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INTRODUCTION 5
IntrodutionThe ability to dynamially adapt to the external stimuli and to retain the memory of pastevents are among the brain's most striking and ruial features, and are one of the most ative�elds of past and urrent researh, both on the theoretial and on the experimantal side. Bothproesses of learning from experiene and of memory formation are widely believed to ourthrough mehanisms of synapti plastiity, i.e. of modulations of the signal transmission betweenneurons. However, due to the huge degree of omplexity of the proesses involved, desribingtheir properties is a major hallenge for both theroetiians and experimentalists.In fat, an established framework about the synapses' dynamis is still laking, despite thehuge amount of experimental data olleted, and many aspets of brain omputations are yetunlear, inluding the signal enoding and whether the synapti e�aies have a disrete orontinuous nature.On the other hand, at least some of the modi�ations indued through synapti plastiityhave to be permanent, while the biologial environment in whih these proesses happen issubjet to a very high level of noise; thus, the existene of a disrete set of stable states in asynapse would signi�antly improve its robustness. Multistability ould be indued by positivefeedbak loops in protein interation networks of the post-synapti density, the small and highlyspeialized struture whih is found in the dendriti spines [18, 35, 6℄. This is in agreementwith some reent experiments, whih have suggested single synapses ould be similar to noisybinary swithes [26, 23℄, meaning that eah synapse would have only two states, one with highondutane and one with low ondutane.From the theoretial point of view, however, there is an important di�erene between modelswhih use ontinuous synapti e�aies and those whih use binary synapses, sine it is in generalmuh easier to develop e�ient and plausible learning protools in the ontinuous ase, both inthe unsupervised learning senario (in whih synapti modi�ations are only indued by the preand post-synapti ativities) and in the supervised senario (in whih an external `teahing' or`error' signal is present).In fat, it has been shown [32, 4, 5, 11℄ that the performane of binary synapses systems (interms of information stored per synapse) in the unsupervised senario is very poor, unless twoonditions are met: (1) ativity in the network is sparse (very low fration of neurons ative at agiven time); and (2) transitions are stohasti, with in average a balane between up and downtransitions. This poor performane has motivated further studies [12℄ in whih hidden statesare added to the synapse in order to provide it with a multipliity of time sales, allowing forboth fast learning and slow forgetting. The hidden synapti states are not diretly involved inthe unit's eletrial properties, but rather they in�uene its plastiity properties; modi�ationsof the hidden states are thus alled �meta-plasti�. As for the visible synapti states, the hiddenstates ould be represented by stable points of a protein interation network.In the supervised learning senario, for the prototypial network in whih this type oflearning has been studied, the one-layer pereptron whih has to perform a set of input-outputassoiations, no e�ient algorithms are known to exist when synapses have a �nite number ofstates, in the ase the number of input-output assoiations to be learned sales with the numberof synapses. In fat, while learning in systems with analog synapse an always be ahievedwith simple algorithms if a solution exists, learning in systems with binary synapses is knownto be a NP-omplete task [2, 3℄, meaning that in the general ase it belongs to the hardestomputational lass of ombinatorial optimization problems. Moreover, even the easier ase inwhih the patterns whih have to be lassi�ed are supposed to be generated at random, and
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we onsider the typial performane over an instantiation of the problem rather than the worstpossible ase, no learning algorithms are known to ahieve the goal in a time whih goes as apolynomial of the number of synapses, inluding models whih make use of meta-plastiity.Reently, `message passing' algorithms have been devised that solve e�iently non-trivialrandom instanes of NP-omplete optimization problems, like e.g. K-satis�ability or grapholoring [19, 20, 1, 7℄. One suh algorithm, Belief Propagation (BP), has been applied to thebinary pereptron problem and has been shown to be able to �nd e�iently synapti weightvetors that solve the lassi�ation problem for a number of patterns lose to the maximalapaity (above 0.7 bits per synapse)[8℄. However, this algorithm has a number of biologiallyunrealisti features (e.g. memory stored in several analog variables).Here, we present a novel algorithm, alled SBPI, that is inspired from the BP algorithmbut is modi�ed in order to make it simpler and biologially realisti, while keeping very goodperformanes, both in terms of learning time and of information storage apaity. This algorithmrequires meta-plasitiity, and introdues also a new learning rule, diretly inherited from theBP algorithm, whih also proves to be able to boost the performane of other algorithms. Weprovide evidene about the qualitatively superior performane of SBPI with respet to otherwell known algorithms both using extensive omputer simulations, in the ase of learning a setof pattern lassi�ations, and by an analytial mean �eld study, in the ase of learning a rulefrom a teaher devie.



CHAPTER 1The binary pereptron learning problem1. Synapti plastiity and long-term learning1.1. Neuronal ommuniation. The ommuniation between neurons in a neuronal tis-sue an happen through many hannels, depending on the neuronal speies involved and thespei� area under onsideration. Eah ommuniation vetor will in general have peuliar spa-tial and time sales. As a general piture, it is widely believed that information is transmittedin the brain through the propagation of eletrial signals, modulated by the presene of parti-ular hemial speies, generally referred to as �neurotransmitters�; there is also the possibilitythat the individual eletri behavior is modi�ed by the overall magneti �elds produed by thesurrounding areas (e.g. in the ortex, where many eletrial signals �ow along parallel diretionsand global �eld osillations are observed), but the role of suh modulation, if any, is not yetlear.There are essentially two ways of eletrial signal propagation between neurons, a diretone and a hemial one. The diret one happens through strutures known as �gap juntions�,whih are strutures whih diretly onnet the neurons' membranes and let the eletrial �eldpropagate from one neuron's membrane to another, just as a resistor would do in an eletrialiruit. These strutures are very simple: as for their internal state, they an only be open orlosed, but there is the possibility of further global modulation by neuromodulators; furthermore,the signal transmitted through the gap juntions is essentially analog in nature, sine the eletripotential �ows passively from one neuron's membrane to its neighbor's. One well known exampleof a brain area in whih the gap juntions are of great importane is the eye's retina[31℄, whihis a very speialized struture; their role in other brain areas is generally more obsure.The seond and most prominent kind of signal propagation happens instead through thesynapses, whih are speialized strutures apable of transforming an eletrial inoming signalinto a hemial one and bak to an eletrial outgoing one, allowing muh spae for modulationin the intermediate steps. In eah neuron, synapti outputs ours typially at the end of axons,where the atively transported eletrial signals, the �ation potentials� or �spikes�, eliited at thelevel of the soma, need to get transmitted to another neuron; these signals are intrinsially binaryin nature, at least as long as the axons are longer than about 1mm: at a �rst-level desription,they are eliited when the neuron's membrane potential reahes a given threshold, whih triggersan ative mehanism (a short positive-feedbak period followed by a refratory period) resultingin a sharp peak of the membrane potential (the �spike�), whih is then propagated along theaxon by the ation of the Na-K hannels whih are present in the axon's membrane, while thesub-threshold osillations of the potential are too weak to propagate with this mehanism, anddie out rapidly.When an ation potential reahes a synapse, it triggers the opening, in the inter-synaptimedium, of some neurotransmitter vesiles (as this is a stohasti proess, the exat numbervaries at eah repetition); the neurotransmitter reahes some post-synapti reeptors on the
7



8 1. THE BINARY PERCEPTRON LEARNING PROBLEM
post-synapti side, whih in turn determine the opening of some ioni hannels on the post-synapti membrane whih produe an eletrial signal (either depolarizing or hyper-polarizing),whih then propagates (mostly passively) through the post-synapti neuron.One again, the e�et of this proess an be represented as that of a (diretional) resistor inan eletrial iruit, so that we an haraterize eah synapse by the value of its ondutane,whih is also alled �synapti weight� or �synapti e�ay�. Experimentally, the value of thesynapti ondutane an be determined by the peak value of the post-synapti potential (PSP)eliited by the arrival of a single spike (the inoming spikes being onsidered all equal).In ontrast to gap juntions, whih at passively, synapti onnetions an either exert anexitatory or an inhibitory ation, depending on the neurotransmitter (whih in turn depends onthe pre-synapti neuronal speies) and the post-synapti reeptors. Mathematially, inhibitorysynapses are often modeled as negative-weighted synapses. The sign of synapse annot hangeover time, exept in some ases during brain development.1.2. Plastiity and learning. The whole synapti signal transmission proess, thoughbeing slower than the diret transmission by the gap juntions (on the milliseonds time sale),subjet to random �utuations and (nearly) unable to transmit the information ontained in thesub-threshold eletrial �utuations of the soma, has the enormous advantage of being highlymodulable, both by hemial ation (e.g. of neuromodulators) and by alteration of the internalsynapti state, or even by synapse reation-removal proesses.This is the main reason for whih synapses are widely believed to be the plaes where learningtakes plae, as experiene an shape their properties and thus alter the signal transmission ina sensible way, a property whih goes under the name of �synapti plastiity�. The signaltransdution modulation an, and indeed does, happen both on the pre-synapti side (e.g. byhanging the average number of vesiles released upon ation potential arrival, or the amountof neurotransmitter ontained in eah of them[27, 30℄) and on the post-synapti side (e.g. byhanging the number of neurotransmitter reeptors inserted in the membrane, or their state);eah neuronal speies an in priniple be subjet to di�erent ombinations of all these forms ofplastiity, all of whih an our on di�erent time sales and have peuliar results on the signaltransmission and on the plastiity proess itself. Nevertheless, the post-synapti side looks morepromising for the kind of learning we are going to address here, mainly beause of the existeneof the �dendriti spines�, whih are very speialized strutures present on many post-synaptineuron's dendriti trees; also, the post-synapti part of the synapse an easily aess the relevantinformation about both pre- and post-synapti neurons potentials, while the pre-synapti partrequires the mediation of retrograde messengers.The main distintion among di�erent types of plastiity is the timesale by whih the synap-ti modi�ations last; plastiity is thereby usually divided into short-term and long-term, theformer being typially assoiated with transitory synapti modulation, and the latter with long-lasting modi�ation of the synapse internal state. Of ourse, there is no preise boundary be-tween these two forms, and their meaning an hange depending on the ontext; in the presentwork, nonetheless, we will only address long-term plastiity, by whih we mean that form ofplastiity whih indues a permanent modi�ation in the synapti ondutane, on the timesale of years, and suh that only another long-term plastiity event an alter it again.If the plasti modi�ation is in the diretion of enhaning the synapti ondutane, theorresponding event goes under the name of �long-term potentiation�, or LTP, while the oppositeevent is alled �long-term depression� or LTD.
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1.3. Learning experiments. The study of the plastiity properties of the synapses isbelieved to be of entral importane in the study of the brain and neural tissues in general, andthe number of theoretial and experimental studies whih tried to address this issue is virtuallyountless. On the experimental side, nevertheless, due to the extremely di�ult onditionsrequired in order to have full ontrol of the plastiity events, the synapti mahinery is stillrather obsure. Also, the di�ulty of reording the transmission of the signal through a singlesynapse is suh that most experiments deal with statistial properties of some synapti ensemble.Plastiity and learning experiments are typially very di�erent depending whether they areperformed in vitro or in vivo: the former ones normally onsist in the study of the e�et of theappliation of some eletrial stimulation on brain slies (several stimulation protools are knownwhih an eliit LTP/LTD in suh situations), the latter ones involve instead behaving animals,learning to perform some task (or even just being subjet to some stimulus) aross a period ofsome days or months. As is normally the ase, in vitro experiments have the obvious advantageof a better ontrol over the onditions of the experiments, but the learning protools used ouldin priniple have nothing to do with the in vivo situation; furthermore, the interpretation ofthe experiments relies on a theoretial framework, and the groundings are not yet stable on thisside as well.1.4. Di�ulties arising in the development of a theory of learning. On the the-oretial side, the di�ulty in understanding the learning proess arises from the overwhelmingomplexity of the networks and of their onstituents, whih makes it impratial to perform de-tailed simulations and impossible to obtain an aurate analytial desription; eah theoretialmodel has to deal with some simpli�ations. On the simulations side, for example, it is possibleto simulate the eletri properties of single neurons with a very high level of auray, but itis still impossible to inlude into the model all the aspets whih ontribute to the synaptidynamis (e.g. gene expression); furthermore, experimental data is not omplete, and detailsoften vary between one neuronal speies and another. Even worse, simulating or analyzing anetwork with tens of thousands of neurons beomes impossible without further, rude simpli�a-tions, and again di�erent neuronal speies or neurons belonging to di�erent brain areas may besubjet to di�erent working regimes, ompletely hanging their properties onerning learning.Even the same neurons in the same brain area an work under di�erent regimes under di�erentexternal or internal onditions (e.g. in di�erent times of the day), swithing between two ormore di�erent behaviors.In fat, neural oding, i.e. the way information is stored in the membrane's eletri potentialstravelling along the axons, is still a matter of intense debate in the �eld, as it is not yet learthe degree up to whih the exat timing of the spikes is relevant: one popular assumption isthat the information transmitted is rate-oded, i.e. that its nature is stohasti, and that onlythe average spike rate is meaningful for the sake of neural omputing or neural deoding; theopposite view is that eah single spike is relevant, and that the exat timing enodes valuableinformation up to the milliseond or even sub-milliseond sale. Another kind of neural odewhih has been proposed and for whih evidene has been olleted in many di�erent situationsonsists in expressing some information by the timing of the spikes relative to the phase of someundergoing rhythm (i.e. global osillation) in the area: for example, the inoming spikes reeivednear the top of the �eld osillation ould arry a di�erent amount or kind of information withrespet to the ones reeived near the trough [22℄.
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Indeed, the atual neural oding has a big in�uene over the learning model that one deidesto onsider, and the fat that none of suh models an be regarded as paradigmati inreasesthe unertainty about the evaluation of the single learning models.1.5. Continuous vs disrete synapses. Assuming that the brain learns by altering theonnetions between its units, and that eah synapse an be haraterized by a single e�ayvalue, it beomes very important to determine whether those values are ontinuous or disretevariables. Indeed, as mentioned before, many neuronal speies exist, and it may well be thatthe answer to this question depend on the brain area under onsideration, but there's a generalargument suggesting that the disrete model is more appropriate for long-term memory: if theinformation stored in a synapse has to last for a time of the order of tens of years, the problem ofreliability of the storing devies beomes of great importane, and ontinuous-valued quantitiesare more prone to this problem than disrete-valued ones. In fat, most synapti onnetions atthe dendriti level are loated onto strutures alled �dendriti spines�, whih are so small that,for eah hemial speies present, there's a number of the order of 10 or 100 moleules[24℄; thisimplies that for any hemial reation there is a muh higher degree of stohastiity than inbigger strutures as the soma, and that storing a value in the form of an average onentrationvalue, for example, beomes impossible over long time sales. On the other hand, it has beenshown [35, 6, 24℄ that it is possible to devise simple hemial networks whih exhibit a smallnumber of stable states and whih turn out to be stable for a time of the order of 100 yearseven in presene of the extremely high hemial noise present in the synapti boutons. Thesimplest and most stable situation is that in whih there are only two di�erent states, whihwould indue to look at the synapses as (noisy) binary swithes.On the experimental side, determining the disrete or ontinuous nature of a single synapsean be an awkward task, due to the great di�ulty of performing simultaneous measurementsin two ells undergoing plastiity, and it is urrently possible only for in vitro experiments.These give indeed preious information, but have some big disadvantages: �rst, the networkenvironment might be di�erent from that of the living brain (for example, in brain slies manylong-range onnetions are ut, and the ativity state of the network ould be di�erent fromthat of the intat struture, and this ould in turn be relevant for the learning mehanism).Furthermore, plastiity is indued during in vitro experiments by applying standard stimulationprotools, whih are known to eliit hanges in the synapti strengths, but whih are probablydi�erent form the ones that our in a living animal, and it is not lear if the moleular underlyingmehanisms are atually the same.Reently, in a remarkable in vitro experiment [23℄, O'Connor and olleagues managed todetet single synapti plastiity events in hippoampal pyramidal ells, and their evidene sup-ports the idea that those synapses, though being very noisy, exhibit all-or-none potentiation,i.e. that they are binary, and that the state hange ours on very fast timesales, of the or-der of less than 10ms. During this experiment, it was shown that eah synapse ould only bepotentiated (or depressed) at most one in a row, and that the net e�et of depressing afterpotentiation, or the inverse, was non-detetable, supporting the idea that no intermediate statesare present.The disrete nature of the synapti e�aies would thus solve the issue of long-term memoryreliability, but at the same time it would impinge the unit's learning apability if standardlearning algorithms were used. The purpose of the present work is to propose a novel learningsheme whih would allow to overome suh di�ulty, and we will ome bak on this problemafter the introdution of the pereptron neuronal models.
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2. Pereptron models2.1. Simpli�ed neuronal models. As mentioned above, neuronal models exist whihan ahieve a great degree of auray in simulating the ell membrane's depolarization (notonerning synapti plastiity nor neuronal development). In suh models the ell body is repre-sented as a olletion of ompartments, the geometry of whih an be taken from a real neuronby three dimensional sanning, over whih both the passive and ative eletrial properties ofthe membrane are modeled, the ative ones being due to the ioni hannels inserted in themembrane itself. Virtually all of these models make use of the Hodgkin-Huxley equations, withexellent results; other variants an use Markov-hain models of the ioni hannels to ahievean even better auray.Unfortunately, suh aurate models su�er from the drawbaks exposed in setion 1.4 aboutplastiity and large networks; in order to overome some of these di�ulties and get moretheoretial insight in the learning proess (e.g. in view of eletroni implementations), theoristsnormally deal with very simpli�ed models, suh that some analytial treatment is possible andthat large-sale simulations beome feasible. The most popular among suh models are the�leaky integrate-and-�re� (LIF) and its generalizations, but historially these were preeded bythe (even simpler) �pereptrons�.All of these models represent the neuron as a �point-like� unit, meaning that the preisegeometry of the ell is not represented; the membrane depolarization is simply obtained bysumming up the di�erent ontributions from all the neuronal inputs.2.2. The LIF model. In the basi LIF model, the set of partial di�erential equations ofthe Hodgkin-Huxley model is drastially redued to a single di�erential equation, desribing thesub-threshold passive working regime, with an external instantaneous spiking mehanism addedon top of it, in order to mimi the ation potential proess.More spei�ally, the membrane voltage V (t) obeys the following equation:
CV ′ (t) = −gLV (t) + I (t)where C is the apaity onstant of the membrane, gL its leak ondutane, and I (t) is theinoming urrent on the neuron. The model is ompleted by the presription that when thevoltage V (t) reahes the spiking threshold θs a spike is emitted and the potential drops instan-taneously to the reset potential θr. Sine the rise and fall of the voltage in atual neurons duringthe ation potential emission is typially muh faster than the sub-threshold regime timesale,the spiking in the LIF model is represented mathematially as a Dira delta in the voltage trae.Additionally, a refratory period τr during whih the voltage is kept �xed at θr an beadded after the spike emission proess, to aount for the fat that the output �ring rate ofreal neurons is bounded by the time onstants of the moleular mehanisms and the need ofregeneration after spike emission.The LIF model is ideal for the study of large and omplex networks, in whih the inomingurrent on eah unit an be divided into an �external� part, oming from outside the network, andan �internal� part, due to other units of the network itself. Thanks to the linearity of the devie,this seond ontribution an be obtained as the sum, over all of the inputs, of the individualsynapti responses eliited by eah inoming spike, the so-alled �post synapti potential� (PSP).Sine eah individual synapse i has a orresponding synapti e�ay wi assoiated with it, the
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overall depolarization due to the internal input urrent an be written as:
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)where N is the number of synapses, t
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i is the arrival time of the j-th spike on the i-th synapseand K (t) is the PSP kernel, whih is an alpha funtion (with the additional onstraint that itis ausal, i.e. that K (t) = 0 if t ≤ 0). Of ourse, this equation has to be ompleted with thespiking mehanism desribed above.In the above equation, the synapti e�aies wi are not expliitly dependent on time; itis very simple, however, to modify the model in order to aount for the possibility that thesequantities hange their value, and this allows for simulation of any kind of learning proess.Indeed, apart from the issues arising from the ell geometry (whih a�et the linearity ofthe input summation), the dynamial range of the LIF model is muh redued with respetto that of an atual neuron, and the behavior is not as rih; some examples may inlude thefat that in real ells the spiking threshold is not really �xed, but varies dynamially, and thespiking itself is not instantaneous; that the spiking rate, even in presene of a onstant input, isnot stable during time but dereases as a result of the so-alled �adaptation mehanism�; thatreal neurons an work in di�erent regimes (e.g. spiking or bursting) while LIF neurons annot.Some of these issues and others an be addressed by applying spei� modi�ations to the baseLIF model, depending on the situation under study and the atual need to reprodue the fulldynamial range of the neurons.2.3. The pereptron model. The simplest neuronal model, expliitly invented with thepurpose of gaining insight into the amazing learning properties of the neural tissue, is the�pereptron�, �rst proposed by Rosenblatt [28℄; many di�erent variants have been proposed sinethen, but they all share some properties, namely that the time in suh models is disretized,and that the instantaneous depolarization is omputed as the salar produt of the vetor ofthe inputs with that of the synapti weights; the output of the unit is then omputed upon thedepolarization by means of some simple funtion. In symbols:(1) σt = χ
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)where N is the number of synapses, ξt
i is the input inoming on the i-th synapse at time t, wt

i isthe i-th synapti e�ay at time t, χ is the output funtion and σt is the unit output at time t.The di�erent variants of the model an be divided into two main ategories, one in whihboth inputs and outputs are ontinuous variables, and another one in whih they are binary.Making the parallel with the real neurons, the quantities that the input and output variablesrepresent would be the �ring rates in the ontinuous ase, and either the spiking ondition or anup/down state in the binary ase. In the present work we will only deal with the latter senario.The most natural hoie, from the biologial point of view, is to hoose the inputs andoutputs to take the values 0 or 1. For example, after time disretization, it is possible to assignthe value ξt
i = 1 to those synapses i for whih at time t there has been at least one inomingspike, and ξt

i = 0 to those for whih there has been none; in the same way, if the output is
σt = 1, the unit �res at time t, and if σt = 0 it doesn't. The expliit form of the output funtion
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is in this ase:(2) σt = Θ
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)where θs represents a spiking threshold and Θ is the Heaviside step funtion, Θ (x) = 1 if x ≥ 0and 0 otherwise.In order to further simplify the devie, mainly in view of analytial alulations, and forhistorial reasons as well, the most popular binary pereptron models use instead the values +1and −1 for both the inputs and the outputs, and the following input-output relationship:(3) σt = sign( N
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)In order to avoid the possibility of having a zero overall depolarization, whih would requirean inessential ompliation in the model de�nition, we also assume the number of synapses Nto be odd when onsidering this ±1 model.The ±1 model is not stritly equivalent to the 0/1 model, but its general properties are verysimilar. In this work, we will mostly deal with the ±1 model, but resort to the 0/1 model insome speial ases.The main di�erene between the pereptron model and the LIF model desribed aboveonsists in the way in whih the inoming information is temporally integrated; although thelatter is more aurate as a neuronal model, the pereptron is, in its simpliity, still omplexenough to ahieve remarkable results and to raise nontrivial hallenges, o�ering a frameworkfor developing simple and e�ient learning protools, and to allow for analytial alulationsabout their intrinsi properties; another issue, onsidered in the onlusions, is the fat thatpereptron models are more onvenient than integrate and �re (or more ompliated) modelsfor realizing eletroni implementations.2.4. Di�erent kinds of learning. Given the model de�nition, it is possible to give a morepreise meaning to what is meant by �learning�; still, di�erent options are possible, dependingon the network struture and on its purpose.A �rst, fundamental distintion an be made between �supervised� and �unsupervised� learn-ing protools: the former ones are haraterized by the presene of an external error signal, whihis instead absent in the latter ones. Supervised learning models are intended at simulating thekind of learning whih is ahieved by trial and error, while unsupervised ones try to retain orexploit the information they read without any feedbak from the exterior, as ould be the asefor transient memories for example, or for a pre-proessing step in the elaboration of sensoryinformation.In turn, supervised learning senarios an use global error signals, external to the networkand delivered to all or many of its units, in whih ase is more appropriate to speak of �rein-forement learning�, or they an use loal signals, whih at on the single units individually. Inthe present work, we deal with this last senario.2.5. Di�erent kinds of network strutures. The simplest network struture is of oursegiven by a single unit, whih ould be used to extrat some information from the inputs. Letting
M di�erent units operate in parallel on the same inputs would then allow to extrat any numberof features from an input stream, and the whole network would at as a mapping from the spaeof N bit numbers to the spae of M bits numbers.
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In this ase, a supervised protool would be used in order for the network to learn how to doa spei� mapping, while an unsupervised protool ould serve the purpose of elaborating theinput stream, for example by trying to ompress it without loosing information while adaptingto the inputs distribution. In both ases, the degree up to whih the task an be aomplisheddepends on the units' struture, the learning algorithm and the task itself.Another widely studied arrangement is the �fully-onneted� network, in whih N +1 units,eah having N synapses, reeive their inputs from all the others, and in turn deliver their outputto all the others. Eah unit is also supposed to be subjet do an external drive whih may foreit in a spei� state, and to be readable from outside the network. Suh a network has theproperty that, after initialization, it an undergo its own internal dynamis and reah, after atransient phase, a stable state, alled an �attrator� of the network, whih may be then readout. The possibility to shape the attrators of the network ould then be viewed as a learningproess: eah attrator is a memory whih an be realled if the network's state gets su�ientlylose to it. The region of the network's phase spae whih has a given attrator as the endpointof the dynamis is alled the �basin of attration� of that memory; the bigger this region is, thebetter will perform the network in retrieving partial or orrupted information and reognizinga previously stored memory, but there is a trade-o� between the number and the size of theattrators in any given network.In order to distinguish between memorization and retrieval, two distint operation modesan be used: during the learning session, the memories are presented to the network throughthe external drive and the reurrent onnetions are weakened and plasti, while during theretrieval session the external input may be only partial and the reurrent onnetions are strongand non plasti.In this ase the di�erene between supervised and unsupervised learning senarios is that inthe former the attrators to be stored are known from the beginning, and repeatedly presentedto the network, while in the latter there may be a ontinuous stream of memories, the goal beingto keep a fading trae, storing more strongly the most reent ones and gradually forgetting theold ones.A very simple variant of this arrangement allows the memorization of dynamial attrators,in the form of ordered sequenes of patterns: it is su�ient to introdue a delay betweenthe outputs emission and their reeival as other units' inputs: in this way, the network an beinstruted about the next step to take in response to a given input, and if this proess is iterateda whole suession of network states an be learned and subsequently triggered by initialization.Of ourse, there's a trade-o� between the number of sequenes whih is possible to store in thisway and their length.2.6. Pereptrons storage apaity. The paradigmati supervised learning senario on-sists of a single pereptron, for whih the inputs are all taken from a subset of the possibleinputs, and whose goal is to ahieve a orret lassi�ation of the inputs into two predeterminedategories. Due to the extremely simple struture of the pereptrons, ahieving a perfet las-si�ation might be impossible, and either more units or a more omplex strutures might beneeded. More preisely, the requirement for perfet learning to be possible is that the inputsbelonging to the two ategories an be separated by a hyperplane in the N -dimensional spaeof the inputs, a property known as �linear separability�. The vetor of synapti weights whihsolves the learning problem would then be orthogonal to the separating hyperplane, but if thesynapti weights are not allowed to take arbitrary ontinuous values, it ould be still impossibleto ahieve perfet learning even in presene of linear separability. Furthermore, it is important
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to point out that the theoretial possibility to reah a solution is a di�erent problem from �ndinga way to �nd suh a solution. These issues will be onsidered in the next setion.If the inputs are taken from a known distribution, it is possible to de�ne a �storage apaity�of the model as the average number of patterns per synapse whih the devie an learn to lassifywithout errors. Unfortunately, no means of alulating suh a apaity in the general ase isknown; still, it is possible to derive an asymptoti value in the limit in whih the number ofsynapses N grows very large (known as �thermodynami limit�) for the simplest ase, namelythat of evenly random and independent inputs, by using tehniques derived from the statistialphysis of disordered system and information theory.The most straightforward strategy adopted to alulate the maximum apaity of a deviewould be the following: �rst, suppose that the number of patterns to be learned is αN , thenalulate the average number of solutions 〈Nsol〉{ξ} to the learning problem (where 〈·〉{ξ} denotesthe average over the inputs) in the limit of large N , and �nally �nd the value of α at whih Nsolgoes to zero. The number of solutions for a given α an be expressed as:(4) Nsol (α) =
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∏
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)))where we used the binary ±1model of eq. 3, letting σµ
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µ, and where dµ (wi) denotes a measure for the synapti weights, whih an be used to speifyif the synapses are ontinuous, in whih ase we would substitute:
dµ (w) = dw(in this ase the number of solutions Nsol is atually the volume of the solution spae) or binary,in whih ase we would use:

dµ (w) = (δ (w + 1) + δ (w − 1)) dwwhere δ (x)is the Dira delta distribution. The rest of the omputation would follow in a straight-forward way by the assumption that the inputs are independent.However, using the average 〈Nsol〉{ξ} does not yield the desired results. This happensbeause the distribution of Nsol presents a very sharp peak but also a very long tail, so thatits average is di�erent from its mode. As a result, the diret alulation overestimates theapaity with respet to the observations, sine every instane of the problem will fall withoverwhelming probability in the region of the peak. This is re�eted by the fat that the widthof the distribution of Nsol/ 〈Nsol〉{ξ} does not tend to zero in the thermodynami limit, thusmaking the average a non informative quantity (it is said to be �non self-averaging�).The �rst suessful approah towards this problem [13, 14℄ is based on a tehnique knownas �replia method� [21℄. The method assumes that the orret self-averaging quantity is not thenumber of solutions, but its logarithm, whih is normally alled �entropy�, making the parallelwith the statistial physis framework in whih the replia theory was developed. This meansthat, in the thermodynami limit, the average of the entropy per synapse ε = log (Nsol) /N tendsto a �nite asymptoti value, and that the variane of its distribution tends to zero. Thus, forsu�iently large N , ε is almost the same for every instantiation of the problem, and is obviouslyequal to its average:(5) 〈ε (α)〉{ξ} =
1

N
〈log (Nsol (α))〉{ξ}.
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From the mathematial point of view, this approah introdues the di�ulty that it isimpossible to ommute the operators 〈·〉{ξ}and log (·) diretly. The replia method gives apresription whih an be used to overome this problem, by exploiting the identity

log (x) = lim
n→0

(

xn − 1

n

)Having the logarithm expressed in this form, it is possible to ommute the average and thelimit operator:(6) ε (α) = lim
n→0

1

Nn

(

〈(Nsol (α))n〉{ξ} − 1
)The next step is to ompute the average over the inputs in the ase in whih n is a positiveinteger value: if one sueeds in �nding an analytial expression for this ase, the limit anbe subsequently taken by performing an analyti ontinuation. Although this step is not (yet)provably safe from the mathematial point of view, the results obtained are in perfet agreementwith the observations and with other methods (see e.g. [25℄ and referenes therein).The limitation that n be an integer number, allows the n-th power in eq. 6 to be substitutedby the produt of n idential non interating replias of the system, and �nally, after somealgebrai manipulation, to express the integrand as a funtion of a number of order parameters.One suh parameter is for example the �overlap� between two arbitrary replias, de�ned as
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i are the repliated synapti weightsvetors. At this point, a ruial assumption has to be made about the struture of these orderparameters in the repliated phase spae; the simplest and most natural is to assume that, sineall the replias are equivalent, suh spae is perfetly symmetri, and redue all the overlaps toa single parameter: ∀a, b : qab = q. This hoie goes under the name of �replia symmetri�(RS) Ansatz; with it, one an redue the integrand under study to an expression in whih n isnot required to be a disrete variable any more, and the limit for n → 0 an be taken. Theresult is an expression of the form(7) ε (α) =
1
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dqdq̂ exp (NF (α, q, q̂))where q̂ is the onjugated order parameter with respet to the overlap, and for simpliity weomitted any other order parameter. As N diverges, we an approximate the integral by meansof the saddle point method, whih amounts at �nding a solution to the system of equations
∂
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∂
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F = 0whih is usually done numerially. Having found the solution q0 and q̂0, expression 7 �nallybeomes:

ε (α) = F (α, q0, q̂0)In some ases the RS assumption is su�ient to obtain the exat analytial result. Deter-mining whether the results obtained in this way represent the orret solution or they are an
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approximation is possible by inspeting the stability of the saddle point towards the breakingof the replia symmetry, but the alulation is more involved than the one skethed above. Thetheory of how to treat situations in whih the replia symmetry is broken and how to per-form suh a alulation, along with the physial interpretation of the order parameters and thereplia symmetry breaking itself, was �rst developed by Parisi, Mézard and Virasoro in [21℄ andsuessfully applied to many di�erent problems [25℄.For what onerns pereptron models, the RS assumption is su�ient to obtain the exatresult both for ontinuous and binary synapses, but there's a aveat about the latter whih willbe explained in the next setion. However, in both ases, the maximum apaity is given bythe value of α for whih ε (α) = 0: for ontinuous, unbounded synapses this is α = 2 [10℄; forbinary ±1 synapses it is α = 0.83 [17, ?℄and for 0/1 valued binary synapses it is α = 0.59,provided that the threshold is set to its optimal value (whih is also found by the saddle pointmethod)[15℄.2.7. Continuous vs binary synapses in supervised pereptron models. Even if thetheoretial maximal apaity of the binary synapses model is not muh redued with respetto that of the ontinuous synapses model, there's still a big di�erene between the two modelswith respet to the di�ulty of atually �nding a solution to the learning problem. For theontinuous-valued model, many simple and e�ient algorithms are known to perform well onthis task, the simplest being the �standard pereptron algorithm� (SP). It is a simple updateprotool, whih presribes the modi�ation that the synapses have to undergo every time apattern is presented to the devie:(1) If the lassi�ation of the pattern is orret, nothing is hanged(2) If an error is made, update all the synapses as: wt+1

i = wt
i + ησt

Ewhere η is a �xed, small learning onstant, and σt is the expeted output for the patternpresented at time t. The patterns an be presented sequentially or randomly.It an be easily demonstrated that, whenever a solution to the problem exists, there exists asmall enough value of the parameter η suh that the SP algorithm onverges in a �nite numberof steps, and that the maximum learning time is a polynomial in N . This applies to any inputpattern set, regardless of the underlying distribution[28℄. More ompliated algorithms, likee.g. the adatron algorithm or the bak-propagation algorithm, an have better performanesunder appropriate irumstanes.The situation is ompletely di�erent for binary models: in this ase, the learning problem hasbeen proved to be a non-polynomial omplete (NP-C) lass problem from the algorithmi pointof view [2, 3℄. The NP-C lass of problems inludes many well known optimization problemslike the travelling salesman problem, the satis�ability problem or the oloring problem, and hasthe property that being able to solve all of the instanes of one of the problems of this lassin polynomial time (with respet to the size of the input) would allow to solve all of them inpolynomial time. It is widely believed that a general solution for any of the NP-C problems whihould always sueed in polynomial time does not exist; thus, NP-C problems are onsidered tobe hard from the algorithmi point of view.On the other hand, the requirement to �nd a solution for any possible instane of a problem(worst-ase senario) is not always of interest, espeially if a very large number of variables isinvolved. In many situations, the typial learning time would be more important for pratialpurposes. De�ning this quantity requires that a distribution is spei�ed on the parameters of theproblem. When the parameters are taken randomly and independently, many omplex problemsbeome tratable by leverly exploiting their statistial properties. Statistial physis methods
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have been remarkably useful in this �eld: one well known algorithm inspired by the analogiesbetween optimization problems and the statistial physis is simulated annealing [29, 9℄. Thismethod makes a parallel between the quantity to optimize and the interation energy of amaterial, and simulates a ooling proess towards zero temperature, assuming that, eventually,the material will be in its ground state, i.e. the problem will have reahed an optimal solution.The e�etiveness of this approah is impressive in some ases, e.g. in the travelling salesmanproblem with randomly and uniformly distributed nodes, but is of little help in other ases,amongst whih is the binary pereptron problem. Keeping the parallel with statistial physis,in some ases the ooling would require to be in�nitely slow in order to reah the solution; if theooling down is too fast, the system an have a transition from a liquid to a glassy, disorderedphase, and get stuk. Another way to see the same phenomenon is to say that, for too lowtemperatures, the energy landsape in the phase spae has an overwhelming number of verydeep loal minima, suh that, one one is reahed, it beomes impossible to get out of it andreah the global minimum.In order to be more preise, the exat terms of the problem an be de�ned by using theonepts of replia symmetry breaking theory and their physial interpretation. The RS analysisof the previous setion is exat when the synapses are allowed to assume ontinuous values: thesolutions to the learning problem form a onneted omponent in the phase spae, whih isa big loal minimum in the energy landsape, if we de�ne the energy of the problem as thenumber of errors the devie makes. However, when the synapses are binary, replia symmetryis atually broken, and a �one-step-symmetry-breaking� analysis (1RSB) is needed: the spae ofall the replias is assumed to have a lustered struture, so that, given any two replias a and
b, they will either belong to the same luster and have overlap q1, or belong to di�erent lustersand have overlap qo < q1. The same applies to any other order parameters, even though theinequality relation may be reversed. A new parameter also enters into this 1RSB desription,whih an be interpreted as expressing a lusterization degree, and whih mathematially hasthe role of a temperature; its thermodynami onjugate is alled the �omplexity� (an analog tothe entropy for the ordinary temperature), and expresses the logarithm of the number of lustersof the solution. Geometrially, the lusters are onneted omponents in the phase spae, sothat two solution of the problem belonging to the same luster an be transformed one into theother by small steps without getting out of the luster itself. Solutions belonging to di�erentlusters will on the ontrary be far apart in the phase spae, so that marosopi modi�ationswould be needed to transform one solution in the other. This same struture does not only holdfor the solutions, but also for states of higher energy; what's worse, the number of lusters ata given energy is exponentially greater than the number of lusters at a lower energy, whihexplains why loal searh algorithms as SP or even simulated annealing get trapped in thoseexponentially numerous loal minima.The reason for whih the RS value α = 0.83 for the maximum storage apaity is neverthelessexat is that the 1RSB solution for this spei� problem has q1 → 1, whih means that thelusters of solutions tend to beome point-like; thus, the overall struture of the solutions hasin pratie the same symmetry properties it would have if it would be RS, and the saddle pointsolutions are in one to one orrespondene to those of the RS alulation. Nevertheless, it still isa hard problem algorithmially. Algorithms able of solving problems in the 1RSB phase havebeen developed only reently [19, 20, 1, 7℄, showing that �nding a solution by loal searh isnot impossible even though the energy landsape is as desribed above. The logi behind suhalgorithms is to explore the spae of the lusters, rather than that of the single states, and togradually restrit the dynamis to one suh luster until a solution is found.
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Using the standard pereptron algorithm SP and its variants on the binary pereptronproblem gives indeed very poor results: the learning time grows at least exponentially with thenumber of synapses N , and the problem beomes intratable very rapidly. This will be shown inthe next hapter, where we present a novel simple algorithm whih outperforms all other knownalgorithms on this task, being apable of almost saturating the storage apaity bound, with aonvergene time whih we estimated to grow as O (N log (N)1.5

), i.e. almost linearly.2.8. Continuous vs binary synapses in unsupervised models. The problem of learn-ing with disrete synapses is muh harder than that of learning with ontinuous synapses alsoin the unsupervised senario. Analogously to what happens in the supervised learning senario,ontinuous reurrent networks an in priniple store a number of attrators of order N , butlearning with a limited number of synapti states only allows to reah an order log (N) mem-ories, if the fration of ative units at eah time does not sale with N . The reason for thisbad performane is that in the disrete ase eah �jump� of the synapti state overwrites thepreviously stored information. This has been shown in [4, 5℄ using pereptron models, andfurther generalized by means of theoretial information tehniques in [11℄, where it is pointedout that some degree of meta-plastiity is required in order to prevent the information trae leftin eah synapse from being erased at an exponential rate, i.e. in order for memories to last morethan a logarithmi time.A binary pereptron model whih is able to onsiderably improve performane in the unsu-pervised senario, the �asade model�, has been proposed in [12℄. In this model, eah synapsehas only 2 visible states, but an have multiple hidden states, eah orresponding to a di�erentdegree of plastiity. The transition sheme of the model is shown in Fig. 2. Using the asademodel, a memory trae in a reurrent network undergoes a phase during whih the signal de-ays as a power law, whose duration depends on the number of internal states of eah variable,followed by a phase of exponential deay. The exponential tail may be undetetable, and thusnegligible, if the transition happens when the trae is already fainter than the noise.From the biologial point of view, meta-plastiity is a quite reasonable hypothesis, sinethere's no reason for the synapti strength to be the only variable that enters the plastiity up-date rules. On the ontrary, the synapti terminals are highly speialized strutures with om-plex dynamis and multiple time sales; representing the internal protein network as a olletionof disrete stable states with some transition rule among them is a �rst-order approximationtowards a more biologially plausible desription.The algorithm whih we present in the next hapter similarly takes advantage of meta-plasti transitions in order to inrease the amount of information retained about its history, butthis feature alone is not yet su�ient to ahieve satisfatory results in the supervised senario.





CHAPTER 2The SBPI algorithm1. Cavity algorithms1.1. Cavity methods for statistial physis. The alulation of setion 2.6 is basedon the replia theory approah to the problem of studying the thermodynamis of disorderedsystems. Even though its mathematial foundations are not yet assessed, this method has provedto yield the orret results in all the situations in whih it has been tested.Disordered systems are haraterized by depending on a large number of parameters, whihare onsidered to be �xed on a single instane of the problem, but whih are supposed to beextrated form a probability distribution when looking at the problem in its generality (of ourse,this approah is only useful thanks to the existene of the self-averaging quantities, i.e. the fatthat all systems behave in the same way in the thermodynami limit). For this reason, theseparameters are also alled �quenhed variables�: in the ase of the pereptron, it is the set ofpatterns whih has to be learned (both the inputs and their assoiated outputs). The quenhedvariables are the soure of the disorder.In the replia method, the average over the quenhed variables is performed at the verybeginning of the alulation, prior to the Ansatz about the symmetry struture in the repliaspae. For this reason, the results whih are obtained by this method are only able to desribethe general properties of the problem under study, but give no information about the spei�instanes of the problem: in order to obtain those, a di�erent approah is neessary, whihis provided by the the �avity method�. The alulations in this ase are performed on singleinstanes of the problems, and the average over the quenhed variables an (if needed) beperformed afterwards, by olleting the results obtained on many di�erent instanes. The �nalresults are equivalent with those of the replia method, but the single instane results ontaininformation about the phase spae whih is spei� to that realization of the quenhed disorder,and an be used to �nd the global minima (the solutions) of the problem. The two methods anthus be seen as omplementary, one being more suitable for investigation of the global propertiesof the problem (inluding the study of the symmetry breaking of the repliated phase spae),the other one allowing to inspet single instanes.Virtually all optimization problems an be represented as bipartite graphs, in whih there aretwo types of nodes: the ones representing the variables and the ones representing the onstraints,or interations, among variables, with edges onneting nodes of one type to nodes of the othertype (see Fig. 1). Graphs provide a general framework, but their usefulness depends on thespei� problem under onsideration. All avity method algorithms are based on message passingalong the lines of suh graphs: the messages an represent a binary information, a probability,a probability distribution, a distribution of a distribution and so on, depending on the repliasymmetry breaking Ansatz. In the ase of the Belief Propagation algorithm (BP), whih willbe disussed in the next setion, they represent marginal probabilities over the spae of thesolutions.
21
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Figure 1. Di�erent kinds of bipartite graphs. Rounds represent variables,squares represent onstraints or interations over variables, the edges showwhih variables the onstraints at upon. The red and green arrows representthe two kinds of avity messages �ow; green arrows are messages originatedfrom inoming red arrows, and vie-versa. A. Sparse graph. Eah interationinvolves exatly 3 variables. This ould represent for example a 3-SAT problem.B. Fully onneted graph. Eah interation involves all of the variables. Thisould represent the supervised learning problem, in whih eah variable is asynapse and eah interation a pattern to be lassi�ed.The term �avity� in the name of the method refers to the fat that they exploit the in-formation whih an be obtained about the struture of the energy spetrum by taking awayone node from the graph at a time and arefully traking the reshu�ing of the energy levelsindued by this modi�ation. Of ourse, everything is simpler in the RS ase than in the repliasymmetry broken phases, sine the lusterization struture is trivial, but still the alulationrelies on the fat that the messages �owing through the links onneted to the removed node areunorrelated. This would be stritly true only in a tree-like graph, in whih there are no loops,but the absene of loops is never the ase for optimization problems or disordered systems.However, if the length of the loops in the problem diverges in the thermodynami limit, theassumption an be taken as applying asymptotially, and to be a good approximation for large
N . In fat, the avity message passing algorithms prove suessful in suh situations (Fig. 1A).On the other hand, looking at the representation of a pereptron problem as a graph(Fig. 1B), it is apparent that the situation is exatly opposite to the tree-like one: the graph is�fully onneted�, and the loops ouldn't be more numerous neither shorter. Despite this fat,the avity method still works, thanks to the fat that the orrelations, due to the very largenumber of the ontributions, tends to anel out [34℄.1.2. The Belief Propagation algorithm. The BP algorithm (also known as Bethe-Pierlsapproximation in statistial physis), has been developed independently in the ontext of statis-tial physis of disordered systems and of information theory, in the ontext of error orretionodes for signal transmission (see [16℄). Its results are equivalent with an RS desription of
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the problem under study, and it is suitable to desribe the pereptron problem for the reasonsexposed in setions 2.7 and 1.1. In this sheme, the learning problem is onverted in the problemof omputing some probability marginals: let us onsider the set W of all the possible weightvetors, and the subset W∗ of all the (unknown) synapti weights vetors whih properly im-plement the input/output mapping of the patterns. A uniform sampling of this set de�nes aprobability spae spae over the set W∗ of all the solutions to the problem. Over this spae weare interested in single marginals, that is in the probabilities(9) p±i = PW (wi = ±1) = |{w ∈ W∗ : wi = ±1}| / |W∗|that the single synapses take a ertain binary value in a randomly hosen solution (here |·|denotes number of element of a �nite set).The omputation of these marginals onstitutes the �rst step in the proess of �nding theoptimal synapti weights, after whih one typially proeeds iteratively by �xing the synaptiweights aordingly.Under the weak orrelations assumption, it is possible to write a losed set of equations forthe marginals whih an be solved e�iently by iteration. In turn, the iteration sheme an beimplemented as a distributed omputation, a fat whih opens the possibility of implementing adynamial sheme governed by loal rules whih atually solves the equation and hene providesthe marginals we are interested in. This is the feature whih allows to revert the BP into asimple enough sheme, to be onsidered of potential biologial interest.The BP approah onsists �rst in �nding the marginal probabilities for synapti weights wion the solutions of restrited (avity) problems. Thanks to the symmetry of the ±1 pereptron,we an simplify the notation and assume without loss of generality that, for all patterns µ,
σµ

exp = +1. Let us �rst remove pattern µ from the interations of synapse i. We an de�ne aspae of the solutions to the restrited problem as(10) W∗
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and write the probability that, if the synapse i has synapti weight wi, it belongs to suh asolution, as
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(wi)where PX is the uniform measure over X .Then, on the original graph, let us remove variable i from all patterns but µ. The restritedspae of the solutions is de�ned as
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and the orresponding avity probability is
ηwi
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(wi)where PX is de�ned as above.These variables an be thought of as messages sent along the graph edges. The two typeof messages �ow in opposite diretions. The BP equations desribe how the message form anode to another depends on all the other inoming messages on the sender node, exept for the
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message oming from the reeiver node. Thus, the two signals �owing on eah link should inpriniple arry di�erent piees of information. In symbols, BP equations read:
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ν→i(12)where Θ [x] denotes the Heaviside funtion (Θ [x] = 1 if x ≥ 0, Θ [x] = 0 otherwise), i, j indiesrun over 1, . . . , N and µ, ν are pattern indies. The ∝ symbol indiates normalization prefatorsthat ensure η+
µ→i + η−

µ→i = 1 and p+
i→µ + p−i→µ = 1.On a solution of Eqs. 11-12, BP estimation of marginals in Eq. 9 an be omputed as:

pwi

i ∝
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µ

ηwi

µ→i(13)The standard way to solve Eqs. 11-12 is by iteration. Calling S = ({ηµ→i} , {pµ→i})µ,i andonsidering the funtion f : S 7→ f (S) de�ned by right-hand sides of Eqs. 11-12, we an build thesequene St from the iteration St = f (t) (S0), where S0 represents some initial ondition (eitherrandom or for instane uniform), until the distane of two onseutive terms ‖St+1 − St‖ is zeroor small enough; then , we an onsistently evaluate Eq. 13. From the single variables marginalswe an derive other thermodynami quantities, in partiular we an evaluate the entropy of thesolution spae (whih in this ase has to be interpreted as a omplexity). Computing the averageover many di�erent samples at large N , this method yields the same results as the omputationperformed by means of the replia method.The information obtained from the marginals in the single instanes also allows to �nd asolution to the learning problem. One approah ould be a deimation sheme, in whih themost polarized variable (the one for whih ∣∣p+
i − p−i

∣

∣ is greatest) is �xed, the orrespondinggraph is redued, and the iteration sheme is restarted on the redued graph, until a solutionis (eventually) found. A better approah for this problem is to introdue in the equation areinforement term, gradually polarizing all the variables at the same time.In this fored sheme, the right-hand term in Equation 12 has to be replaed by pwi

i

∏

ν 6=µ ηwi

ν→isoto drive the system to onverge to a single on�guration. With weak orrelation assumptions,the reinfored equations in terms of h = tanh−1 (p+ − p−) and u = η+−η− beome in a leadingorder approximation:
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and the auxiliary funtions G and H are de�ned by:

G (x) =
1√
2π

e−
1

2
x2(18)

H (x) =

∫ ∞

x

G (y) dy(19)The idea is that in the ourse of the learning proess the `hidden variables' hi go progressivelytowards large positive or negative values, and hene variables mi beome loser and loser to
+1 or −1. Hene, at the end of the learning proess, the synapti weights an be set to the signof mi.The algorithm as desribed is able to �nd a solution in a reasonable time (i.e. not expo-nentially growing with N) up to α ∼ 0.6, but higher values an be reahed by weakening thereinforement term of eq. 14, thus produing a slower, but more aurate algorithm, whih anstore more than αN ∼ 0.7 patterns, very lose to the maximum storage apaity 0.83. In anyase, whatever the values of the parameters, the number of steps required for onvergene is, upto α ∼ 0.6, sub-linear in N , thus extremely fast. Note that all other known algorithm's learningtime grows exponentially with N for any value of α, thus their storage apaity, to the leadingorder, is 0.The attrativeness of the BP sheme omes from its distributed nature, allowing to �nd aglobal optimal solution from loal omputations only. However, from a pratial point of view,the above presented algorithm is o�-line in nature: at eah step, all patterns have to interatwith the devie at one, and eah variable has to trak an extensive number of analog quantities.This would exlude in pratie the possibility of using suh a sheme in a biologially plausibleontext, or more generally in a ontext in whih the input patterns ome in sequene, one afterthe other. However, as we shall see, the fully-reinfored equation set an be easily reverted toan on-line learning sheme.1.3. BP on 0/1 pereptron. The derivation of the fored BP algorithm for the 0/1pereptron from the BP sheme losely follows the trak of the previous setion. The maindi�erenes are that in this ase the threshold θ is di�erent from 0 and that we need to takeexpliitly into aount what the expeted output for the patterns is.The 0/1 pereptron model was de�ned in setion 2.3; here we add a parameter to thedesription, the �oding level� f , whih represents the average fration of ative inputs (ξµ

i = 1)and ative outputs (σµ = 1) per pattern. Both the maximal apaity and the optimal thresholddepend on this parameter.The optimal threshold θ an be omputed by means of the replia method, as done in [15℄(it amounts at adding the equation ∂θF = 0 in the saddle point equations of se. 2.6), and is afuntion of α. In the dense oding ase f = 0.5, the maximal theoretial apaity is αmax ≈ 0.59,whih an be obtained by optimally setting the threshold as θ ≈ 0.16N . For lower values of
α, the optimal threshold (with respet to the number of solutions of the learning problem) ishigher, and reahes 0.25N at α = 0. However, the simulation results whih we will show in thefollowing do not take this into aount, as we have found that they were not muh a�eted bythe value of θ, and that setting it to the value orresponding to αmax was optimal even at lowervalues of α.When varying f the piture is similar; furthermore, the ratio between the optimal value of
θ (taken at αmax) with respet to the average number of ative inputs in eah pattern fN isalmost onstant, going from 0.32 for f = 0.5 to 0.30 for f = 3 · 10−3. Thus, with these settings,about 30% of the synapses will be ative after learning in all ases.
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1.4. Reverting BP to an on-line algorithm. The reinfored BP equations an desribean on-line learning protool by swithing to asynhronous update, hoosing a time sale τ de�nedby Nατ = t, and piking the pattern randomly at time τ , giving:
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i = tanh (hτ
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wτ+1

i = sign (ht+1
i

)(22)This (on-line) algorithm is fast and solves the learning proess up to large values of α, butit still has some unpratial features:
• It requires that eah synapse keeps a memory of an analog variable (mi or hi);
• The two arguments of the funtion f have to be omputed individually for eah synapse.The seond issue an be partly �xed by onsidering that the funtion f an be omputed at one,and the single synapse values an be obtained as orretions based on purely loal information.Then, the algorithm an be further simpli�ed in order to get rid of all the analog variables,while keeping a high apaity and fast onvergene; however, the loal orretion to the globalsignal is a ruial step for the algorithm's performane.The orresponding on-line BP-inspired equations for the 0/1 pereptron model are:
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As before, we only need to keep the internal variables hi, updating them at eah time stepupon presentation of a pattern (ξτ , στ
exp

).1.5. Disretization. The problem of storing and managing ontinuous variables an beoverome by rudely simplifying f as a Heaviside step funtion of the �rst argument, and replaethe tanh with a sign funtion:
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i = sign (hτ
i )(27)
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(28)where we removed two inessential fators N− 1

2 . This algorithm is roughly equivalent to theontinuous one in the last part of the learning proess, when all the variables are almost fullypolarized. As a last step, we identify the mi �elds with the synapti weights wi and avoid the
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ambiguous hi = 0 ase by initializing all the hi's to odd values and introduing a fator 2 intheir update term, so that they an only assume odd values (this does not a�et the results):
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(29)
wτ+1

i = sign (hτ+1
i

)(30)In this way, we are left with a single disrete variable for eah synapse, and the updatingsignal is muh simpler. The performane of this algorithm, whih we refer to as �BP-inspired�algorithm (BPI), is still good, but it ahieves a lower apaity then the ontinuous one (about
α ∼ 0.3). Using a stohasti version of the Θ funtion turned out to be su�ient to reoverthe same apaity as the ontinuous reinfored BP. The proedure will be explained in detail innext setion.The same disretization proess an be applied to eqs. 23-26 for the 0/1 pereptron, bysubstituting mi by its sign and the funtion f01 by a step funtion, so that the internal hiddenvariables hi an only take integer values; we further restrit them to take odd values, and theequations beome:
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](32)1.6. Algorithms de�nitions. The standard pereptron algorithm presented in setion2.7 uses ontinuous weights and a learning step parameter η. However, if the synapti weightsare unbounded, this algorithm an be disretized by simply resaling everything by a fator η−1.Thus, we an rede�ne the SP algorithm by the single equation(33) wτ+1
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whih is very similar to Eq. 29. The main di�erene is of ourse given by the fat that in the SPalgorithm the variables are not binary and no hidden values are present. The single equation33 an be split in a two-rules presription for larity:SP algorithm. Upon presentation of a pattern, the overall depolarization is omputed as
∆ =

∑

j ξτ
j wτ

j , then(1) If ∆ > 0, then wτ+1
i = wτ

i (do nothing)(2) If ∆ < 0, then wτ+1
i = wτ

i + 2ξτ
j (update all the synapses)Note that the depolarization an only assume odd values, due to the simplifying assumptionthat N is odd. The straightforward way to turn this algorithm to work on a binary devie wouldbe to simply bound the weights to assume only the values ±1, but the results of this strategy,and of its variants, are extremely poor. Another possibility is to turn the synapti weights whihundergo the updating to hidden variables, while using their sign as the atual synapti weights.This is known as �lipped pereptron� algorithm (CP):
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CP algorithm. Upon presentation of a pattern, the overall depolarization is omputed as

∆ = −∑j ξτ
j wτ

j , then(1) If ∆ > 0, then hτ+1
i = hτ

i (do nothing)(2) If ∆ < 0, then hτ+1
i = hτ

i + 2ξτ
j (update all the synapses)Then update the synapti weights as wτ
i = sign (hτ

i ).This algorithm performs muh better than the �ropped� one in whih there are only twostates; nevertheless, onvergene still takes an exponential time in N . The hidden variables hiimplement a form of meta-plastiity, sine they partiipate in the learning proess, but theydon't alter the unit's output but by their sign.Another algorithm whih uses meta-plasti states to boost learning in a binary synapsesontext is the asade model mentioned in setion 2.8, but suh model was introdued in anunsupervised learning senario, and, though being better than the �ropped� model, it performsworse than CP in the supervised ontext.In fat, the CP algorithm and the BPI algorithm desribed by eqs. 29-30 are very similar,the only di�erene ourring when ∆ = 1:BPI algorithm. Upon presentation of a pattern, the overall depolarization is omputed as
∆ = −∑j ξτ

j wτ
j , then(1) If ∆ > 2, then hτ+1

i = hτ
i (do nothing)(2) If ∆ = 1, then hτ+1
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i )(3) If ∆ < 0, then hτ+1
i = hτ

i + 2ξτ
j (update all the synapses)Then update the synapti weights as wτ
i = sign (hτ

i ).Rule 2 in the BPI algorithm is only applied when the unit's output is barely orret, meaningthat a single synapti �ip ould potentially produe a lassi�ation error. In this ase, thosesynapses whih are ruial for the orret response are updated by pushing them away from 0,thus reduing the hane of a swith. Even though this rule is applied when a spei� valueof ∆ is found, the overall e�et is not negligible. Note that this rule is diretly inherited fromthe avity proedure, beause it ats on those variables whih, if removed, would hange theoutome of the devie.In order to investigate the e�et of rule 2 on performane, we also simulated a stohastiversion of the BPI algorithm, in whih suh a rule is only applied with probability ps for eahpresented pattern:SBPI algorithm. The same as BPI, but rule 2 beomes:2.: If ∆ = 1, then
• with probability ps: hτ+1

i = hτ
i +2ξτ

j Θ
[

hτ
i ξτ
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] (update only the synapses for whih
wτ

i = ξτ
i )

• with probability 1 − ps: hτ+1
i = hτ

i (do nothing)The SBPI algorithm thus atually omprises both the BPI algorithm, when ps = 1, and theCP algorithm, when ps = 0.The CP, BPI and asade algorithms are skethed in Fig. 2.
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CP BPI Casade

ξ ·w < 0 ξ · w < 0 ξ · w = 1 ξ ·w < 0

Figure 2. Shemati representation of transitions between synapti states inthe CP algorithm and the BPI algorithm. The asade model introdued byFusi et al [12℄ is shown for omparison. Cirles represent the possible states ofthe internal synapti variable hi. Grey irles orrespond to wi = −1, whiteones to wi = 1. Clokwise transitions happen when ξi = 1, ounter-lokwisewhen ξi = −1. Horizontal transitions are plasti (hange value of synaptie�ay wi), vertial ones meta-plasti (hange internal state only). Downwardstransitions make the synapse less plasti, upward ones more plasti. Whenthe output of the neuron is erroneous, ξ · w < 0: transitions our to thenearest neighbor internal state. In the CP algorithm, when the output is orret,
ξ ·w > 0: no transitions our. In the BPI algorithm, when the output is barelyorret ξ ·w = 1 (a single synapti �ip ould have aused an error): transitionsare made towards less plasti states only. When the output is safely orret,
ξ · w > 1: no transitions our. In the asade model, `down' transitions aretowards nearest neighbors, while `up' transitions are towards the highest statewith opposite sign. Transition probabilities derease with inreasing |h|, see[12℄for more details1.7. Performane omparison. The performane of the SBPI algorithm was �rst inves-tigated numerially with unbounded hidden variables, for di�erent values of α, N and ps. Itturns out that it performs remarkably well, provided the probability ps is hosen appropriately- with ps ≈ 0.3 the system an reah a apaity of order 0.65 with a onvergene time thatinreases with N in a sub-linear fashion (see Fig. 3). On the other hand, the deterministi BPI(ps = 1) has a signi�antly lower apaity (α ≈ 0.3), but for those lower values of α it performssigni�antly faster than the SBPI algorithm - for α = 0.3 the time inreases approximately as

(log N)1.5, as shown in Fig. 3D. As an example, the algorithm perfetly lassi�es 38400 patternswith 128001 synapses with around 35 presentations of eah pattern only. By eliminating om-pletely rule 2 (i.e. CP) onvergene time beomes exponential in N rather than logarithmi, forevery tested value of α, as shown by the supra-linearity of the blue urves in Fig. 3. Hene,the spei�ity of rule 2 with respet to synapses (only synapses that atually went in the rightdiretion for the urrent pattern should be modi�ed) is a ruial feature whih makes the BPIalgorithm qualitatively superior. Moreover the onvergene time inreases only mildly with α,as shown in Fig. 3.We also �nd that there is a tradeo� between onvergene speed and apaity: for eah valueof α, there is an optimal value of ps that minimizes average onvergene time. This optimal
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1.8. Bounded hidden variables. We now turn to the situation when there is only alimited number of states K of the hidden variables hi, sine it is unrealisti to assume that asingle synapse an maintain an arbitrarily large number of hidden states. Thus, we investigatedthe performane of an algorithm with symmetrial hard bounds on the values of the hiddenstates, |hi| ≤ K − 1 for all i.Figure 4 shows what happens when the number of internal states is kept �xed while varying

N . For the number of states we have onsidered, (10 ≤ K ≤ 40), the optimal value of ps is
1, sine in general the stohasti version of the algorithm requires a larger number of states tobe e�ient. Here, we de�ned the apaity as the number of patterns for whih there is 90%probability of perfet learning in 104 iterations, and plotted in Fig. 4 the orresponding ritial
α against N for di�erent values of the states number K, omparing BPI, CP, and the asademodel (de�ned as in Fig. 2). We also ompared these algorithms that have only 2 `visible'synapti states but K hidden states, with the SP algorithm with K `visible' states, wi = hi.It turns out that BPI ahieves a higher apaity than the SP algorithm with K visiblestates, when K is �xed and N is su�iently large, even though the maximal apaity of thebinary devie is lower. Interestingly, adding an equivalent of rule 2 to the SP algorithm allowsit to overome BPI. This issue is further disussed in setion 1.13.It is also interesting to note that at very low values of N , performane is better using 20states than with an in�nite number of states. Intuitively, this may be due to the fat that in theunbounded ase some synapses are pushed too far and get stuk at high values of hi, i.e. theylose all their plastiity, while a solution to the learning problem would require them to omebak to the opposite value of wi.The last panel in Fig. 4 ompares how onvergene time hanges with α for the samefour algorithms, with the same number of synapses and same number of states per synapse:while the asade model has a lear exponential behavior, the BPI and SP algorithms maintainnearly onstant performane almost up to their ritial point. The CP algorithm is somehow inbetween, its performane degrading rapidly with inreasing α (note the logarithmi sale).1.9. Distribution of hidden variables. Fig. 5A shows the �nal distribution histogramof the hidden variables hi for one sample with N = 64001 after learning with α = 0.3, for theBPI algorithm. When the number of allowed states is in�nite, the distribution has the shape oftwo bell-like urves. The width of the distribution is proportional to √

N , as shown in Fig. 5B.The shape and the saling will be disussed in the generalization ontext, where they �nd ananalytial explanation (setion 2).Introduing an upper and lower bound on h leads to the appearane of two peaks in thedistributions at these bounds. These bounds stop the synapses that would otherwise tend to goto very large positive or negative values. If the bounds are large enough, this has no adversee�et on learning beause those synapses that reah suh large values of h never hange signduring the learning proess. Reduing further the number of states starts to a�et the shape ofthe whole distribution when the value of the bounds beomes smaller than the loation of thepeaks of the distribution in the unbounded ase. At this point the whole distribution hanges,and the onvergene time starts to hange ompared to the unbounded ase.1.10. Optimal value of the number of hidden states K. In order to determine theoptimal number of internal states K for a given number of synapses N , we performed some testwith N ranging from 1001 to 32001 and looked for the value of K whih maximized apaity.Fig. 6 shows that the optimal number of internal states K sales roughly like √
N , both in the

±1 and in the 0,1 senarios.
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the biologially implausible feature of symmetry between the two states of ativity. Thus, forbiologial modeling purposes, the 0/1 model is surely more appropriate.Comparing Eqs. 29-30 and Eqs. 31-32 it is immediate to see the di�erenes between the twomodels: (i) The quantity to be evaluated at eah pattern presentation is no longer∆ =

∑

j ξτ
j wτ

j ,but rather ∆ =
(

2στ
exp − 1

)

(

∑

j ξτ
j wτ

j − θ
), whih is positive if the pattern is orretly lassi�edand negative otherwise. (ii) Synapti weights are now omputed as wτ

i = Θ [hτ
i ], makingthe synapse ative (inative) if the hidden variable is positive (negative), respetively. Theperformane of this algorithm is qualitatively very similar to the one for the ±1 ase, with alower apaity - about 0.25, to be ompared with a theoretial limit of 0.59 [15℄.Like before, we have studied a stohasti version of the algorithm in whih rule 2 is appliedwith probability ps, but we also found out that for this algorithm it was optimal to use this ruleonly for those patterns whih require σµ

exp = 0. We have also introdued a new parameter, θm,the threshold for applying rule 2. The SBPI01 algorithm was then de�ned as:SBPI01 Algorithm. Compute∆ =
(

2στ
exp − 1

)

(

∑

j ξτ
j wτ

j − θ
), then(1) If ∆ ≥ θm = 1, then hτ+1

i = hτ
i (do nothing)(2) If 0 ≤ ∆ < θm = 1, then(a) If στ = 0, then, with probability ps, do hτ+1

i = hτ
i + 2ξτ

j

(

1 − wτ
j

) (update onlysynapses with wτ
i = 0, ξτ

i = 1)(b) Else hτ+1
i = hτ

i (do nothing)(3) If ∆ < 0, then hτ+1
i = hτ

i + 2ξτ
i (2στ − 1) (update all the synapses)Sine rule 2 is only applied to patterns with σµ

exp = 0, the meta-plasti hanges a�et onlysilent synapses (for whih wτ
j = 0) involved in the pattern (those for whih ξτ

i = 1). Notethat using rule 2 only for patterns for whih σa = 0 not only optimizes performane, but alsomakes the algorithm simpler, sine in this way there is only the need for one seondary threshold(θ−θm) instead of two (whih would have been required if rule 2 had to be applied in all ases).The opposite hoie, i.e. using rule 2 only for patterns for whih σµ
exp = 1, an also be takenwith similar results.As in the preeding ase, introduing boundaries for the hidden variables hj an furtherimprove performane, and the number of statesK whih maximizes apaity sales again roughlyas √N (see Fig. 6), while reduing K too muh hinders the algorithm's behaviour. In the aseof dense oding, f = 0.5, and using the optimal value ps = 0.4, SBPI01 an reah a storageapaity αc beyond 0.5 bits per synapse for su�iently high N , very lose to the maximumtheoretial value αmax ≃ 0.59.1.12. Heterogeneous synapses and sparse oding. One possible way to inrease a-paity with a very limited number of available states is to use `sparse' oding, i.e. a low value for

f . In an unsupervised learning senario, it has been shown that purely binary synapses (e.g. onlytwo hidden states) an perform well if f is hosen to sale as log N/N [33, 5℄. In order to testthe SBPI algorithm in a harder senario, we hose an intermediate saling f = 1/
√

N . In addi-tion, we also introdued heterogeneity in synapti e�aies. Possible synapti weights were nolonger 0 and 1, but 0 and ai where ai was drawn from a Gaussian distribution with mean 1, andstandard deviation 0.1. Likewise, the threshold θm used for the implementation of rule R2 wasdrawn randomly at eah pattern presentation from a Gaussian distribution entered in 1 with
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Figure 7. Performane of SBPI-Het for di�erent number of states K, withoding level f = N− 1

2 . Number of samples ranges from 100 for N = 1000to 10 for N = 64000. Triangles: K = 2, Squares: K = 4, Cirles: K = 10,Crosses: K = 20. Dashed line: asade model with K = 20. A. Storagee�ieny vs N B. Convergene time vs α for N = 64000variane 0.1. The resulting algorithm SBPI-Het was shown to have very similar performane toSBPI01 in the f = 0.5 ase.In Fig. 7A we show the maximum apaity αc (de�ned as for Fig. 4) reahed in the sparseoding ase divided by the maximum theoretial value αmax (whih depends on f), with ps = 1,
N ranging from 1000 to 64000 and low number of internal states. The �gure shows that asynapse with only two states (i.e. with no meta-plastiity) has a apaity of only about 10% ofthe maximal apaity in the whole range of N investigated. Adding hidden states up to K = 10improves signi�antly the performane, whih reahes about 70% of the maximal apaity forsizes of N of order 10000. In fat, for suh values of N the apaity dereases when onefurther inreases the number of states. The optimal number of states inreases with N as inthe dense oding ase, but with a milder dependene on N . In fat, simple arguments based onunsupervised appliation of rule 2 predits in this ase an optimal number of states saling as
N1/4/

√
log N , whih seems to be roughly onsistent with our numerial �ndings. Fig. 7B showsonvergene time versus α for N = 64000. It demonstrates again the speed of onvergene ofthe SBPI algorithm, while the asade model is signi�antly slower.1.13. Binary vs K state synapses. In order to make the problem of learning with binarysynapses tratable, we ended up `hiding' a multi-state variable inside eah synapse. This raisesnaturally the question of the pratial usefulness of suh a devie: from the arhitetural pointof view, it may be questionable whether it is better to use a binary devie with K hidden statesthan one with K visible states; in fat, the latter has a greater theoretial apaity. However,the BPI algorithms an be superior either when the learning phase and the realling phase aretotally distint or in presene of noise or unreliable devies.The hidden variables are only neessary during learning; thus, the overhead required forstoring and managing the hidden variables may be limited to that period. Note that this wasalready possible using the original BP algorithm, but the BPI version is both faster and muheasier to implement. In an on-line setting, in whih learning has to our in real time, noise
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Figure 8. Performane of the MP algorithm with N = 4001 synapses and K =
100 visible states as the seondary threshold θm varies. A. Convergene time,averaged over 50 samples of 0.5N patterns eah. B.Maximum ahieved apaity(at least 90% suesses on 25 samples, with uto� time of 1000 presentationsper pattern).resistane is the primary reason for using binary synapses; this issue is disussed in the nextsetion.Interestingly, the rule set we propose for BPI beomes useful even when using a devie witha limited number of visible states K: in this ase, the learning problem rapidly beomes hardfrom the algorithmi point of view as N gets large. The binary ase is the extreme exampleof this situation; as we have shown in Fig. 4, the SP algorithm may perform worse than theSBPI algorithm with the same number of states in suh a situation. Sine the apaity of thevisible-state devie has to be greater than that of the binary devie, the redued e�ieny isdue to the SP algorithm. We found that some e�ieny ould be reovered by using a modi�edversion of this algorithm, in whih an analog of the rule R2 for BPI was added. The modi�edpereptron algorithm MP was de�ned as:MP algorithm. Upon presentation of a pattern, the overall depolarization is omputed as

∆ =
∑

j ξτ
j wτ

j , then(1) If ∆ > θm, then wτ+1
i = wτ

i (do nothing)(2) If 0 < ∆ ≤ θm, then wτ+1
i = wτ

i + 2ξτ
i Θ [wτ

i ξτ
i ] (only update synapses for whih wi is onthe orret side)(3) If ∆ < 0, then wτ+1

i = wτ
i + 2ξτ

j (update all the synapses)This is very similar to the BPI algorithm, in whih the hi's are replaed by the wi's and theseondary threshold is θm 6= 1. The SP algorithm an be reovered by setting θm = 0.Fig. 8 shows that both onvergene speed and storage apaity are higher with θm 6= 0; theoptimal value is di�erent for di�erent tasks (fr. Fig. 8A and B), and has a strong dependene onthe number of states K (not shown). With the proper settings, this algorithm reahes slightlyhigher apaities than BPI even with very few states K ompared to the number of synapses
N , though being still more sensitive to noise, as disussed in the next session.
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1.14. Robustness against noise. Binary devies have the advantage of simpliity androbustness against noise. Here, we address the issue of resistane against noise whih mighta�et the multi-stable hidden states. Intuitively, the fat that the synapti weights in the BPIalgorithm only depend on the sign of the orresponding hidden variables, suggests that a devieimplementing suh learning sheme would be more resistant against aidental hanges in theinternal states with respet to a devie in whih the multi-stable state is diretly involved in theinput summation.We tested this in two di�erent situations: one in whih noise is added during the learningproess and afterwards, and another one in whih it is only applied after learning has ourred.The �rst setting mimis the situation in whih the multi-stable elements representing the internalstates are not reliable on the learning time sale; the latter represents a situation in whihlearning sessions our on muh faster time-sales ompared to the time during whih the storedmemories have to be available for realling.We ompared a binary devie with hidden states (implementing SBPI) with a pereptronwith visible states implementing a standard pereptron algorithm SP and the modi�ed versiondesribed in setion 1.13, MP. For proper omparison, all of these devies had the same numberof synapses N = 4001 and the same overall number of stable states (K hidden states of BPIwere ompared to K visible states of the standard pereptron). The optimal value (the onemaximizing robustness) of the seondary threshold for the MP algorithm was found to be θm ≈

30 for the bounded ase K = 100 and θm ≈ 180 for the unbounded ase.Protool 1. We added gaussian noise to the multi-stable states during the learning proess,one after eah presentation of the whole pattern set. The proess was arried on even afterperfet learning was eventually ahieved. We generated random numbers aording to a normaldistribution with standard deviation z, trunated them towards 0, doubled them and addedthem to the states value (trunation is needed in order to keep the state values integer, doublingto keep them odd). Thus, using z = 1 for example, eah synapse had a 68% probability ofstaying unhanged, a 28% probability of making one step upwards or downwards, et. Eahrun onsisted in 10000 presentations per pattern; as a measure of robustness, we averaged thenumber of errors made by eah devie in the last 1000 presentations, a time at whih it hasreahed its asymptoti value. The results are shown in Fig. 9A-B. The binary devie shows ahigher resistane to noise: even at the lowest noise level, z = 1, the K-visible state devie wasunable to keep the error rate to 0.Protool 2. Eah simulation was divided into a short learning period (200 presentationsper pattern) and a longer realling period during whih noise was applied and memories weretested without any further learning. The protool for noise appliation was the following: ateah iteration, eah synapse had a �xed probability pZ = 0.1 to swith one state up or down withequal probability. After eah iteration, the whole pattern set was probed and the orrespondingnumber of errors reorded. Note that the time sale of the realling period is arbitrary withrespet to that of the learning period. Results are shown in Fig. 9C-D. We found that thebinary devie with K hidden states was remarkably more robust than the K-visible state devie,espeially at short times. Of ourse, in the limit of very long times all three rules perform equallybadly, sine all memory of the stored patterns is erased, but at any �nite time the system withbinary synapses is signi�antly better.2. Generalization protoolWith the learning protool that we have used so far, making analytial preditions aboutthe synapes' dynamis under the SBPI algorithm is a very hard task. The reason for this is that



38 2. THE SBPI ALGORITHM

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  5  10  15  20

er
ro

rs

noise level z

A

 0

 10

 20

 30

 40

 50

 60

 0  1  2  3  4

er
ro

rs

noise level z

B

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 4000 3000 2000 1000 0

er
ro

rs

iteration

C

 0

 50

 100

 150

 200

 250

 300

 4000 3000 2000 1000 0

er
ro

rs

iteration

D

Figure 9. Robustness to noise of various algorithms. In all tests we used
N = 4001 synapses trained on 0.55N patterns; Red lines: SBPI with parameter
ps = 0.4, Green lines: SP, Blue lines: MP with optimal value for θm. Resultsfor both bounded (K = 100) and unbounded ases are shown. Points wereobtained by averaging over 25 samples for protool 1, 100 samples for protool2. A. Protool 1, unbounded ase. B. Protool 1, bounded ase. C. Protool2, unbounded ase. D. Protool 2, bounded ase.patterns have to be presented repeatedly, whih means that the temporal history of the inputshas very strong orrelations.Here instead we will onsider a generalization protool, in whih a general lassi�ation rulehas to be learned from a ontinuous stream of random patterns, never repeating. In order toensure that a solution exists, we generate the expeted output of the patterns from a teaherpereptron, and train a student pereptron on that value. Thus, the goal is equivalent to reahinga perfet overlap with the teaher, whih an be thought of as the student having learned anassoiation rule. As in the previous ase, we an simplify the notation, we an always trainthe student only on patterns whose expeted output is +1, in this way: at eah time τ a newpattern {χτ

i }i is generated randomly and presented to the teaher, whose output is στ
T ; then,the pattern {ξτ

i } = {στ
T χτ

i } is presented to the student, with expeted output στ
exp = +1. Also,we an assume, without loss of generality, that all the teaher's synapses are set to wT

i = +1.That's beause, even being so, they don't aquire any speial property, and they are hiddenfrom the student, whih is initialized at random. This implies that the student will only bepresented patterns in whih there are more positive than negative inputs, and that �positive
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synapse� an be read, in what follows, as being synonymous to �orretly set synapse�, while�negative synapse� an be read as �wrongly set synapse�.In the following, we shall show that it is possible to desribe the average learning dy-namis and estimate the time needed for the student to reah overlap 1 with the teaher,
q = 1

N

(

w · wT
)

= 1.2.1. Histogram dynamis for the CP algorithm. We will do a mean-�eld-like approx-imation to the problem: at eah time step, we suppose that we know the histogram distributionof the hidden variables at a time τ , HISTτ ({hi}); then we ompute the average distribution(over the input patterns) at time τ + 1, P τ+1 ({hi}), and �nally we identify this with the newhistogram, HISTτ+1 = P τ+1.We will start from the simpler ase of the CP algorithm (no rule 2), and temporarily dropthe index τ .Let us �rst ompute the probability of making a lassi�ation error. This only depends onthe urrent teaher-student overlap q. We will denote by q+ (q−) the fration of student synapseswhih are set to +1 (−1), so that the overlap is q = q+ − q− = 2q+ − 1. In the following, wehave to onsider separately the +1 and −1 synapses: we denote by ν+ the number of positiveinputs over the positive synapses, and by ν− the number of positive inputs over the negativesynapses. Beause of the onstraint on the patterns there have to be more positive inputs thannegative ones, in symbols ν+ + ν− > N
2 . The pereptron will lassify the pattern orretly if

ν+ + (q−N − ν−) > N
2 , thus the probability that the student makes an error is given by

pe = 2

∫

dµ (ν+) dµ (ν−)Θ

(

ν+ + ν− − N

2

)

Θ

(

−
(

ν+ + (q−N − ν−) − N

2

))where µ (ν±) is the measure over ν± without the onstraint on the pattern (whih is expliitlyobtained by utting half of the ases and renormalizing). In the large N limit, this is a normaldistribution, entered on q±N
2 with variane q±N

4 , thus we an write the above probability as
pe = 2

∫

Dx+Dx− Θ

(

q+N

2
+

√

q+N

2
x+ +

q−N

2
+

√

q−N

2
x− − N

2

)

·

·Θ
(

−q+N

2
−
√

q+N

2
x+ − q−N

2
+

√

q−N

2
x− +

N

2

)

= 1 − 2

π
arctan

(
√

q+

q−

)

=
1

π
arccos (q)(34)where we used the shorthand notation Dx = dx 1√

2π
e−

x2

2 .
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We then fous on a synapse with negative value, and ompute the probability that there isan error and that the synapse reeives a positive input:

P (∆ < 0 ∧ ξi = 1|wi = −1) = 2

∫

dµ (ν+) dµ (ν−)

(

ν−
q−N

)

Θ

(

ν+ + ν− − N

2

)

·

·Θ
(

−
(

ν+ + (q−N − ν−) − N

2

))

= 2

∫

Dx+Dx−

(

1

2
+

x−

2
√

q−N

)

Θ
(√

q+x+ +
√

q−x−
)

·

·Θ
(

−√
q+x+ +

√
q−x−

)

=
pe

2
+

1√
2πNThe probability that a negative-valued synapse reeives a negative input (and that an erroris made) is very similar:

P (∆ < 0 ∧ ξi = −1|wi = −1) =
pe

2
− 1√

2πNThe probabilities for positive-valued synapses instead are simpler:
P (∆ < 0 ∧ ξi = ±1|wi = +1) =

pe

2Thus, a positive-valued synapse has an equal probability of swithing up or down one level,while a negative-valued one has a higher probability of swithing up than down. The histogramdynamis an be written as:
P τ+1 (h) = P τ (h) [1 − pτ

e ] + P τ (h + 2)

[

pτ
e

2
− Θ (− (h + 2))√

2πN

]

+(35)
+ P τ (h − 2)

[

pτ
e

2
+

Θ (− (h − 2))√
2πN

]where, as usual, the h's are assumed do be odd. It an be easily veri�ed that normalizationis preserved by this equation.Note that, if pe is very small, pe

2 − 1√
2πN

may beome negative, whih is meaningless; interms of the overlap, this happens when q−N < π
2 , i.e. when onvergene is reahed up oneor two synapses (in fat, this does not happen with the CP algorithm, whih does not appearto ever onverge). This is justi�ed by the fat that the gaussian approximation we used isnot valid any longer when q− is of order N−1; note however that this is not really an issuefor pratial purposes, as simulations show that in all ases onvergene is eventually reahed,whih is intuitive.2.2. Histogram dynamis for SBPI. In order to move from CP to SBPI, we have toompute probabilities for the new rule R2 to be applied, whih happens when 0 < ∆ ≤ θm with
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probability ps; thus:

pb = 2ps

∫

dµ (ν+) dµ (ν−)

(

ν−
q−N

)

Θ

(

ν+ + ν− − N

2

)

Θ

(

ν+ + (q−N − ν−) − N

2

)

·

·Θ (−2 (ν+ − ν−) + (q+ − q−)N + θm)

= 2ps

∫

Dx+Dx− Θ
(√

q+x+ +
√

q−x−
)

Θ
(√

q+x+ −√
q−x−

)

·Θ
(

−√
q+x+ +

√
q−x− +

θm√
N

)

=
psθm√
2πN

(36)Sine this term is already of order N− 1

2 , there's no need to distinguish between positiveand negative synapses. Thus, eah synapse has a probability pb/2 of moving away from 0 anda probability pb/2 of standing still, sine only half of the synapses are involved in rule R2 eahtime it is applied.We may note that the result does not depend on the internal state of the devie: it isa onstant, ating for both positive and negative synapses. Furthermore, we see that we anredue the number of parameters by de�ning(37) k = psθmUsing eq. 36 we an add rule R2 to eq. 35, getting the full SBPI dynamis:
P τ+1 (h) = P τ (h)

[

1 − pτ
e − k/2√

2πN

]

+

+ P τ (h + 2)

[

pτ
e

2
− Θ (− (h + 2))

1√
2πN

+ Θ (− (h + 2))
k/2√
2πN

]

+(38)
+ P τ (h − 2)

[

pe

2
+ Θ (− (h − 2))

1√
2πN

+ Θ (h − 2)
k/2√
2πN

]The agreement between this formula and the simulations is almost perfet, up to when theaverage number of wrong synapses is very low, i.e. q−N is of order 1.2.3. Continuous limit. Equation 38 an be onverted to a ontinuous equation in thelarge N limit, by resaling the variables:
t =

τ

N
(39)

x =
h√
N

(40)and using a probability density
p (x, t) =

√
NPNt

(√
Nx
)(41)Note that the √

N saling of the hidden variables is the same that we found in the lassi�-ation learning problem (Se. 1.9).
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Using these and taking the limit N → ∞ we get the partial di�erential equation:

∂p

∂t
(x, t) = 2pe (t)

∂2p

∂x2
(x, t) − 1√

2π

∂p

∂x
(x, t) [(4 − k)Θ (−x) + kΘ (x)] +(42)

+δ (x)Θ (−x) γ− (t) + δ (x)Θ (x) γ+ (t)(43)
pe (t) =

1

π
arccos (q (t))(44)

q (t) = 2

∫ ∞

0

dx p (x, t) − 1(45)The two quantities γ− (t) and γ+ (t) don't really need to be written expliitly, sine theyan be de�ned by imposing two onditions on the solution, normalization and ontinuity:
∫ +∞

−∞
p (x, t) = 1(46)

p
(

0−, t
)

= p
(

0+, t
)(47)The reason for the ontinuity requirement is that, if this would not be the ase, the netprobability �ux through x = 0 would diverge, as an be seen by diret inspetion of eq. 38 andonsidering the salings. Note that, in the `standard' BPI ase k = 2, these two onstraintssimply amount at setting γ± (t) = 0, as disussed in the next setion.As a whole, equation 42 is non-loal, sine the evolution in eah point depends on whathappens at x = 0; on the other hand, it greatly simpli�es away from that point: on either sideof the x axis, it redues to a Fokker-Plank equation, with the oe�ient of di�usion dependingon time. The onstant drift is di�erent between the left and right side of the x axis and dependson k, and this di�erene gives rise to an aumulation of probabilities on both sides of the point

x = 0 (expressed by the two Dira deltas in the equation).For negative x, equation 42 reads:
∂p

∂t
(x, t) = 2pe (t)

∂2p

∂x2
(x, t) − 4 − k√

2π

∂p

∂x
(x, t)(48)If the initial distribution, at time t0, is a gaussian entered in x0 and variane v0, then thesolution to this equation is a gaussian whose enter x̄ (t) and variane v (t) obey the equations:

x̄ (t) = x0 +
4 − k√

2π
(t − t0)(49)

v (t) = v0 + 4

∫ t

t0

dt′pe (t′)(50)Let us all g− (x, t, t0) suh a solution, assuming x0 = 0 and v0 = 0 (i.e. assuming the initialstate to be a Dira-delta entered in 0). We an de�ne in an analogue way a solution to the
x > 0 branh of equation 42:

∂p

∂t
(x, t) = 2pe (t)

∂2p

∂x2
(x, t) − k√

2π

∂p

∂x
(x, t)(51)As before, this equation transforms gaussians into gaussians: the orresponding solution

g+ (x, t, t0) only di�ers from g− in that the entre of the gaussian moves to the right withveloity proportional to k rather than 4 − k.
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Figure 10. Evolution of the histograms with time (dark lines to light lines,taken in steps of 3N , from t = 1 to t = 25), in simulations with three di�erentalgorithms (500 samples at N − 32001). In the �rst two panes, the positiveand negative sides of the urve obey di�erent di�erential equations; in the CPalgorithm there's no drift term on the right side, and thus the majority ofthe synapses stays near zero, ausing a signi�ant fration of the synapses tobe pushed bak to the negative side. The distributions are gaussians for theBPI algorithm. In all ases, the initial distribution was random, with all thesynapses at h = ±1.Overall, this gives a qualitative understanding of what happens during learning: away form
x = 0, on both sides there's a di�usion term (the same for both), whih tends to 0 if themajority of the synapses gets to the right side of the x axis. The synapses are `pushed' right bythe drift with `strength' k on the right side and 4− k on the left side. Right at x = 0, there's abi-diretional �ux between the two sides of the solution, suh that the overall area is onservedand that the urve is ontinuous (even if the derivatives are not). Thus, it is evident that both
k ≤ 0 and k ≥ 4 are very poor hoies (and they inlude the CP algorithm). If the majorityof the synapses eventually reahes the right side, the di�usion stops and the drift dominates.Furthermore, even if the learning proess is slightly di�erent, it is lear that a similar proessis responsible for the shape of Fig. 5B. The evolution of the histograms at di�erent times fordi�erent values of k is shown in Fig. 10.Analytially, a solution to equation 42 an be written in terms of the funtions g± de�nedabove: the �ux through x = 0 gives rise, in the ontinuous limit, to the generation of Diradeltas in the origin, whih in turn behave like gaussians of 0 variane that start to spread andshift. Due to the homogeneity of the equation, this allows to write a solution as a weightedtemporal onvolution of evolving gaussians: �rst, we write the initial ondition as p (x, 0) =
p0 (x); then, we de�ne p−0 (x, t) as the time evolution of p0 (x) under eq. 48 and p+

0 (x, t) as thetime evolution of p0 (x) under eq. 51 (these an normally be omputed easily, e.g. by means ofFourier transforms). This allows us to write the solution in the form:
p (x, t) = Θ (−x)

[

p−0 (x, t) +

∫ t

0

dt′ γ− (t′) g− (x, t, t′)

]

+(52)
+ Θ (x)

[

p+
0 (x, t) +

∫ t

0

dt′ γ+ (t′) g+ (x, t, t′)

]with the onstraints given in eqs. 46 and 47. This solution an be veri�ed by diret substitutionin eq. 42; it is not likely to be amenable to further analytial treatment, but it is su�ient fornumerial integration, whih indeed shows an almost perfet agreement with the data obtainedthrough histogram evolution at large N , as shown in Fig. 11A.
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2.4. Density evolution for BPI. In the ase k = 2, the two sides of equation 42 areequal; thus, the terms γ± (t) are both nought, and eq. 42 simpli�es to:

∂p

∂t
(x, t) = 2pe (t)

∂2p

∂x2
(x, t) −

√

2

π

∂p

∂x
(x, t)(53)If the initial distribution is a gaussian entered in x0 and variane v0, p (x, 0) = G

(

x−x0√
v0

)thenthe evolution of the distribution is desribed by the following system of equations:
p (x, t) =

1
√

v (t)
G

(

x − x̄ (t)
√

v (t)

)(54)
x̄ (t) = x0 +

√

2

π
t(55)

v (t) = v0 + 4

∫ t

0

dt′pe (t′)(56)
pe (t) =

1

π
arccos (q (t))(57)

q (t) = erf( x̄ (t)
√

v (t)

)(58)Thus, the gaussian shape of the distribution is preserved, but its enter and its varianeevolve in time: the enter moves to the right at onstant speed, while the variane derivativeis equal to the error rate. Convergene is thus guaranteed, sine the variane an grow atmost linearly, whih means that the width of the distribution an grow at most as √t, while theenter's speed is onstant. Thus, for su�iently large times, the negative tail of the distribution,whih determines the error rate (pe ∼ √
1 − q when q → 1), will be so small that the varianewill almost be onstant, and this in turn implies that the error rate dereases exponentially withtime. If we de�ne the onvergene time Tc as the time by whih the number of wrong synapsesbeomes less than 1, i.e. when Nq− ∼ 1, we �nd that asymptotially Tc ∼

√
log N , whih meansthat the non resaled onvergene time is almost linear with the number of synapses.Fig. 11B shows the overlap and error rate as a funtion of time; the agreement of theanalytial solution with the simulation data is almost perfet, exept when q− is very small, asshown in Fig. 11C. 3. DisussionWe have presented a simple on-line supervised algorithm, whih leads to very fast learningof random input-output assoiations, up to lose to the theoretial apaity, in a system withbinary synapses and a �nite number of hidden states. The performane of the algorithm dependsruially on a rule whih leads to synapti modi�ations only if the urrently shown pattern is`barely learned'. In this situation, the rule requires the synapse to have meta-plasti hangesonly. Only synapses that ontributed to the orret output need to hange their hidden variable,in the diretion of stabilizing the synapse in its urrent state. This rule originates diretly fromthe Belief Propagation algorithm. We have shown that this addition allows the BPI algorithm tolearn a fration of bits of information per synapse with at least roughly an order of magnitudeless presentations per pattern than any other known learning protool already at moderatesystem sizes and moderate values of α. We have also found that the same learning rule boosts
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also the performane of the SP algorithm in multiple-visible-state devies, but that neverthelessa model with only two visible synapti states and K hidden states is muh more robust to noisethan a model with K visible states. Finally, we have shown that in the slightly di�erent senarioof generalization learning, where analytial preditions are possible, onvergene of BPI an beproved in a time whih is almost linear with the number of synapses, while CP does not seemto solve the problem at all.Sine the additional simple rule 2 has suh a spetaular e�et on performane, it is possiblethat neurologial systems that learn in presene of supervision, though being muh more omplexdevies than pereptrons, have found a way to implement suh a rule; however, testing thisexperimentally is likely to be an awkward task with the urrent tehniques, as it would requirethe ability to trak the synapses plastiity and to detet meta-plasti modi�ations, and testwhether they our even in absene of an error signal, and if in suh ase the modi�ation is inthe diretion of reduing the plastiity.From the point of view of large-sale eletroni implementations, using binary swithesinstead of ontinuous values is a big advantage in terms of simpliity, and would allow theuse of urrently available CMOS tehnology. The hidden variables are only needed during thelearning period, and thus they ould be stored separately if the learning and retrieval operationalmodes are distint, but in any ase they need not to be as reliable as they would if they werediretly used in the output omputation, and thus the overhead assoiated with their storageand management ould be greatly redued.Finally, from a more general perspetive, the researh presented here demonstrates thepossibility to suessfully extend the appliation of message-passing algorithms to problemswhose representative fator graph onnetivity is very high, whih is a rather ommon situationin omputational biology. Moreover, these kind of algorithms are distributed in nature andare able to explore e�iently the global phase spae by means of loal omputations only, andtheir study ould be of great importane in order to understand the nature of the omputationsperformed in biologial networks.
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