0 ≤ ∆ < θm = 1, then(a) If στ = 0, then, with probability ps, do hτ+1

i = hτ
i + 2ξτ

j

(

1 − wτ
j

) (update onlysynapses with wτ
i = 0, ξτ

i = 1)(b) Else hτ+1
i = hτ

i (do nothing)(3) If ∆ < 0, then hτ+1
i = hτ

i + 2ξτ
i (2στ − 1) (update all the synapses)Sin
e rule 2 is only applied to patterns with σµ

exp = 0, the meta-plasti
 
hanges a�e
t onlysilent synapses (for whi
h wτ
j = 0) involved in the pattern (those for whi
h ξτ

i = 1). Notethat using rule 2 only for patterns for whi
h σa = 0 not only optimizes performan
e, but alsomakes the algorithm simpler, sin
e in this way there is only the need for one se
ondary threshold(θ−θm) instead of two (whi
h would have been required if rule 2 had to be applied in all 
ases).The opposite 
hoi
e, i.e. using rule 2 only for patterns for whi
h σµ
exp = 1, 
an also be takenwith similar results.As in the pre
eding 
ase, introdu
ing boundaries for the hidden variables hj 
an furtherimprove performan
e, and the number of statesK whi
h maximizes 
apa
ity s
ales again roughlyas √N (see Fig. 6), while redu
ing K too mu
h hinders the algorithm's behaviour. In the 
aseof dense 
oding, f = 0.5, and using the optimal value ps = 0.4, SBPI01 
an rea
h a storage
apa
ity αc beyond 0.5 bits per synapse for su�
iently high N , very 
lose to the maximumtheoreti
al value αmax ≃ 0.59.1.12. Heterogeneous synapses and sparse 
oding. One possible way to in
rease 
a-pa
ity with a very limited number of available states is to use `sparse' 
oding, i.e. a low value for

f . In an unsupervised learning s
enario, it has been shown that purely binary synapses (e.g. onlytwo hidden states) 
an perform well if f is 
hosen to s
ale as log N/N [33, 5℄. In order to testthe SBPI algorithm in a harder s
enario, we 
hose an intermediate s
aling f = 1/
√

N . In addi-tion, we also introdu
ed heterogeneity in synapti
 e�
a
ies. Possible synapti
 weights were nolonger 0 and 1, but 0 and ai where ai was drawn from a Gaussian distribution with mean 1, andstandard deviation 0.1. Likewise, the threshold θm used for the implementation of rule R2 wasdrawn randomly at ea
h pattern presentation from a Gaussian distribution 
entered in 1 with
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Figure 7. Performan
e of SBPI-Het for di�erent number of states K, with
oding level f = N− 1

2 . Number of samples ranges from 100 for N = 1000to 10 for N = 64000. Triangles: K = 2, Squares: K = 4, Cir
les: K = 10,Crosses: K = 20. Dashed line: 
as
ade model with K = 20. A. Storagee�
ien
y vs N B. Convergen
e time vs α for N = 64000varian
e 0.1. The resulting algorithm SBPI-Het was shown to have very similar performan
e toSBPI01 in the f = 0.5 
ase.In Fig. 7A we show the maximum 
apa
ity αc (de�ned as for Fig. 4) rea
hed in the sparse
oding 
ase divided by the maximum theoreti
al value αmax (whi
h depends on f), with ps = 1,
N ranging from 1000 to 64000 and low number of internal states. The �gure shows that asynapse with only two states (i.e. with no meta-plasti
ity) has a 
apa
ity of only about 10% ofthe maximal 
apa
ity in the whole range of N investigated. Adding hidden states up to K = 10improves signi�
antly the performan
e, whi
h rea
hes about 70% of the maximal 
apa
ity forsizes of N of order 10000. In fa
t, for su
h values of N the 
apa
ity de
reases when onefurther in
reases the number of states. The optimal number of states in
reases with N as inthe dense 
oding 
ase, but with a milder dependen
e on N . In fa
t, simple arguments based onunsupervised appli
ation of rule 2 predi
ts in this 
ase an optimal number of states s
aling as
N1/4/

√
log N , whi
h seems to be roughly 
onsistent with our numeri
al �ndings. Fig. 7B shows
onvergen
e time versus α for N = 64000. It demonstrates again the speed of 
onvergen
e ofthe SBPI algorithm, while the 
as
ade model is signi�
antly slower.1.13. Binary vs K state synapses. In order to make the problem of learning with binarysynapses tra
table, we ended up `hiding' a multi-state variable inside ea
h synapse. This raisesnaturally the question of the pra
ti
al usefulness of su
h a devi
e: from the ar
hite
tural pointof view, it may be questionable whether it is better to use a binary devi
e with K hidden statesthan one with K visible states; in fa
t, the latter has a greater theoreti
al 
apa
ity. However,the BPI algorithms 
an be superior either when the learning phase and the re
alling phase aretotally distin
t or in presen
e of noise or unreliable devi
es.The hidden variables are only ne
essary during learning; thus, the overhead required forstoring and managing the hidden variables may be limited to that period. Note that this wasalready possible using the original BP algorithm, but the BPI version is both faster and mu
heasier to implement. In an on-line setting, in whi
h learning has to o

ur in real time, noise
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Figure 8. Performan
e of the MP algorithm with N = 4001 synapses and K =
100 visible states as the se
ondary threshold θm varies. A. Convergen
e time,averaged over 50 samples of 0.5N patterns ea
h. B.Maximum a
hieved 
apa
ity(at least 90% su

esses on 25 samples, with 
uto� time of 1000 presentationsper pattern).resistan
e is the primary reason for using binary synapses; this issue is dis
ussed in the nextse
tion.Interestingly, the rule set we propose for BPI be
omes useful even when using a devi
e witha limited number of visible states K: in this 
ase, the learning problem rapidly be
omes hardfrom the algorithmi
 point of view as N gets large. The binary 
ase is the extreme exampleof this situation; as we have shown in Fig. 4, the SP algorithm may perform worse than theSBPI algorithm with the same number of states in su
h a situation. Sin
e the 
apa
ity of thevisible-state devi
e has to be greater than that of the binary devi
e, the redu
ed e�
ien
y isdue to the SP algorithm. We found that some e�
ien
y 
ould be re
overed by using a modi�edversion of this algorithm, in whi
h an analog of the rule R2 for BPI was added. The modi�edper
eptron algorithm MP was de�ned as:MP algorithm. Upon presentation of a pattern, the overall depolarization is 
omputed as

∆ =
∑

j ξτ
j wτ

j , then(1) If ∆ > θm, then wτ+1
i = wτ

i (do nothing)(2) If 0 < ∆ ≤ θm, then wτ+1
i = wτ

i + 2ξτ
i Θ [wτ

i ξτ
i ] (only update synapses for whi
h wi is onthe 
orre
t side)(3) If ∆ < 0, then wτ+1

i = wτ
i + 2ξτ

j (update all the synapses)This is very similar to the BPI algorithm, in whi
h the hi's are repla
ed by the wi's and these
ondary threshold is θm 6= 1. The SP algorithm 
an be re
overed by setting θm = 0.Fig. 8 shows that both 
onvergen
e speed and storage 
apa
ity are higher with θm 6= 0; theoptimal value is di�erent for di�erent tasks (
fr. Fig. 8A and B), and has a strong dependen
e onthe number of states K (not shown). With the proper settings, this algorithm rea
hes slightlyhigher 
apa
ities than BPI even with very few states K 
ompared to the number of synapses
N , though being still more sensitive to noise, as dis
ussed in the next session.
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1.14. Robustness against noise. Binary devi
es have the advantage of simpli
ity androbustness against noise. Here, we address the issue of resistan
e against noise whi
h mighta�e
t the multi-stable hidden states. Intuitively, the fa
t that the synapti
 weights in the BPIalgorithm only depend on the sign of the 
orresponding hidden variables, suggests that a devi
eimplementing su
h learning s
heme would be more resistant against a

idental 
hanges in theinternal states with respe
t to a devi
e in whi
h the multi-stable state is dire
tly involved in theinput summation.We tested this in two di�erent situations: one in whi
h noise is added during the learningpro
ess and afterwards, and another one in whi
h it is only applied after learning has o

urred.The �rst setting mimi
s the situation in whi
h the multi-stable elements representing the internalstates are not reliable on the learning time s
ale; the latter represents a situation in whi
hlearning sessions o

ur on mu
h faster time-s
ales 
ompared to the time during whi
h the storedmemories have to be available for re
alling.We 
ompared a binary devi
e with hidden states (implementing SBPI) with a per
eptronwith visible states implementing a standard per
eptron algorithm SP and the modi�ed versiondes
ribed in se
tion 1.13, MP. For proper 
omparison, all of these devi
es had the same numberof synapses N = 4001 and the same overall number of stable states (K hidden states of BPIwere 
ompared to K visible states of the standard per
eptron). The optimal value (the onemaximizing robustness) of the se
ondary threshold for the MP algorithm was found to be θm ≈

30 for the bounded 
ase K = 100 and θm ≈ 180 for the unbounded 
ase.Proto
ol 1. We added gaussian noise to the multi-stable states during the learning pro
ess,on
e after ea
h presentation of the whole pattern set. The pro
ess was 
arried on even afterperfe
t learning was eventually a
hieved. We generated random numbers a

ording to a normaldistribution with standard deviation z, trun
ated them towards 0, doubled them and addedthem to the states value (trun
ation is needed in order to keep the state values integer, doublingto keep them odd). Thus, using z = 1 for example, ea
h synapse had a 68% probability ofstaying un
hanged, a 28% probability of making one step upwards or downwards, et
. Ea
hrun 
onsisted in 10000 presentations per pattern; as a measure of robustness, we averaged thenumber of errors made by ea
h devi
e in the last 1000 presentations, a time at whi
h it hasrea
hed its asymptoti
 value. The results are shown in Fig. 9A-B. The binary devi
e shows ahigher resistan
e to noise: even at the lowest noise level, z = 1, the K-visible state devi
e wasunable to keep the error rate to 0.Proto
ol 2. Ea
h simulation was divided into a short learning period (200 presentationsper pattern) and a longer re
alling period during whi
h noise was applied and memories weretested without any further learning. The proto
ol for noise appli
ation was the following: atea
h iteration, ea
h synapse had a �xed probability pZ = 0.1 to swit
h one state up or down withequal probability. After ea
h iteration, the whole pattern set was probed and the 
orrespondingnumber of errors re
orded. Note that the time s
ale of the re
alling period is arbitrary withrespe
t to that of the learning period. Results are shown in Fig. 9C-D. We found that thebinary devi
e with K hidden states was remarkably more robust than the K-visible state devi
e,espe
ially at short times. Of 
ourse, in the limit of very long times all three rules perform equallybadly, sin
e all memory of the stored patterns is erased, but at any �nite time the system withbinary synapses is signi�
antly better.2. Generalization proto
olWith the learning proto
ol that we have used so far, making analyti
al predi
tions aboutthe synapes' dynami
s under the SBPI algorithm is a very hard task. The reason for this is that
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Figure 9. Robustness to noise of various algorithms. In all tests we used
N = 4001 synapses trained on 0.55N patterns; Red lines: SBPI with parameter
ps = 0.4, Green lines: SP, Blue lines: MP with optimal value for θm. Resultsfor both bounded (K = 100) and unbounded 
ases are shown. Points wereobtained by averaging over 25 samples for proto
ol 1, 100 samples for proto
ol2. A. Proto
ol 1, unbounded 
ase. B. Proto
ol 1, bounded 
ase. C. Proto
ol2, unbounded 
ase. D. Proto
ol 2, bounded 
ase.patterns have to be presented repeatedly, whi
h means that the temporal history of the inputshas very strong 
orrelations.Here instead we will 
onsider a generalization proto
ol, in whi
h a general 
lassi�
ation rulehas to be learned from a 
ontinuous stream of random patterns, never repeating. In order toensure that a solution exists, we generate the expe
ted output of the patterns from a tea
herper
eptron, and train a student per
eptron on that value. Thus, the goal is equivalent to rea
hinga perfe
t overlap with the tea
her, whi
h 
an be thought of as the student having learned anasso
iation rule. As in the previous 
ase, we 
an simplify the notation, we 
an always trainthe student only on patterns whose expe
ted output is +1, in this way: at ea
h time τ a newpattern {χτ

i }i is generated randomly and presented to the tea
her, whose output is στ
T ; then,the pattern {ξτ

i } = {στ
T χτ

i } is presented to the student, with expe
ted output στ
exp = +1. Also,we 
an assume, without loss of generality, that all the tea
her's synapses are set to wT

i = +1.That's be
ause, even being so, they don't a
quire any spe
ial property, and they are hiddenfrom the student, whi
h is initialized at random. This implies that the student will only bepresented patterns in whi
h there are more positive than negative inputs, and that �positive
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synapse� 
an be read, in what follows, as being synonymous to �
orre
tly set synapse�, while�negative synapse� 
an be read as �wrongly set synapse�.In the following, we shall show that it is possible to des
ribe the average learning dy-nami
s and estimate the time needed for the student to rea
h overlap 1 with the tea
her,
q = 1

N

(

w · wT
)

= 1.2.1. Histogram dynami
s for the CP algorithm. We will do a mean-�eld-like approx-imation to the problem: at ea
h time step, we suppose that we know the histogram distributionof the hidden variables at a time τ , HISTτ ({hi}); then we 
ompute the average distribution(over the input patterns) at time τ + 1, P τ+1 ({hi}), and �nally we identify this with the newhistogram, HISTτ+1 = P τ+1.We will start from the simpler 
ase of the CP algorithm (no rule 2), and temporarily dropthe index τ .Let us �rst 
ompute the probability of making a 
lassi�
ation error. This only depends onthe 
urrent tea
her-student overlap q. We will denote by q+ (q−) the fra
tion of student synapseswhi
h are set to +1 (−1), so that the overlap is q = q+ − q− = 2q+ − 1. In the following, wehave to 
onsider separately the +1 and −1 synapses: we denote by ν+ the number of positiveinputs over the positive synapses, and by ν− the number of positive inputs over the negativesynapses. Be
ause of the 
onstraint on the patterns there have to be more positive inputs thannegative ones, in symbols ν+ + ν− > N
2 . The per
eptron will 
lassify the pattern 
orre
tly if

ν+ + (q−N − ν−) > N
2 , thus the probability that the student makes an error is given by

pe = 2

∫

dµ (ν+) dµ (ν−)Θ

(

ν+ + ν− − N

2

)

Θ

(

−
(

ν+ + (q−N − ν−) − N

2

))where µ (ν±) is the measure over ν± without the 
onstraint on the pattern (whi
h is expli
itlyobtained by 
utting half of the 
ases and renormalizing). In the large N limit, this is a normaldistribution, 
entered on q±N
2 with varian
e q±N

4 , thus we 
an write the above probability as
pe = 2

∫

Dx+Dx− Θ

(

q+N

2
+

√

q+N

2
x+ +

q−N

2
+

√

q−N

2
x− − N

2

)

·

·Θ
(

−q+N

2
−
√

q+N

2
x+ − q−N

2
+

√

q−N

2
x− +

N

2

)

= 1 − 2

π
arctan

(
√

q+

q−

)

=
1

π
arccos (q)(34)where we used the shorthand notation Dx = dx 1√

2π
e−

x2

2 .
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We then fo
us on a synapse with negative value, and 
ompute the probability that there isan error and that the synapse re
eives a positive input:

P (∆ < 0 ∧ ξi = 1|wi = −1) = 2

∫

dµ (ν+) dµ (ν−)

(

ν−
q−N

)

Θ

(

ν+ + ν− − N

2

)

·

·Θ
(

−
(

ν+ + (q−N − ν−) − N

2

))

= 2

∫

Dx+Dx−

(

1

2
+

x−

2
√

q−N

)

Θ
(√

q+x+ +
√

q−x−
)

·

·Θ
(

−√
q+x+ +

√
q−x−

)

=
pe

2
+

1√
2πNThe probability that a negative-valued synapse re
eives a negative input (and that an erroris made) is very similar:

P (∆ < 0 ∧ ξi = −1|wi = −1) =
pe

2
− 1√

2πNThe probabilities for positive-valued synapses instead are simpler:
P (∆ < 0 ∧ ξi = ±1|wi = +1) =

pe

2Thus, a positive-valued synapse has an equal probability of swit
hing up or down one level,while a negative-valued one has a higher probability of swit
hing up than down. The histogramdynami
s 
an be written as:
P τ+1 (h) = P τ (h) [1 − pτ

e ] + P τ (h + 2)

[

pτ
e

2
− Θ (− (h + 2))√

2πN

]

+(35)
+ P τ (h − 2)

[

pτ
e

2
+

Θ (− (h − 2))√
2πN

]where, as usual, the h's are assumed do be odd. It 
an be easily veri�ed that normalizationis preserved by this equation.Note that, if pe is very small, pe

2 − 1√
2πN

may be
ome negative, whi
h is meaningless; interms of the overlap, this happens when q−N < π
2 , i.e. when 
onvergen
e is rea
hed up oneor two synapses (in fa
t, this does not happen with the CP algorithm, whi
h does not appearto ever 
onverge). This is justi�ed by the fa
t that the gaussian approximation we used isnot valid any longer when q− is of order N−1; note however that this is not really an issuefor pra
ti
al purposes, as simulations show that in all 
ases 
onvergen
e is eventually rea
hed,whi
h is intuitive.2.2. Histogram dynami
s for SBPI. In order to move from CP to SBPI, we have to
ompute probabilities for the new rule R2 to be applied, whi
h happens when 0 < ∆ ≤ θm with
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probability ps; thus:

pb = 2ps

∫

dµ (ν+) dµ (ν−)

(

ν−
q−N

)

Θ

(

ν+ + ν− − N

2

)

Θ

(

ν+ + (q−N − ν−) − N

2

)

·

·Θ (−2 (ν+ − ν−) + (q+ − q−)N + θm)

= 2ps

∫

Dx+Dx− Θ
(√

q+x+ +
√

q−x−
)

Θ
(√

q+x+ −√
q−x−

)

·Θ
(

−√
q+x+ +

√
q−x− +

θm√
N

)

=
psθm√
2πN

(36)Sin
e this term is already of order N− 1

2 , there's no need to distinguish between positiveand negative synapses. Thus, ea
h synapse has a probability pb/2 of moving away from 0 anda probability pb/2 of standing still, sin
e only half of the synapses are involved in rule R2 ea
htime it is applied.We may note that the result does not depend on the internal state of the devi
e: it isa 
onstant, a
ting for both positive and negative synapses. Furthermore, we see that we 
anredu
e the number of parameters by de�ning(37) k = psθmUsing eq. 36 we 
an add rule R2 to eq. 35, getting the full SBPI dynami
s:
P τ+1 (h) = P τ (h)

[

1 − pτ
e − k/2√

2πN

]

+

+ P τ (h + 2)

[

pτ
e

2
− Θ (− (h + 2))

1√
2πN

+ Θ (− (h + 2))
k/2√
2πN

]

+(38)
+ P τ (h − 2)

[

pe

2
+ Θ (− (h − 2))

1√
2πN

+ Θ (h − 2)
k/2√
2πN

]The agreement between this formula and the simulations is almost perfe
t, up to when theaverage number of wrong synapses is very low, i.e. q−N is of order 1.2.3. Continuous limit. Equation 38 
an be 
onverted to a 
ontinuous equation in thelarge N limit, by res
aling the variables:
t =

τ

N
(39)

x =
h√
N

(40)and using a probability density
p (x, t) =

√
NPNt

(√
Nx
)(41)Note that the √

N s
aling of the hidden variables is the same that we found in the 
lassi�-
ation learning problem (Se
. 1.9).
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Using these and taking the limit N → ∞ we get the partial di�erential equation:

∂p

∂t
(x, t) = 2pe (t)

∂2p

∂x2
(x, t) − 1√

2π

∂p

∂x
(x, t) [(4 − k)Θ (−x) + kΘ (x)] +(42)

+δ (x)Θ (−x) γ− (t) + δ (x)Θ (x) γ+ (t)(43)
pe (t) =

1

π
arccos (q (t))(44)

q (t) = 2

∫ ∞

0

dx p (x, t) − 1(45)The two quantities γ− (t) and γ+ (t) don't really need to be written expli
itly, sin
e they
an be de�ned by imposing two 
onditions on the solution, normalization and 
ontinuity:
∫ +∞

−∞
p (x, t) = 1(46)

p
(

0−, t
)

= p
(

0+, t
)(47)The reason for the 
ontinuity requirement is that, if this would not be the 
ase, the netprobability �ux through x = 0 would diverge, as 
an be seen by dire
t inspe
tion of eq. 38 and
onsidering the s
alings. Note that, in the `standard' BPI 
ase k = 2, these two 
onstraintssimply amount at setting γ± (t) = 0, as dis
ussed in the next se
tion.As a whole, equation 42 is non-lo
al, sin
e the evolution in ea
h point depends on whathappens at x = 0; on the other hand, it greatly simpli�es away from that point: on either sideof the x axis, it redu
es to a Fokker-Plan
k equation, with the 
oe�
ient of di�usion dependingon time. The 
onstant drift is di�erent between the left and right side of the x axis and dependson k, and this di�eren
e gives rise to an a

umulation of probabilities on both sides of the point

x = 0 (expressed by the two Dira
 deltas in the equation).For negative x, equation 42 reads:
∂p

∂t
(x, t) = 2pe (t)

∂2p

∂x2
(x, t) − 4 − k√

2π

∂p

∂x
(x, t)(48)If the initial distribution, at time t0, is a gaussian 
entered in x0 and varian
e v0, then thesolution to this equation is a gaussian whose 
enter x̄ (t) and varian
e v (t) obey the equations:

x̄ (t) = x0 +
4 − k√

2π
(t − t0)(49)

v (t) = v0 + 4

∫ t

t0

dt′pe (t′)(50)Let us 
all g− (x, t, t0) su
h a solution, assuming x0 = 0 and v0 = 0 (i.e. assuming the initialstate to be a Dira
-delta 
entered in 0). We 
an de�ne in an analogue way a solution to the
x > 0 bran
h of equation 42:

∂p

∂t
(x, t) = 2pe (t)

∂2p

∂x2
(x, t) − k√

2π

∂p

∂x
(x, t)(51)As before, this equation transforms gaussians into gaussians: the 
orresponding solution

g+ (x, t, t0) only di�ers from g− in that the 
entre of the gaussian moves to the right withvelo
ity proportional to k rather than 4 − k.
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Figure 10. Evolution of the histograms with time (dark lines to light lines,taken in steps of 3N , from t = 1 to t = 25), in simulations with three di�erentalgorithms (500 samples at N − 32001). In the �rst two panes, the positiveand negative sides of the 
urve obey di�erent di�erential equations; in the CPalgorithm there's no drift term on the right side, and thus the majority ofthe synapses stays near zero, 
ausing a signi�
ant fra
tion of the synapses tobe pushed ba
k to the negative side. The distributions are gaussians for theBPI algorithm. In all 
ases, the initial distribution was random, with all thesynapses at h = ±1.Overall, this gives a qualitative understanding of what happens during learning: away form
x = 0, on both sides there's a di�usion term (the same for both), whi
h tends to 0 if themajority of the synapses gets to the right side of the x axis. The synapses are `pushed' right bythe drift with `strength' k on the right side and 4− k on the left side. Right at x = 0, there's abi-dire
tional �ux between the two sides of the solution, su
h that the overall area is 
onservedand that the 
urve is 
ontinuous (even if the derivatives are not). Thus, it is evident that both
k ≤ 0 and k ≥ 4 are very poor 
hoi
es (and they in
lude the CP algorithm). If the majorityof the synapses eventually rea
hes the right side, the di�usion stops and the drift dominates.Furthermore, even if the learning pro
ess is slightly di�erent, it is 
lear that a similar pro
essis responsible for the shape of Fig. 5B. The evolution of the histograms at di�erent times fordi�erent values of k is shown in Fig. 10.Analyti
ally, a solution to equation 42 
an be written in terms of the fun
tions g± de�nedabove: the �ux through x = 0 gives rise, in the 
ontinuous limit, to the generation of Dira
deltas in the origin, whi
h in turn behave like gaussians of 0 varian
e that start to spread andshift. Due to the homogeneity of the equation, this allows to write a solution as a weightedtemporal 
onvolution of evolving gaussians: �rst, we write the initial 
ondition as p (x, 0) =
p0 (x); then, we de�ne p−0 (x, t) as the time evolution of p0 (x) under eq. 48 and p+

0 (x, t) as thetime evolution of p0 (x) under eq. 51 (these 
an normally be 
omputed easily, e.g. by means ofFourier transforms). This allows us to write the solution in the form:
p (x, t) = Θ (−x)

[

p−0 (x, t) +

∫ t

0

dt′ γ− (t′) g− (x, t, t′)

]

+(52)
+ Θ (x)

[

p+
0 (x, t) +

∫ t

0

dt′ γ+ (t′) g+ (x, t, t′)

]with the 
onstraints given in eqs. 46 and 47. This solution 
an be veri�ed by dire
t substitutionin eq. 42; it is not likely to be amenable to further analyti
al treatment, but it is su�
ient fornumeri
al integration, whi
h indeed shows an almost perfe
t agreement with the data obtainedthrough histogram evolution at large N , as shown in Fig. 11A.
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2.4. Density evolution for BPI. In the 
ase k = 2, the two sides of equation 42 areequal; thus, the terms γ± (t) are both nought, and eq. 42 simpli�es to:

∂p

∂t
(x, t) = 2pe (t)

∂2p

∂x2
(x, t) −

√

2

π

∂p

∂x
(x, t)(53)If the initial distribution is a gaussian 
entered in x0 and varian
e v0, p (x, 0) = G

(

x−x0√
v0

)thenthe evolution of the distribution is des
ribed by the following system of equations:
p (x, t) =

1
√

v (t)
G

(

x − x̄ (t)
√

v (t)

)(54)
x̄ (t) = x0 +

√

2

π
t(55)

v (t) = v0 + 4

∫ t

0

dt′pe (t′)(56)
pe (t) =

1

π
arccos (q (t))(57)

q (t) = erf( x̄ (t)
√

v (t)

)(58)Thus, the gaussian shape of the distribution is preserved, but its 
enter and its varian
eevolve in time: the 
enter moves to the right at 
onstant speed, while the varian
e derivativeis equal to the error rate. Convergen
e is thus guaranteed, sin
e the varian
e 
an grow atmost linearly, whi
h means that the width of the distribution 
an grow at most as √t, while the
enter's speed is 
onstant. Thus, for su�
iently large times, the negative tail of the distribution,whi
h determines the error rate (pe ∼ √
1 − q when q → 1), will be so small that the varian
ewill almost be 
onstant, and this in turn implies that the error rate de
reases exponentially withtime. If we de�ne the 
onvergen
e time Tc as the time by whi
h the number of wrong synapsesbe
omes less than 1, i.e. when Nq− ∼ 1, we �nd that asymptoti
ally Tc ∼

√
log N , whi
h meansthat the non res
aled 
onvergen
e time is almost linear with the number of synapses.Fig. 11B shows the overlap and error rate as a fun
tion of time; the agreement of theanalyti
al solution with the simulation data is almost perfe
t, ex
ept when q− is very small, asshown in Fig. 11C. 3. Dis
ussionWe have presented a simple on-line supervised algorithm, whi
h leads to very fast learningof random input-output asso
iations, up to 
lose to the theoreti
al 
apa
ity, in a system withbinary synapses and a �nite number of hidden states. The performan
e of the algorithm depends
ru
ially on a rule whi
h leads to synapti
 modi�
ations only if the 
urrently shown pattern is`barely learned'. In this situation, the rule requires the synapse to have meta-plasti
 
hangesonly. Only synapses that 
ontributed to the 
orre
t output need to 
hange their hidden variable,in the dire
tion of stabilizing the synapse in its 
urrent state. This rule originates dire
tly fromthe Belief Propagation algorithm. We have shown that this addition allows the BPI algorithm tolearn a fra
tion of bits of information per synapse with at least roughly an order of magnitudeless presentations per pattern than any other known learning proto
ol already at moderatesystem sizes and moderate values of α. We have also found that the same learning rule boosts
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Figure 11. Comparison between simulations (light solid lines), historgam evo-lution (solid lines) and 
ontinuous probability density evolution (dark dottedlines), for three di�erent algorithms (red: CP, green: SBPI with k = 0.8, red:BPI), at di�erent times. The 
urves were taken at N = 32001, and initializedas for Fig. 10. The agreement between the simulations and the two analyti
alpredi
tions is almost perfe
t, ex
ept when q− is very small. A. Histogramsat di�erent times. The analyti
al 
urves are not available for SBPI at t = 10sin
e at that point the algorithm has already 
onverged and the approximationsused are no longer valid. B. Average overlap q and error rate pe vs time. C.Fra
tion of wrong synapses q− vs time, in logarithmi
 s
ale. This 
an be usedas an estimate of the 
onvergen
e time with N ; the last part of the BPI 
urveis well �tted by √log (N).
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also the performan
e of the SP algorithm in multiple-visible-state devi
es, but that neverthelessa model with only two visible synapti
 states and K hidden states is mu
h more robust to noisethan a model with K visible states. Finally, we have shown that in the slightly di�erent s
enarioof generalization learning, where analyti
al predi
tions are possible, 
onvergen
e of BPI 
an beproved in a time whi
h is almost linear with the number of synapses, while CP does not seemto solve the problem at all.Sin
e the additional simple rule 2 has su
h a spe
ta
ular e�e
t on performan
e, it is possiblethat neurologi
al systems that learn in presen
e of supervision, though being mu
h more 
omplexdevi
es than per
eptrons, have found a way to implement su
h a rule; however, testing thisexperimentally is likely to be an awkward task with the 
urrent te
hniques, as it would requirethe ability to tra
k the synapses plasti
ity and to dete
t meta-plasti
 modi�
ations, and testwhether they o

ur even in absen
e of an error signal, and if in su
h 
ase the modi�
ation is inthe dire
tion of redu
ing the plasti
ity.From the point of view of large-s
ale ele
troni
 implementations, using binary swit
hesinstead of 
ontinuous values is a big advantage in terms of simpli
ity, and would allow theuse of 
urrently available CMOS te
hnology. The hidden variables are only needed during thelearning period, and thus they 
ould be stored separately if the learning and retrieval operationalmodes are distin
t, but in any 
ase they need not to be as reliable as they would if they weredire
tly used in the output 
omputation, and thus the overhead asso
iated with their storageand management 
ould be greatly redu
ed.Finally, from a more general perspe
tive, the resear
h presented here demonstrates thepossibility to su

essfully extend the appli
ation of message-passing algorithms to problemswhose representative fa
tor graph 
onne
tivity is very high, whi
h is a rather 
ommon situationin 
omputational biology. Moreover, these kind of algorithms are distributed in nature andare able to explore e�
iently the global phase spa
e by means of lo
al 
omputations only, andtheir study 
ould be of great importan
e in order to understand the nature of the 
omputationsperformed in biologi
al networks.
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