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Introduction

| started Ph.D. in Complex Systems in Post-Gendidogy in January 2008. The
first two years | worked at the Department of Galiand Biological Sciences of San
Luigi Hospital at Orbassano (Torino), under the esugion of Prof. Raffaele
Calogero. | worked at the definition of the optiation of the analysis workflow for
the detection of alternative splicing events (ASEg)mean ofAffymetrix exon array
data analysis. This work resulted in the followipgblication: C. Della Beffa, F.
Cordero, R.A. Calogerdpissecting an alternative splicing analysis work#ofor

GeneChip® Exon 1.0 ST Affymetrix array8MC Genomic2008.

Since January 2008 until the end of March 2009tiooed the evaluation of several
published statistics for alternative splicing egedetection to further improve the
pipe-line analysis. In the meanwhile, from Octol#608 to January 2009 |
collaborated at a project on amyotrophic laterédrssis, leading in March 2009 to
the publication of an article at the InternatioGainference on Complex, Intelligent
and Software Intensive Systems: S.C. Lenzken, $ar¥illi, F. Zolezzi, F. Cordero,
C. Della Beffa, R.A. Calogero, Silvia BarabimGenome-Wide Search for Splicing

Defects Associated with Amyotrophic Lateral Sclaso@LS), CISIS 2009.

Since April 2009 until February 2010 | started aject on the development of a
guantitative analysis workflow for non-coding RNAuamtification by Next-
Generation Sequencing (NGS). This resulted in aension ofoneChannelGUI

library, that now allows the quantitative analysi$ non-coding NGS data.



oneChannelGUIwas originally a software package for single clermicroarray
data analysis developed in our lab and it is maieth by our group as our

contribution to the Bioconductor project.

Since March 2010 | moved to Helmholtz Zentrum flnfektionsforschung
(Helmholtz Centre for Infection Research) in Brathwvgeig, where | have worked
under the supervision of Prof. Frank Klawonn. Thejgrt | am involved concerns
the analysis of several experimental data setbat sairpin RNAs (shRNASs) for the
detection of liver regeneration biomarkers. My atttask is defining the optimal

statistics to select significantly regulated shRNAs

On the basis of the work | did during my Ph.D. nmag, the thesis is divided into

three main topics:

1.Alternative splicing events detection methods.
2. Next-Generation Sequencing for non-coding RNAdyama
3. Regulation detection in short hairpin RNA sequegceads.

Before explaining in brief the contents of thisdise it is important to say that these
past three years | have created algorithms angzsthdata mostly using R code and
environment. R environment can be freely downloafleth the Bioconductor web

site www.bioconductor.org, which contains manyrdibes”, sets of algorithms to be

used for different kinds of analysis of genomic dam part also proteomic)
experimental data. | have also written routinesdncode, interfaced with R

environment to speed up some algorithms.



Each chapter is organized in this way: it beginth\ai general biological description
of the phenomenon that deals with the developed patetional tool; which

instruments were involved in the experimental poidun of the analyzed data
(microarrays, next-generation sequencing); whidhdital methods were employed,;
the results obtained, explained in detail (pubide, software, study of real data).

In the following a brief summary of the thesis txi

Chapter 1 begins with a biological introductiorséction 1.) to alternative splicing
mechanisms and presenting GeneChip® Exon 1.0 Sfoptabecause all the data
analyzed to detect splicing came from experimernith this type of microarrays.
Always in introductory part of the first chaptehete is a brief description of
oneChannelGU| a graphical interface for pre-processing (quatiwtrol, filtering,
study design, probe set summary and normalizat@m) analysis (statistical
evaluation, ASEs detection, biological classifioa}i of microarray and deep
sequencing dat&ection 1.2deals with techniques to detect ASEs. The finalise
presents in detail two articles | contributed t@008 and 2009. In the first article: C.
Della Beffa, F. Cordero, R.A. Calogemissecting an alternative splicing analysis
workflow for GeneChip® Exon 1.0 ST Affymetrix arrayBMC Genomic2008, the
performances of some statistical methods to dét€&is at exon-level in microarray
data are evaluated. These methods were subsequaptBmented in the R library
oneChannelGUI The second article: S.C. Lenzken, S. Vivarelll, Zolezzi, F.
Cordero, C. Della Beffa, R.A. Calogero, S. BarabiG@nome-Wide Search for

Splicing Defects Associated with Amyotrophic LateraSclerosis (ALS).



International Conference on Complex, Intelligend éoftware Intensive Systems;
CISIS 2009, was published as part of the CISISam@mice. In this study the pipe-line
presented in the article of 2008 is applied to amoyahic lateral sclerosis models to

identify alternative splicing events.

Chapter 2 begins a new part of the thesis with a biologd=dcription ¢ection 2.}

of non-coding RNAs (specifically focused on microR and of a recent high-
throughput technology called Next-Generation Seguen (NGS) éection 2.2
devoted to the generation of massive DNA/RNA seqesrdata. The sequences |
analyzed were obtained with one of the most reddit-Generation Sequencing
technology, called SOLID, developed by Applied B&tems company. Following
section 2.3deals withncSOLID R library, through which next-generation sequences
data for quantification of non-coding RNAs are gmat. This library became part of

the libraryoneChannelGUI

Chapter 3 deals with the project | am actually working atlidleoltz Centre for
Infective diseases research in Germany. ShaminaRNAs (shRNAs)gection 3.}

are a type of silencing RNAs that, in this case/ehbeen used as biomarkers to
support liver regeneration. The purpose of thisdygtuvas to detect regulated
(up/down) shRNAs between a normal and a diseasdittmm ShRNAs were first
sequenced with Illlumina Genome Analyzesedtion 3.3, another NGS technology,
and then analyzedsé¢ction 3.3 with the most recent published methods, using
different kinds of data normalization and filteritgchniques to reduce the noise of

the data set.



1. Alternative splicing detection methods

This first chapter is organized in seven sections geveral subsections. The
introduction explains the mechanism of alternaspécing, showing which are the
main types of detected events; then array platfased for genomic experiments is
presented. SubsequentiymeChannelGUIsoftware part of the Bioconductor open-
source project is briefly described. In the “Metlbdection,first the workflow for

the analysis is dissected step by step, from pvegssing (summarization,
normalization, filtering) to the proposed methods the statistical analysis of the
genomic data. In the section “Results and conchssiadhe two articles | contributed
to during the Ph.D. period are presented in dedtakting with the involved type of
experiments, which resulting data were pre-processdore being subjected to a
deep analysis from a statistical point of view &tedt alternative splicing events

(ASEs).

1.1 Introduction

Alternative splicing is a process by which the exah the RNA produced by gene
transcription (pre-mRNA) are joint in multiple combtions during RNA splicing

(mMRNA). The resulting different mMRNAs may be traet into different protein

isoforms.

Alternative splicing is a widespread phenomenoreukaryotes, greatly increasing



the diversity of proteins that can be encoded leygbnome. Abnormal variations in

splicing might contribute to the development afica or genetic diseases.

Several types of alternative ASEs are commonly kn¢t}, between them “exon
skipping”, where an exon may be spliced out ofghenary transcript or retained, is

the most common in mammalians.

A high-throughput approach to investigate splicirlg DNA microarray-based
analysis. Thearray platform produced byffymetrix is a 1.28 crh silicon chip
divided into micro-cells (features) on which DNAagiments constituted of 25 base
pairs (probes) are synthesized to be hybridizedh WDNA or cRNA sequences
(targets), previously labeled with fluorescent noales to get a bright signal,
proportional to expression level. In this way théobal expression of the
transcriptome is available and it is possible tsgrinformation on the expression of
thousands of genes at the same time, with a ummga®array and this can reveal the

presence of alternatively spliced mRNAs.

In the studies shown in the articles saction 1.3 data were produced with exon

arrays. These array&éneChip®Exon 1.0 ST) contain over 1.4 million probe sets
(constituted by up to four probes each), spreadsacexons from all known genes,
enabling two complementary levels of analysis: gerpression (gene-level) and

alternative splicing (exon-level).

The pipe-line to detect alternative splicing eveiris microarrays experiments,

(section 1.3) was implemented as part of the softwaneChannelGU| coded in R.



R is a programming language and environment, deitédr people working with

statistics because it is rich of libraries, setalgbrithms, to statistically analyze data
coming from biological experiments. Twice a yeaedh libraries are updated and
new libraries come outneChannelGUIlwas developed by Prof. Raffaele Calogero,
Dr. Francesca Cordero and Dr. Remo Sanges and begarhof the Bioconductor

[3] libraries in October 2007 [4]. My contributiomas related to the addition of the
code for the analysis at exon-level presented m plaper described later on.

oneChannelGUIis based on two previous software packages:

* limma (linear_models for microarray data) [5]: is a gatieation of Lonnstedt
and Speed model [6], a parametric empirical Bayesipproach using a
mixture of normal distributions and a conjugateoprideriving a simple
expression for the posterior odds of differentigbression for each gene. The
posterior odds expression is a useful means ofimgndienes with respect to

their differential expression [5].

» affyimGUI : a graphical interface to analyze data frAffymetrix microarrays

usinglimma.
oneChannelGUI is a R library that extends the capabilitieatiflmGUI graphical
interface. This library was developed to simplihetuse of Bioconductor tools for
beginners having limited or no experience in wgtiR code [4]. This library allows a
complete analysis of different type of data setanfpre-processing (quality control,
filtering) to differential expression detection, olmgical interpretation and
classification.Affymetrix 3' IVT, Human Gene 1.0 ST and exon arrays west fir

implemented [4].



1.2 Methods

Generally splice detection methods are based oilasinypothesis [7]:

* the exons that constitute a gene are assumed poopertional to each other
across different samples;

* a model to predict exon response is fit;

* a statistic to measure how much biased is thewlifitarespect to the model, is
used: a p-value is computed to establish the sugmfe of the obtained
results.

The steps that precede splicing events detectmsdrematically shown below:

Data - Summarization- Normalization - Filters - Statistics-. ASEs detection
Raw data coming from replicated biological expeniseare the fluorescent signals
of the probe sets describing exons. They must barsuized to get a mean value
(expression) representing each exon/gene. Then iexamsities must be normalized
with respect to their respective gene intensitynitke exon expressions independent
from the gene they constitute. These values arerdd to remove the lowest and
noisiest values that are most likely to be not ificent after further statistical
analysis and that interfere with ASEs detectionnstituting false values.
The expression of a transcriptome obtained withroaicays experimental data is
proportional to the fluorescence intensity obtaifiean hybridization of transcripts
with DNA probes on microarrays. Once experimentalbtained the bright signal

(due to a fluorescent dye on the probes) theresange techniques to obtain gene



expression (called summarization methods, whichprdenthe mean intensity of the

probe sets) and methods to filter the signal, ¢hatbe contaminated by:

* background noise: noise due to experimental backghofor example to

unspecific hybridization of the probes with sequendifferent from those of
genes complementary to them;
* bias: system errors that can be deleted normalithiagsignals with respect to
those of a reference array (for example the arifly nvean expression values);
» outliers: extreme values (very high/low with redptecthe mean values of the

signals) in some replicates of an experimental $amp

After having filtered out the signal with backgrauadjustment techniques (to delete
unspecific hybridization), normalization and resdaof extreme values (which are
likely mistakes and hence to be deleted) it is ipbesdo analyze alternative splicing
events using different detection methods.

The following two subsections deals with the preegesssing phase and the statistical

analysis of the data, respectively.

1.2.1 Summarization, normalization and filters

Summarizing, normalizing and filtering the datanigportant before performing deep
statistical analysis of any genomic data set. is $lection these three techniques of

handling data, are presented in detail.



Summarization

A general summarization model, to get gene/exonresgmion from probe set

intensities, formulated by Li and Wong [8], is basen the hypothesis that the

intensity measured for arrays 1...J and probe&=1..K is

Vi =0 Ca)+e, (1)

Yix =PM; —MM,  difference of insitres;

7, expression value for array

¢, PM probe affinity (cross-hybridization);

&y error.

This is the base on which are constructed thewiatig two algorithms,
RMA (Robust Multi-array Analysis, Irizarry 2003) [91,0]
log,(PM , )=9, +@ + &, )
PLIER (Probe Logarithmic Intensity Errofffymetrix2004)

Similar to RMA but keeps into account MM probes piet] [12],

IogZ(PM K — MM jk)= ﬂj @ E (3)

Normalization

To get exon expressions independent from their gapeession, we compared the

performance of the ASEs detection methods witifdhewing Splice Index(SI),

exon
Sl =1 —
ng( genej (4)

whereexonmeans exon expressi@enemeans gene expression.



Filters
The following five filters were used to remove thasy elements:

« Background correctiomremoves intensity signals low with respect to a

threshold (intensities lower than 1 in our caseti@mesformed into 0).

« Cross-hybridization correctiodeletes the probe sets in which every probe

perfectlypartially matches more than one sequence of thedript.

« Delta Splicing Indexonsiders only the intensities which differencengen

Sl of treatment and control is higher than a fike@shold.
Sl; = |092(I:) Sl = Iogz(%) ASI = \SIT - SIC\ (5)

Here the Splice Index is computed asltwp of the ratio between a valu€ ¢r
C) with respect to its mean value. Delta Splice indethe absolute difference

between the Sl of treatment and control cases.

« Multiple mMRNASs retentionis a filter to retain only genes associated to more

than one transcript in the ENSEMBL database.

» Detection Above BackGround (DABGompares each probe signal to a
distribution of background probes with the same Gd6Gtent [13]. A DABG p-
value representing the probability that the sign&nsity is part of the null

distribution is computed and only probes with aghse lower than a p-value
cutoff are retained. We also decided to considér 8% of values filtered by
DABG.

Hereafter are presented seven statistical methiaasyn from literature, which

performances were evaluated at exon-level on ahpeaik experiment.



1.2.2 Detection methods

In this section some published methods (MIDAS, RBnéduct, OS, ORT, MADS,
FIRMA, SPACE) for alternative splicing events deimc are described, tested on a

benchmark experiment on exon probe sets and ¢odata

MIDAS
Proposed byffymetrix, MiDAS (Microarray_Detection of Alternative Splia) [7]
is an ANOVA (analysis of variance) based methdais Tetection statistic is based
on the logarithm of the Splicing Index (presentedthe previous normalization
description insection 1.2.}, a basic metric for the analysis of ASEs: it im@asure
of how much exon specific expression differs betw&e samples [7]. The first step
Is to normalize the exon-level signals with resgedhe gene-level signals and then
take the logarithm of this ratio, mathematicallansformed into the difference
between logged signal of each exon and its gene).

Iogz[%] =109, (& )-l0g, (g, (6)

ik

| exon,]j array, kgene;

« € exon-level expression;

* 0y, gene-level expression.
Sl is used to remove the gene-level differentigregsion, in the estimation of ASEs.
If the Splicing Index of an exon is constant intak experiments, then we can say

that this exon is not spliced.



A model for possible splicing is:

.
€ =y L Py L0y (7

| exon, | array, kgene;

g, exon-level expression;

Q. ratio of exon signal to its gene signal in the gkemwhere it is maximally
expressed;

* 0< p, =<1 proportionate expressiomxdni of genekin samplg;

gy gene-level expression.

Dividing both sides of the model [ 9 wietain the Splicing Index and taking the

logarithm reduces this to an additive model:

Iogz(eljk )_ Iogz(g ik ) = |092(aik ) + IOgZ(pijk) (8)

Gene-level analysis

MiDAS includes an error teri€j  and possible interactiol Vi« comparing:

|0g2(eljk )_ Iogz(gjk): |092(aik)+ |092(pijk )+ Vic T Eix 9)

wondering if ass samples and exons.
|ng(pijk ) =y =0

Exon-level analysis

MIDAS considers the situation an exon at a time $@]tha1|ogz(aik); constant and
it is appropriate to consider the model excludimgriactions:

IOQZ(tek )_ Iogz(g ik ) = logz(aik ) + Iogz(pijk )+ Eik (10)



to test the hypothesis of no alternative splicingtésting for the constant effects
model Iogz(pijk ) =0 for glsamples.

Let us define Sensitivity and Specificity statiaticmeasures:

» TP —condition presen& positive result

* TN —condition absent& negative result

* FP —condition absent& positive resul(type | error)

* FN —condition presen& negative resultype Il error)

« TRUEs=TP +FN

« FALSEs=TN+FP

sensitivity = TP

« True Positive Rate ensitiviy = =~
TN

« True Negative Rate Specificity = TN +FF
. FP

- False Positive Rate 1~ SPecificly =——"—C
| FP

« False Discovery Rate FDR = FE+ TP

A Receiver Operating Characteristic (ROC) curveaisgraphical plot of the
Sensitivity versus (1 - Specificity): it measureshwell a statistic differentiates true
alternatives from false positives.

To do that we need a known set that does not exditernative splicing (the null set)
to be compared with a known set that does exhlit@treative splicing (the alternative
set). MIDAS shows considerable improvement in ti@CRcurves when using exon-

level detection over gene-level detection [7].
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Rank Product

Rank Product [14] is a method usually used to dejene differential expression in
microarray data; it is a non-parametric statittat detects items (genes/exons) that
are consistently highly/lowly ranked (outliers) lwirespect to their differential
expression in a number of lists, for example repécexperiments. Rank Product is
based on the assumption that the probability adifig a specific gene among the
top/downr of nitems in a list i = r / n. Computing this gene rank probability for
every experiment and multiplying these results detml the definition of Rank

Product [15]
re= 1 ;—k (11)

« r, s the rank of gerlein replicatei ;

* n; total number of genes in replicate

For single-channel arrays, e. Affymetrix GeneChip arrays, the Rank Product values
are calculated over all possible pair-wise compassbetween samples. Therefore
the Rank Product value cannot be used directlyskess the significance of an
observed expression change because we are inteiastee combined probability
that a gene shows a certain expression patterosaall the arrays. A simple
permutation-based estimation procedure providesnawseful way to determine how

likely it is to observe a given Rank Product vatudoetter in a random experiment.



The step by step procedure of the Rank Productitiigois the following:

1.

Compute the fold change (FC) between eachopantensities belonging to
samples in different conditions (e. g. treattrand control), for each gene.
Associate to each FC a position (rankhalist, according to the FC increasing
value. Then compute the Rank Product of thasks, as shown in (11).
Generate p permutations of the elements (gefdls®e data set within each
sample, respectively. Then repeat what dyrekone for the original data set at
step 1: compute for each gene the FC betweegene intensity of each couple
of new samples. Subsequently, associatesrenthese FCs and compute Rank
Products as in (11).

Compare the Rank Products computed in step 12andunt how many times
the Rank Products of the permuted gene sittea (computed at step 2) are
smaller or equal to the Rank Product ofghree intensities in the original data

set (step 1). Call this resalt
Calculate the mean value for the Rank Produetch gene as/ p.

Calculate the p-valuas(c/p) / (n * p), where n is the total number of items in

each sample.

Only those genes which have p-value lower thamrtaioethreshold (commonly 0.05)

are retained because considered differentiallyesgad.



Advantages of Rank Product over previous statistezdniques:
» simple: a few weak assumptions on data (equal vegiéor all the genes);
* intuitive: the method is based on the idea thawvaait changes should always
be large, while small changes may have statistimal rarely biological
significance [15].

 significant results with small data sets: a fewlioeyes because Rank Product

does not rely on estimating the measurement vagiforceach single gene.
In conclusion, Rank Product represents a powerdst tstatistics for defining
differentially expressed genes in microarray expents and its use could potentially

be extended to proteomic data analysis and highugjimput sequencing techniques.

OS & ORT

Although OS (Outlier_Sum) [16] and ORT_(Outlier Rsb T-test) [17] were
developed with the aim of outlier identification @ancer samples, they were tested
on their capability of ASEs detection, interpretiA§Es as exonic outliers. OS and
ORT are two statistical methods based on scalind eentering of resulting

intensities from experiments, i. e. on the datadsdedization.

x|

The classical standardization it = 2~ *
o

where;< is the mean value ofand & is the standard deviation »f



Tibshirani and Hastie [16] define the t-statisiickie used in OS, with the median

value instead of the mean and the median absokuimtbn (mad) instead of the

variance, X =m (12)

madj

Instead Baolin Wu [17] defines the t-statistic ®oused in ORT in the following way,

% ~Mmed, (13)

mediar{ ‘xij —med, . }
i

Xj =

X~ medzj

isnl"
with X gene expression,

med, = median (x; )

mad, = medianiﬂxij - medj‘}

med,, = median (x,,) 1 — normal tissue sample

2 — disease tissue sample
med,; = median (x,;)
n; number of genes of the normal samplenumber of genes in the disease sample,
N, + n, = n total number of genes.

Baolin Wu [17] re-defines OS, so the final statistare respectively:

OS — Tibshirani & Hastte

W, =3 x; O[%; > ays(i) + IQR(I))] (14)
W, = > % 0% < Gys(i) ~ IQR(i)] (15)

wherel is the indicator function an@R the interquantile range as follows, so

that values greater than the lir IQR(xi'j ) =d.5(1) — g, (i) are defirte



be outliers in the usual statistical sgi$¢ [17]. Then they set the outlier sum
to the larger oW, ,W' in abselutlue. This is called “two-sided outlier-sum
statistic” [16] and explicitly looks fowdiers in group 2, treating group 1 as
reference.

* OS - Baolin Wu:

o Xl ~med) (16)

j mad

wherdR is the set of “outlier disease samples” definedhayfollowing

heuristic criterion [17]:

R={i>n,:% > ds(x) + IQR(x,)} (17)
This is equivalent to “OS — Tibshirani &astie”, since the subtraction and

scaling would not change the order ofdhserved values [17].

e ORT — Baolin Wu:

T.' _ Zi[uj (X'l - meqj)

J
medlar{ ‘xij —meqj‘ignl,‘xij —med,,

(18)
i=n

wherdJ; is the set of the disease sample in which theae isutlier,
U, :{ >N, X > 0r5(X) + IQR(X )} (19)

These techniques hypothesize that only some disesasples contain outliers. When
the sum of all the intensities overcomes an ‘arpiioit, there happened alternative
splicing. ORT is a method consequent to OS aneibtan this one: while OS gives

good results with a few samples, ORT works betidr many samples.



MADS

MADS (Microarray Analysis of Differential Splicing[18] is a method to discover
differential alternative splicing from exon microay data, similar to MiDAS
(previously described) because based on Splicidgdiection 1.2.) asthe ratio of
its background-corrected probe intensity to theredged genexpression index [18]
Then two separate one-sided t-tests are useddssashether the Splicing Indices of
a probe are significantly higher or lower in onenpé&e group over another group [18]
and these constitute the p-values for individuabbps. Then p-values are

transformed via the formu x = =2log,(p) Fisher's method).

Under the null hypothesis that the exon targetsnatedifferentially spliced, the p-
values follow a uniform [0,1a] distribution, andethransformed palues follow a
X, distribution with 2 degrees of freedom. Thansof the transformed p-values
follows a X5 distribution, wherd is the number of probes. This sum of the
transformed p-values is used to calculate a prebéesel p-value, which is used to

rank all probe sets [18].

Therefore the main distinction between MADS and W#is that MADS calculates
splicing indices and p-values of individual probsesparately, prior to the
summarization of a probe-set-level p-value. By castt Affymetrix’s approach first

calculates an overall exon-level expression indeon( four probes per probe set),
prior to Sl calculation and statistical testing. BI8 software is available at

http://biogibbs.stanford.edu/zyxing/MADS/




FIRMA

FIRMA (Finding Isoforms using Robust Multichip Aals) [19] algorithm detects
alternatively spliced exons in individual sampbleg#hout replication or pre-defined
groups in the samples, from GeneChip Human ExorSI.Odata. It does not take
into account the fact that in some probe sets, &ihn@obes overlap in sequence,
introducing additional correlation which may bidtemative splicing detection [19].
This algorithm is sample-by-exon specific: eachreaod sample pairing is given a
score that is comparable across either samplesgsgen exons [19]. This score
derives from previous information from the estiroatistep, based on RMA
summarization. For an exon array, a more geneuitiael model can be considered,
including the possibility of alternative splicing different levels of expression per

exon, (20)

109, (PM ()= ¢ + &+ dy + Py + &)

« g is the relative change in exon expression for gxon

« dj is theinteraction between chip and exon giving the retatchange for
samplé in exon;j;

* Py is the nested relative probe effect fioe k-th probe in exom;

* S error.

ik (j
Large values of this parametdy point out differential alternative splicing. Rather
than estimate; explicitly, it is proposed to fit the standard RM#odel in

log,(PM, )= ¢ + p, + & (21)

for an exon array. In this way, the problem of detey alternative splicing is

considered as a problem of outlier detection.



Let define fu = Yic -G - Dy as theiduals from fitting the standard model in first
equation. Then for each exgrand sampld, a summary score based on the four
residuals (one for each probe) from exoand sampla gives a measure of the
discrepancyd; in the expression of the exon in that sample. @&dweoring functions
could be used (mean, median, lower quartile, minnad the absolute residuals), the
median of the residuals in an exon gave the badetff between sensitivity to the
size and sign of the residuals and robustnesstertiall number of probes [19].

This gives a final score statistic,

F, = median % (2)
” KJexon j S

The estimate of the standard ersas the median absolute deviation of the residuals
and this helps in comparing the scores betweewrdift genes. The tereis not
estimated separately, because it is comprisedhetprobe estimates.

Two main differences between MIDAS and FIRMA are thipe of summarization
used to get exon/gene signals and the fact thatAfiDequires samples with
replicates while FIRMA does not. But these two teghes were both tested on a
reference data set with replicated experimentaah €ondition.

FIRMA algorithm is implemented in treroma.affymetrixR library.



SPACE

SPACE (Splicing_Prediction And_ Concentration Estiov® is an algorithm to
predict and quantify alternatively spliced isoformsing microarrays. It has been
developed to [20]

1. Estimate the number of different transcripts esped under several conditions.
2. Predict the precursor mRNA (pre-mRNA) splicing stuue.
3. Quantify the transcript concentrations includimknown forms.

This algorithm applies 'non-negative matrix factation' (NMF) to the matrix of
data [20]. NMF is a factorization for non-negativeiltivariate data. Given a matrix
of non-negative datd®, NMF finds an approximate factorizatioh ~ W-H into
matrices with non-negative elemehi¥sandH.

When applied to microarray data, NMF separatesitta matrix for each gene into
the product of two positive components correspampdolthe structure of the gene
transcripts and their individual concentrationspextively.

SPACE includes also an algorithm to determine thiernal dimension of the
factorization that is an estimate of the numbetrahscripts of each gene. SPACE
original algorithm is written with MatLab 7.1 and freely available online as
additional file of its reference paper [20]. SPA@&Es implemented in R code to be
evaluated with the benchmark experiment, afterwprdsentedsgection 1.3.3

The following table summarizes the different shomethods with the relative

summarization techniques (if defined within the inogt), filters and statistical tools.



Summarization Filters Statistic
MiDAS PLIER - ANOVA based on Sl
Rank Product - - signal ranking

(O - - t-test

ORT - - t-test
SPACE - - expressions factorization
MADS similar to PLIER crosshyb, BG based on Sl after BG
FIRMA RMA BG score ranking

Table 1.The seven above-mentioned methods for alternagiveirsy events detection are based on

different statistics and suggested to be used soction to some particular summarization and

filtering tools.

In the next section, each method performance wall dvaluated on a reference
benchmark experiment, specifying how the data aevigusly summarized, if

possible and which different filters where usedtoid noisy and unclear results in
the detection of alternative splicing events. A tieginning, analyses with MiDAS
and Rank Product were performed in Windows XP dpegasystem. MADS,

FIRMA and SPACE were also run in Windows XP. BunhR#&roduct resulted to be
quite slow and with the purpose of increasingrthmber of permutations (from 100
to 1000 or 10000), it was better to run it on UN$¥rver. The entire project was

developed in R environment, on Windows XP or UNX/ieonment.



1.3 Results and conclusions

Dissecting an alternative splicing analysis workflofor
GeneChip® Exon 1.0 ST Affymetrix arrays

In the article here presented [13] an exon-lev&h daalysis workflow is dissected to
test the performance of each step and optimizireg dbtection of ASEs. Tissues
comparison is characterized by big changes in istdeexpression, which might not
be the case in other situations. In tissues compamnly part of the TPs is known on

the basis of published data, while in a spike-itadzt true positives are known.

Enstooooo2e3ts  [H @A) 3 HHT ]
ensToooootses’e  [H 8] (H] (HHT ]
15 - non-thyrold
thyroid

Log 2 Intensity
a
I
-
\-I_E__.______-_-_‘_‘_

Tissue comparison

Fig. 2 Tissue-specific SLC25A3 transcripts from [2]L The expression plot shows the méagp
intensity signals (with standard error bars) ofecprobe sets targeting SLC25A3 exons in the
thyroid compared to non-thyroid tissue (bottom)eTgrobe sets are plotted from left to right by
genomic location (5' to 3'). The horizontal dashed shows the medog; intensity of the negative
control probe sets. Probe sets with intensitiesvioehis line are most likely unexpressed. In this
case these probe sets are targeting either intregions or UTRs (in orange). Ensembl transcripts
for SLC25A3 are shown below the plot. Probe set# \Benjamini-Hochberg corrected p-values

less than 0.0001 are indicated by a black arrow.
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Fig. 3 Example of significant change in exoray, intensity between treatment (32.2, red) and
control case (128, blue), in the benchmark experinieis evident that the exon in forth positien i

differentially expressed, withlag, (FC) equal to 1.

Tissue splicing events are not the ideal instruntentest an analysis workflow.
Hence, a semi-synthetic exon-skipping benchmarkeexgnt from GeneChip®
Exon 1.0 ST microarray data was built up for gwaluation. The final results point
out that summarization methods (RMA, PLIER) do raftect the efficacy of
statistical tools in detecting ASEs. However, data-filtering is mandatory if the
detected number of false ASEs is meant to be redlUdeDAS and Rank Product
methods efficiently detect true ASEs but they suffem the lack of multiple test
error correction. The intersection of MIDAS and Radroduct results efficiently

moderates the detection of false ASEs.

The last subsection concerns an attempt of impremerof the pipe-line with some

other available statistical tools.



1.3.1 Introduction

GeneChip® Exon 1.0 ST is a new microarray platfaieneloped and marketed by
Affymetrix [22]. This microarray platform changes the conweral view of
transcript analysis since it allows the evaluatbithe expression level of a transcript
by querying each exon component. This enablesttidy ©f specific alterations in

splicing patterns such as those found in assoaiatith cancers [22].

The GeneChip® Exon 1.0 ST microarray platform isdoh on methods quite
different from the 3' IVT arrays expression detacti Whilst the conventional
Affymetrix GeneChips feature a probe set consisting of 1pr@0es selected from
the 3' end of the mRNA sequence, the new all-exoays have 4 probes selected
from each putative exonic region. To generate déinget, Exon 1.0 ST arrays use T7
linked random hexamers for cDNA synthesis, instefdthose of all previous
Affymetrix expression arrays, which employed an oligo-dT dthKT7 and thus
required an intact poly-A tail. Importantly, thiew WT Sense Target Labeling
Assay generates DNA targets and therefore resulBNA/DNA duplex formation
during hybridization, as opposed to DNA/RNA hetdiglexes in conventional
arrays. It has been shown that there is close ammebetween the conventional
Affymetrix 3' IVT arrays and the new Exon 1.0 ST arrays [EBlithermore, Exon
1.0 ST sensitivity of gene expression detection stemvn to be in the same range of
3' IVT arrays [2]. Though at gene-level 3' IVT aktkon 1.0 ST show similar

behavior, Exon 1.0 ST technology raises some isslmsit the computational



instruments to be used for the analysis of exoetlelata. Affymetrix proposed an
analysis workflow based on pre-filtering of the eegsion data [7], transformation of
exon-level intensity data in gene-level normalizatlies called Splice Indesdction
1.2.7) and statistical validation based on an ANOVA lohaseethod based on
measuring differences between an exon-level signdlaggregated gene-level signal

called MIDAS gection 1.2.2.

There has however been no way to date of defirhegefficacy of this workflow or

of different statistical methods in the detectidnatiernative splicing events. The
ideal instruments to evaluate the effect of daergocessing and the efficacy of
different statistical methods on differential exgm®ns are benchmark spike-in
experiments [24], where a limited number of traipgsrare spiked-in at various

concentrations in a common mMRNA background.

In spike-in based experiments it is therefore fmssio investigate differential
expression sensitivity as a function of the falsealvery rate (1-specificity). In this
study a semi-synthetic exon-skipping experimentoerpassing 268 exon skipping
events, was generated starting from the Latin-ggspike-in experiment of Abdueva
[2]. The semi-synthetic exon-skipping data set wasd to evaluate the effects of
data pre-processing as well as the performanosastatistical methods, MiDAS [7]

and Rank Product [15], on ASEs detection.



1.3.2 Methods

Exon-skipping events were generated using expetah&ata, kindly provided by
Abdueva [2]. MIDAS p-values were calculated usirg tsoftware provided by
Affymetrix in the APT tools (http://www.affymetrix.com). RarfRkroduct gection
1.2.2 is a non-parametric statistics that detects itéinag are consistently highly
ranked in a number of lists and the significancéhefdetection is assessed by a non-
parametric permutation test [15]. RP was coded jnnf®difying the available
implementation (Bioconductor [3RankProd package [14]), to be used for ASEs

detection.

Specifically, in ASEs detection RP is run on tistslimade by Slis (R or intensities
(RP) for all exon data set without considering thes@ciation to a specific gene and
the significance of the detection is assessed usitypermutations of those lists.
Gene-level implementation of RP, i. e. running Riyoon the subset of exons
belonging to a specific gene, is computationallgndeding and it is characterized by
a very poor sensitivity. The modified RP method vasll as all the filtering

procedures are embedded in the BiocondumteChannelGUI[4] package.



1.3.3 Results

A benchmark experiment to validate ASEs detectioathods

Exon skipping events were generated using the erpatal data, kindly provided by
Abdueva [2]. The Abdueva data set is a Latin-squgeriment encompassing 25
genes, selected as ideal spike-in genes due toetk@iessiorabsence in Hela cells,

which represents the mRNA background of the expamm

Gene-level Exon-level probe
probe set set
|
[ ]
G1 E1l E2 E3 E4 ES

32pM

exon

. skipping
events

Fig. 4. Example of a set of exon skipping eventspf [13]. The gene-level probe set (gene) G1
is made of 5 exon-level probe sets (exons) E1, BE2, E4, E5. Exon-level probe set signals
associated with 128 pM spike-in are black wherggsats associated with 32 pM spike-in are gray.
New genes are created combining exon-level exmmessiderived from different spike-in
concentrations. In this specific case, the comimnatf 128 and 32 pM spike-in signals for gene G1
are used for the generation of 5 new genes (G14ki@ESskipE2, etc) each one characterized by a
skipping event, given by the spike-in at 32 pMoime of the 5 exons of gene G1. The unspliced
exons are instead given by the 128 pM spike-in.tRersake of simplicity only one out of the three

technical replicates is shown.



The spike-in concentrations were 0, 2, 32, 128 %l pM and the 25 genes were
grouped in 5 subsets. Each experimental point eawically replicated three times
for a total of 15 arrays. To build the exon skigpimenchmark experiment 4 out of

the 5 groups of spike-in genes (20 out of 25 gewesg used.

3 -

S| G5skipE3 S G5skipE3 e
128-32 N 2-0 ,

PSR

v

Fig. 5. Example of a set of exon-skipping cleaningrocedure, from [13]. The cleaning
procedure, applied to all new genes characteriyeal $kipping event, retains only those where the
synthetic skipping event represents the smalléshsity or SI value within the exons belonging to
the gene. Here, it is shown the example of genev@tch is made of 7 exons and therefore
produces 7 new genes, G5skipEl, G5skipE2, etc.58kIBE3 gene, exon E3 should be the only
exon characterized by the smallest SI. G5skipE® gemetained in the set 128-32, since E3 (gray)
is characterized by the smallest S| within all drex (black). The gene is instead removed in the set

2-0 since exon E5 has a Sl smaller than the oeaaf E3.

We focused on those because they were all panedExon 1.0 ST core annotation
subset. The overall idea of the generation of sticlexon skipping events is based
on the availability of exon-level signals for spiikkegenes. Therefore, it is possible to
create new genes characterized by skipping eventbiaing, for the same gene,
exon-level expressions derived from different spikeoncentrations. An example is
given inFig. 4, where the combination of 128 and 32 pM spikeignals for gene

G1 are used for the generation of 5 new genes@aeicharacterized by a skipping

event in one of the 5 exons of gene G1.



In our semi-synthetic data set the new genes, cteized by skipping events, are
generated using different associations of spikesmcentrations to evaluate the effect
of signal intensity in the detection of alternatisjglicing. For each exon of the 20
genes we produced three sets of synthetic exompiskjevents: 128-32, 32-2, 2-0.
Specifically in the exon skipping set called 128&8®% of the new genes has all exons
signals given by thieag, intensity (log2l) measured upon a spike-in of pR8unless
the exon skipped, which has the log2l measured @pspike-in of 32 pMKig. 4,
G1skipEl, G1skipE2, etc.). The gene-level logdhstead the one measured for the
128 pM spike-in Eig. 4). Same design applies to the other two sets afl ekpping

events, 32-2 and 2-0.

This semi-synthetic benchmark experiment embedesta of 268 exon skipping

events. Furthermore, the skipping events were nignuspected, in each of the
three exon-skipping sets (128-32, 32-2, 2-0), ideorto retain only those genes
where the skipping event represents the smalléshsity signal or Splice Index

(section 1.2.) within each synthetic gen€&ig. 5).

This cleaning procedure yields:

» atotal of 172 skipping events out of the origiR@8 for the 128-32 group, 195
for the 32-2 group and 179 for the group 2-0, iénsity data are used.

» atotal of 174 skipping events out of the origiR@8 for the 128-32 group, 193
for the 32-2 group and 164 for the group 2-0, ii&fa are used.

To identify exon-skipping events a comparison betwivo different conditions, i. e.

unspliced versus spliced, ieeded. Detection of exon-skipping events for thesst



128-32 was done comparing it to the unspliced gi&ed in at 512 pM (called 512),
for the subset 32-2 comparing it to the unsplicetcspiked-in at 128 pM (called 128)
and for the subset 2-0 comparing it to the unsgliset spiked-in at 32 pM (called
32). These comparisons embed a certain level tdrdiftial expression at gene-level.
The expected gene-level differential expressiagivien bylog,(128/512) = -2 for the
comparison of the 512 versus the 128-32 subsetbyridg,(32/128) = -2 for the
comparison 128 versus 32-2 subset. It is inskegd2/32) = -4 for the comparison 32

versus 2-0 subset.

RMA versus PLIER summarization

RMA and PLIER algorithms were used to combine titerisities belonging to the
probes of each probe set to form one expressiorsunedor each gene/exon-level
probe set (summarization). The effect of these sanzaition methods on detection
of alternative splicing events was investigatech@dviDAS. A Receiver Operating
Characteristic (ROC) curve was used to evaluateffieet of intensity summaries on
alternative splicing detectionFig. 6, continue lines). Our data suggest that the
efficacy of detecting exon skipping events is Mteéaed by summarization methods.
On the other hand the reduction of the complexitthe data set, e. g. selecting only
those ENSEMBL [25] genes associated with more tbae transcript isoform
(multiple mRNAs filter), strongly increases the sinity of the test Fig. 6, dashed
lines). Comparing the ROC curves of the 3 groupdabé Fig. 6, Fig. 7, Fig. 8) it is
evident that multiple mRNAS filter throws out mampre false values, after MIDAS

analysis of the data set summarized with PLIER orMAR



Filtering approaches to moderate multiple testingers

A critical issue, highlighted irFig. 2, is the important number of multiple testing
errors that are accumulated if the full set of Exio@ core data is used for the
detection of ASEs. To moderate this critical isswe decided to reduce the
complexity of the data set filtering non-informagivdata (TN) before statistical

analysis, using annotation and intensity baseer$ilt
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Fig. 6 [13] MIDAS exon skipping detection using RMA or PLIERnsmarization. ROC curves
were used to identify the effect of data summaiorabn the detection of ASEs. ASEs were
detected using MiDAS on the full core Exon 1.0 Sitadset (continuous lines) using RMA (red
line) or PLIER (black line). The same analysis \&® applied to a subset of the core Exon 1.0 ST
data set by encompassing only those gene/exon+beubke sets passing the multiple RNAs filter
(dashed lines), i. e. those exons of genes assddiatmore than one mRNA isoform in ENSEMBL

database.
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Fig. 7 Comparison of ROC curves @P8-32groupon the results obtained with MIDAS analysis,

with data summarized in two different ways with BRIl or RMA.
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Fig. 8 Comparison of ROC curves 8f0 groupon the results obtained with MIDAS analysis, with
data summarized in two different ways with PLIER or RMA.



Cross hybridization filter

We investigated the effect of removing those preets characterized by a certain
level of probe promiscuity among transcribed seqgasr{cross hybridization filter).
Specifically, using the exon-level probe set antamtainformation provided by
Affymetrix, we removed all probe sets where all the probeisdrprobe set perfectly
match more than one sequence in the putativelysdrdoed array design content as
well as those where the probes either perfectlycmat partially match more than
one sequence in the putatively transcribed arraigdecontent. This filter could have
an important effect on the correct associatiorhefgene expression signal. However,
it affects a very limited number of exon-level peobets and therefore it does not
produce an important reduction of the size of ndormative dataTable 2). True
Positives (TP), i. e. the semi-synthetic skippedegepreviously described, are not
affected by this filter since their exon-level peobets are not annotated within the

cross-hybridizing probe sets.

Multiple mRNAs filter

This filter uses théAffymetrix annotation that links each gene-level probe set to
specific GeneBank (GB) accession number (ACC), Wwhiepresents the target
sequenceised to design the probes associated to a genleplee set. Then, Entrez
Gene lds (EGs) are retrieved querying with thes€#@ specific organism oriented

Bioconductor annotation package (org.Hs.eg.db,Mmgeg.db or org.Rn.eg.db).



EGs are used to query ENSEMBL database and all BNBREranscripts associated
to any of them are retrieved. Subsequently, therfirocedure retains only those EGs
associated to more than one ENSEMBL transcript. HGs, retained by this filtering
procedure, are mapped again to their gene-levdlepsets. Multiple mRNAs filter
strongly reduces the number of core exons becdustains only exons of genes
which are linked to multiple transcripts in the BRNBBL database and for this
reason it results to be more effective than therofifters as shown both ihable 2
and inFig. 2. The new genes, with skipping events, generatenliflata set are not

affected by this filter since they do not exishature.

128.32 vs 512 32.2 vs 128 2.0 vs 32
TP TN TP TN TP TN
Multiple 172 | 71037 | 195 | 71307 | 179 71037
MRNAs (1.00) | (0.31) | (1.00) | (0.31) | (1.00) | (0.31)
Cross. 172 | 228264| 195 | 228264| 179 | 228264

hybridization | (1.00) | (1.00) | (1.00) | (1.00) | (1.00) | (1.00)

DABG < 0.05 172 197951 185 197951 170 197951

(in 90% arrays)| (1.00) | (0.86) | (0.95) | (0.86) | (0.95) | (0.86)

Table 2. Effect of annotation and intensity basedlfers on the selection of TP and reduction of
unspliced exon set (TN). The effects of filtering by means of annotation d&
Hybridization/Multiple mRNAs filters) or intensitgignal (DABG filter) are evaluated using exon-

skipping events at various concentrations.



DABG filter

In EXON 1.0 ST GeneChips, to determine if a giveobe signal is detected above

background (DABG), its intensity is compared tostribution of background probes

with the same G/C content.

Fraction of TPs | Enrichment of TPs

Multiple mRNAs 0.727612 268.8188
P-value 0.01 0.3656716 56.2037
DABG P-value 0.0001 0.3656716 66.25635
P-value 0.00001 0.3656716 71.07364
Cross-hybridization 0.727612 72.7612
Threshold 0.001 0.727612 75.5265
Splicing Index| Threshold 0.003 0.727612 81.04057
Threshold 0.005 0.5932836 70.70971

Table 3. Fraction of TPs is the number of detected TPsddwiby the total number of known
positive values. Enrichment of TPs is the numbef®$ detected with respect to the total number
of expected TPdn red is shown the best enrichment in TPs andue the greatest fraction of TPs.
It is evident from the values above reported thaltiple MRNAs filter detects many more TP than
any other filter, also more than Splicing Indexteiil with threshold 0.003. Because of this
enrichment results it was decided to use as fatdy multiple mRNAs as an important step of the
pie-line to reduce the number of non informativelas.



A p-value is computed representing the probabthgt the signal intensity is part of
the null distribution. Specifically the DABG p-vaufilter, used in this work, is
designed to retain only probe sets characterizeal DABG p-value< 0.05 in all the

arrays. Although this filter reduces the data seten analysisTable 2), it is much

less effective than multiple mRNAs filtefdble 2). Increasing the stringency of this
filter affects the total number of non-informatidata (TN), which is reduced, but
also part of the TPs are lost. DABG p-values ccagduseful in the detection and
removal of low intensity signals which could produmisleading results when
alternative splicing events are evaluated using 3pdice Index, where signal
intensity component is lost to remove the bias thuehe presence of gene-level
differential expression. However, in our data sdiltar based on this approach is

much less effective than that based on multiple m&RNlter (Table 2).
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Fig. 9 Comparison of thé&action of TPs (frac. TP on y axis, Sensitivity) of the differdiiters that
were used, trying to reduce the data set in argl@@-2 group). ‘Filter’ is the multiple mMRNAs
filter, ‘cross’ is the cross-hybridization filteDABG and Sl were tried with different thresholds.
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Fig. 10 Comparison of thenrichment of TPs(enrichment.TP on y axis) of the different filtéhsit
were used to reduce the data set in analysds2(group). ‘Filter’ is the multiple mRNAs filter,
‘cross’ is the cross-hybridization filter. DABG a&d were tried with different thresholds.
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Efficacy of MIiDAS and Rank Product in the detectiasf ASEs

We evaluated the efficacy of the detection of AS&Esng a linear model based
algorithm (MIiDAS) and a permutation based algoritfidank Product). MiDAS was
applied on Sl transformed data as RP was appl&éad using Sl, R or directly
to exon intensity signals, RPI. RP was implemertieth at gene-level and exon-
level. Gene-level implementation of RP indicatest thhe analysis is performed gene
by gene and the permutations are generated wiikifidt of exons of the same gene.
Exon-level implementation of RP considers insteaohne as items of a unique list,
independent from their association with a gene. &twn-level implementation of RP
has better sensitivity than that of the gene-levetsion and is faster since
permutations are calculated only once and not dgpggngene. Both MiDAS and RP
seem to be effective in the detection of altermasiglicing events independently from
the presence of a certain level of gene differérgigression and with limited
dependency on gene-level intensifigl 11). RP seems to perform slightly better
than MIiDAS. RPI Fig. 13 gives the most homogeneous results independehthe
intensity signals associated with ASEsSg( 12). Independently from the statistics in
use, at p-value< 0.05 {Table 4) the TPs detection is reasonably efficient forhbot
methods, but is associated with a significant arhadfirFalse Positive values (FPs).
We also evaluated, at the three intensity rangeéemustudy, the number of TPs and
Fps that can be detected intersecting all prolsededracterized by a p-valge).05
both for MIDAS and RPTable 4). The integration of the two statistical procedure

improves the reduction of FPs without greatly dffegthe sensitivity Table 4).
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Fig. 11.ROC curves were used to detect the efficacy of MiDA the detection of ASEs.
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Fig. 12 ROC curves were used to detect the efficacy of RPthe detection of ASEs. RP was

calculated using exon signal normalized with respegene signal, i. e. SI.
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Fig. 13 ROC curves were used to detect the efficacy of iRRhe detection of ASEs. RWvas

calculated using exon intensity signal without &myher normalization.

The availability of a new instrument to study thehavior of transcription isoforms
within a specific biological context, e. g. diffatecancer isolates, tissues, and
differentiation/development stages, creates new oxippities for biologists.
However, workflow for the detection of alternatigplicing events using this new
microarray technology has still to be investigatedrder to define the importance of
each analysis step and its strength and weaknessd&da point out that a major
problem in ASEs detection is due to the multiplstitgy problem. In statistics,
family-wise error rate (FWER) is the probability afaking one or more false
discoveries (FP) among all the hypotheses wheropeitig multiple pairwise tests.
Since FWER controlling procedures are often tooseorative in high dimensional
screening studies [26], they are rather weak ifiagdo exon-level analysis where

the number of tests increases more than 10 tim#s n@spect to gene-level. For



example, the human core data set is made of 22€14-igvel probe sets and 287329
exon-level probe sets. A better balance betweemnrawep-values and the stringent
FWER-adjusted p-values may be provided by falseossry rate controlling and
related procedures [26]. Benjamini & Hochberg [26f Benjamini & Yekutieli [26]
have developed efficient FDR controlling proceducasrently called BH and BY.
However, such approaches cannot be used to modatdtiple testing problems in
exon-level analysis since, generally, the raw pmadistribution obtained with
MiIDAS is not uniform in the non significant randgeurthermore, in the case of BH,
the assumption that the tests are independent igilfiled since exons belonging to

the same gene are clearly correlated.

128.32vs512 32.2vs128 2.0vs32

TP FP TP FP TP FP

MIDAS + multiple | 119 | 2416 | 176 | 2319 | 138 | 2338
mRNAs filter | (0.68) | (0.03) | (0.91) | (0.03) | (0.84) | (0.03)
174 | 12941 | 193 | 11883 | 164 | 9989

Rank Product

(1.00) | (0.18) | (1.00) | (0.17) | (1.00) | (0.14)

Intersect MIDAS & | 119 | 436 | 176 | 424 138 375
Rank Product | (g g8) | (0.006)| (0.91) | (0.006)| (0.84) | (0.005)

Table 4: MiDAS and RP alternative splicing detectia. RP, is the Rank Product calculated using
the intensity signals without Sl calculation. Statial analyses done using MIDAS or RP
calculated using intensity signals, at p-vatu@.05 are contaminated by a significant numberpsf F
due to the multiple test problem. The intersectbthe results using the two methods significantly
reduces the number of Fps.



On the basis of the impracticality of applying centional methods to moderate
FWER, the reduction (filtering) of the data seesf previous statistical testing is, in

our opinion, mandatory.

Our data point out that a significant reductiortled data set size can be realized by
considering only probe sets associated with at kas alternative spliced isoforms
in the ENSEMBL database (multiple RNAs filter). Hewver, this approach limits the
strength of the analysis since it cannot be apphetthe case of the identification of
non-annotated isoforms. If a study focuses on tisegodlery of non-annotated
isoforms, an intensity filter, e.g. DABG p-valudl$eir, can be used although its effect
IS not as strong as that based on annotafl@blé 2). In this case, it would be
necessary to clean the results of the large amairftdse positives, validating data
by using alternative technologies such as the thgbhughput re-sequencing
techniques, e. g. Solexa (lllumina) or SOLID (AppliBiosystems). These would
however increase the complexity of the analysis thueghe high computational
demands of these techniques. We also investighteddrformance of two statistical
methods, one based on linear model analysis (MiDA&eloped byffymetrix for

the detection of ASEs, and another non-parameRR).(Both methods, applied at
exon-level and thus not taking into consideratiba &issociation of an exon to a
specific gene, perform quite well in the detectafnthe true exon skipping events
embedded in our data s&tid. 11). The amount of FPs associated to an arbitrary p-
value threshold of 0.05 is in both cases very [fitdible 2) and the application of a

more stringent p-value threshold reduces the nundfeFPs but also impacts



negatively on TP rate. However, since the two stiaf used for ASEs detection are
based on completely different assumptions, it asitde that random events (FPs)
contaminating the TPs will not be the same. Theesfthe intersection of the results
obtained by both statistics, given an arbitraryaphse threshold, effectively reduces
FPs ([Table 4). Since at the present time statistics specifiaddlvoted to the detection
of ASEs which also address the multiple test proldee not available, our approach

represents an efficient temporary solution for nmatleg FWER.



1.3.4 Conclusions

The semi-synthetic data set presented here myigea suitable instrument for testing
the efficacy of new statistics for exon-level asady Furthermore, it allowed us to test
the efficacy of a basic workflowF{g. 14) for ASEs using a GeneChip Exon 1.0 ST
platform. However, our data highlights that morerkvis needed to design powerful

instruments for ASE detection which must take iatttount the multiple testing

problem. I

v v
RMA/iterPLIER RMA/PLIER
¥ ¥
Gene level | Exon level l
|
L]
a) Annotation filters
I} ;
BG filters < DABGp
|
¥ ¥
Gene level filtered Exon level filtered
b
RankProd
b) MiDAS c)

d)

Fig. 14.Workflow for exon-level analysis Workflow proposed for the detection of ASE3.The
number of probe sets to be considered for the aisalg reduced on the basis of ENSEMBL
isoform knowledge (multiple RNAs filter). Eventuglla filter based on the quality of the intensity
signal (DABG filter) might be considered as an #&ddal filter. b-c) Statistical analysis is done
using a model based algorithm (MiDAS) and a norapeatric algorithm (RP). d) Intersection of
data derived by the two statistical analyses, uaiegmmon arbitrary p-value threshold (e. g. 0.05),

is used to reduce the number of FPs.



1.3.5 Pipe-line improvements

The performance of other methods was evaluatedevihying testing MiDAS and

Rank Product: OS and ORT. Then between the enueofgar 2008 and March 2009

| worked, in chronological order, with MADS, FIRMand SPACE. These methods

did not give the expected good results. In theofwihg table are shown the

summarization techniques used to get mean inteaditom the raw files and which

filters were applied to reduce the number of falakies. The following sections

briefly explain why OS, ORT, MADS, FIRMA and SPAQG#&ethods were no more

taken into account. Then follows a brief descriptad imma R package an8#EVS,

showing that intersecting MiDAS and RP resultshis best choice because in this

way a greater number of TPs is detected than hmmma andFEVS.

Summarization Filters Statistic
Sl, BG, DABG,
MiDAS PLIER,RMA crosshyb, ANOVA based on Sl
multiple mRNAs
Rank SlI, BG, DABG,
Product PLIER, RMA crosshyb, signal ranking
multiple mRNAs
oS RMA - t-test
ORT RMA - t-test
FIRMA RMA BG score ranking
MADS similar to PLIER crosshyb, BG based ?irI]teSrl after BG
expressions factorizatio
SPACE RMA -

N




Table 5.The seven methods for alternative splicing eveatsaion are based on different statistics
and suggested to be used in association to sonmiEut@r summarization and filtering tools.
defined within the method. Making a comparison withble 1, in bold are highlighted the new
summarization and filtering tools that were useglydnd the one already proposed in association

with the method description.

OS — QOutlier Sum
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1-Specificity
Fig.150S results (Baolin Wu version), 1000 points and g@@nutations. Too low Specificity.
As already mentioned ection 1.2.2there are two versions of Outlier Sum statistic,

one proposed by Tibshirani and Hastie [16] and qumivalent one proposed by

Baolin Wu [17]. Tibshirani and Hastie statistic wast used (implemented in R code



from the formula in [16]) but then it was worth wiating whether it was different or
faster to use the version of Baolin Wu, which aagructure more similar to Outlier
Robust T-test, directly including data standardaratin the outlier sum detection.
Both versions were applied to the semi-synthetia dat 100 and 1000 times, each
time permuting the labels of the treated samplég. first OS version was slow and
surprisingly found less TPs than the second oné¢h Bersions were tried at gene-
level and the results with both methods were quoier: too few TPs were found with

a very low Specificity.

ORT — Qutlier Robust T-test
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Fig.16 ORT with 1000 points and 100 permutations. Too &pecificity.



ORT was run with 1000 points and 100 permutatiddS @nd ORT were run also
with 1000 permutations but the results were theesanu the analysis was too slow).
Both the results of OS methods and ORT are scorggy-values and are not in the
range [0,1a]. To get p-values instead of scoregémes were divided in classes with
respect to the number of exons that constitute tfeeng. class 1 - genes with 12
exons), resulting in 103 gene classes. For eads dagenes random genes (1000
exon permutations) were generated with the saméauwnf exons, taken within the
exons of that class of genes. Simulations were dsingg 1000 points (0.1-100 by
0.1) as thresholds. At each point the number afescavere overcoming this threshold
and to them was associated 1, while O to the omeshvdid not. Then p-values were

computed multiplying each 1/(total number of va)ues

As shown inFig.15 and Fig.16 the results were unsatisfactory and after several
months of trials, increasing the number of permaomtgt and points, with and without
S| normalization of the data, analyses with OS @RIT (one week long) were

definitively abandoned.

MADS - Microarray Analysis of Differential Splicing
The data set provided by MADS article [18], cong&t of three control replicates
and three treatment ones, was analyzed with owritign, filtering out the genes

with multiple mRNAs and applying then MiDAS and R&Product and intersecting

their results to verify whether the number of tpgsitive and negative values found

was greater than the number found with MADS.



The semi-synthetic data sse€tion 1.3.3could not be analyzed in MADS algorithm
because it takes only CEL files (not modified raata)j. The data set in article [18]
came from a mouse experiment realized with MousenEXOST arrays and MADS
analysis provided p-values related to each trapisgo-values under the threshold
0.05 were TPs, above were TNs. Therefore we usedMADS data set to evaluate
the performance of our pipe-line. MADS data settaims: 40 TPs (i. e. validated
splicing events detected with MADS), 23 TNs goldrstard (i. e. already known)
values (exons). At exon-level, 24 TPs, 20 TNs weumnd with MADS. Filtering out

these exons with the multiple mRNAs filter: 19 Té#sd 14 TNs were found. Then
running MiDAS: 4 TPs, no TNs with MiDAS ; while vimtRank Product 7 TPs and 1
TN. In conclusion, MADS finds more TPs than themection of MiDAS and Rank

Product, but MADS results are contaminated by gelawumber of TNs.

FIRMA — Finding Isoforms using Robust Multichip Andysis

The semi-synthetic data set and the one provideMAIPS reference article [18]
were analyzed with FIRMA algorithm, implementedti® Bioconductor [3] library
aroma.affymetrix FIRMA is a method for detecting alternativelyispt exons in
individual samples without replication and it wased with samples with replicates.
FIRMA results were difficult to be interpreted basa a threshold to compute TPs

and TNs could not be defined.



SPACE - Splicing Prediction And Concentration Estation

This algorithm deconvolutes the exon array datathe transcription isoforms
associated to them. SPACE was written in MatLabiamds translated into R code.
We tested it with the semi-synthetic data set byiroduces a higher number of
transcripts than the real ones, with the semi-stidldata set and the data used to
validate SPACE [20]. SPACE did not work well wherreasing the number of its
internal iterations (normally set to 1). Anotherolplem was that a parameter
representing the predicted maximum number of trgptscof a gene had to be equal
to 10 (default value), if else different resultsrev@btained as many times SPACE
was run. Even the author of the program agreed thidghabove-mentioned problems

and we decided to consider SPACE results not teliab

Comparison of MIDAS/RP intersection with limma aneEVS

The benchmark experimerggction 1.3.3 was tested ohmma R package [21] for
differential expression analysis for microarrayadahdFEVS - Filtering Enhanced
Variable Selection[27]. FEVS is a new multiple testing strategy for identifying
differentially expressed variables, based on thmlsoation of several filtering
methods, instead of focusing only on a particulae.olhe authors dfFEVS proved
that it controls the FDR and that it gains sengjtiin the detection of truly
differentially expressed elements. The followingléa showing the results obtained
running the analysis of the benchmark experimeidAS, RP,limma andFEVS,

points out thaFEVS has a very good control of FDR but fails to deteany TPs. A



better performance is given linma, although in case of high expression levels the
detection of TPs is very poor, which might be tméhe increasing of variance as a
consequence of high expression levels. The inteoselsetween MiDAS and RP still
detects the highest number of TPs but is lessieffian controlling the FDR with

respect to the other two methods.

Splicing set Splicing set Splicing set
12832 ws 312 322vs 128 2.0ws32
TP FP TP P TP P
(Sensitivity)  (1-Specificity) (Sensitivity) (1-Specificity) (Sensitivity) (1-Specificity)
MiDAS 119 2416 176 2319 138 2338
(0.68) (0.03) (0.91) (0.03) (0.84) (0.03)
RP 174 12941 193 11883 164 5989
(1.00) (0.18) (1.00) (0.17) (1.00) (0.14)
MiDAS & RP 119 436 176 424 138 375
intersection (0.68) (0.006) (0.91) (0.006) (0.84) (0.005)
FEVS 1 41 26 9 23 18
p<0.05 (0.006) (0.0005) (0.13) (0.0001) (0.13) (0.0002)
u=10
Limma 18 182 136 7 90 153
p=0.05 (0.10) (0.002) (0.70) (0.0008) (0.50) (0.0018)
BH

Table 6. The number of true (TPs) and false positive val{fe3s) found with five methods of
detection of alternative splicing events is herevgh It is evident that the intersection of theultes

obtained with MiDAS and RRyives a high number of TPs, decreasing much théoeuof FPs.



Genome-wide Search For Splicing Defects Associated

with Amyotrophic Lateral Sclerosis

In this article we presented [28] a study in whightried to detect gene and isoform

specific events associated to the Amyotrophic lzi8clerosis (ALS).

SOD1 enzyme is a powerful antioxidant that pratelse body from damage caused
by superoxide, a toxic free radical. It has beesppsed that defects in splicing of
some MRNAS, induced by oxidative stress, can plagl@a in ALS pathogenesis.
Alterations of splicing patterns have also beereoketl in ALS patients and in ALS
murine models, suggesting that alterations in thlecing events can contribute to

ALS progression.

Using Exon 1.0 ST GeneChips, the SH-SY5Y neurobiaat cell line has been
profiled after treatment with paraquat, which bguning oxidative stress alters the
patterns of alternative splicing. Furthermore,same cell line stably transfected with
wt and ALS mutant SOD has also been profiled. Titegration of the two ALS

models efficiently moderates ASE false discovetg,rane of the most critical issues

in high-throughput ASEs detection.

1.3.6 Introduction

Amyotrophic Lateral Sclerosis (ALS) is a progressiv usually fatal,

neurodegenerative disease caused by the degeneadtimotor neurons, the nerve



cells in the central nervous system that contréiviary muscle movement [29]. As
a motor neuron disease, the disorder causes musaleness and atrophy throughout
the body as both the upper and lower motor neudmgenerate, ceasing to send
messages to muscles [29]. ALS is one of the masinean neuromuscular diseases
worldwide, and people of all races and ethnic bemligds are affected. One to 2
people per 100,000 develop ALS each year. ALS ncostmonly strikes people
between 40 and 60 years of age, but younger aret pkbple can also develop the
disease. Men are affected slightly more often thhamen. A definitive cause for
ALS is not clear and the onset of the disease le@s ltinked to several factors,
including: exposure to viruses, neurotoxins, orvigemetals; genomic mutations;
immune system and enzymatic abnormalities. "FamikdS" accounts for
approximately 5%-10% of all ALS cases and is caumsedenetic factors. Of these,
approximately 1 in 10 are linked to a mutation apger/zinc superoxide dismutase
(SOD1), an enzyme responsible for scavenging feskcals. This enzyme is a
powerful antioxidant that protects the body fronmdge caused by superoxide, a
toxic free radical. Free radicals are highly reactmolecules produced by cells
during normal metabolism. Free radicals can accataudnd cause damage to DNA
and proteins within cells. Although it is not ydear how the mutant SOD1 gene
mutation leads to motor neuron degeneration, seéectulnerability of motor
neurons likely arises from a combination of sevaenakchanisms, including protein
misfolding, mitochondrial dysfunction, oxidativerdage, defective axonal transport,

excitotoxicity, insufficient growth factor signan and inflammation [29].



Furthermore, alterations of splicing patterns halge been reported in ALS patients
and in ALS murine models, suggesting that altenatim pre-mRNA splicing events
can contribute to ALS progression [30] [31]. Rebgnit has been proposed that
defects in splicing of some mRNAs, induced by otidastress, can play a role in
ALS pathogenesis. The recent commercializationAlffiymetrix of Exon 1.0 ST

GeneChips (Exon GeneChips) allows the definitiobath transcription patterns and
of alternative pre-mRNA maturation events. Usinig thicroarray platform we have
profiled two ex vivo ALS models to identify the mRNsoforms associated with

ALS disease.

1.3.7 Methods

Benchmark experiment

A semi-synthetic exon-skipping events data set yi&3 used to evaluate the limits of
statistical methods used in the detection of adtiere splicing events (ASEs). ASEs
were detected using the model based method dewvklbpéffymetrix: MiDAS.
MIDAS is an ANOVA based method measuring differenbetween an exon-level
signal and aggregated gene-level signal. MiDAS Ipeswere calculated using the
software provided bffymetrix in the APT tools. Data were analyzed on R 2.7.0
and Bioconductor 2.2 [3]. Gene/exon-level exprassammaries were generated
using RMA algorithm [10] and quantile [32] sketclormalization by means of

Affymetrix APT tools as suggested by Della Beffa et al. B{.[1



ALS experiments

Alternative splicing events (ASEs) were detectethgigwo experimental models:
paraquat neurodegeneration model and ALS SOD mé&@dehquat model: paraquat
treatment on SH-SY5Y neuroblastoma cell line wasie@d out as described by
Maracchioni and coworkers [33]. ALS SOD model: SGBSY5Y stably transfected
with SOD1 wt and ALS mutant SOD1 G93A were growrtlasse for the paraquat
experiment. Four prototypic situations were ingestied: Paraquat experiment: SH-
SY5Y neuroblastoma cell line with (para.t) and with (para.n) paraquat treatment.
SOD experiment SHSYS5Y stably transfected with wid(s) and ALS mutant SOD1
G93A (sod.t). Each condition was replicated 5 tim&ler extraction and quality
check 1.5ugs total RNA was subjected to removal of ribosoRBIA following the
procedure suggested Byfymetrix. The resulting total RNA was then used to created
the biotin-labeled library to be hybridized on GEh@® Exon 1.0 ST human
microarrays following the procedure described bg thanufacturer. GeneChips
hybridization, washing and scanning was done agesigd by the manufacturer. The
resulting CEL files were analyzed usiogeChannelGUI 1.6.5 [4]. ASEs events
were detected by MiDAS comparing para.t versus.paad comparing sod.t versus
sod.n. Only ASEs characterized by showing a MiDASajue < 0.05 in both
experimental models were selected. Exon-level peabenapping was performed by
BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi),t@rrogating ASPIC database [34]

and the genome browser at NCBI.



1.3.8 Results

ALS models microarray data analysis

The results obtained with our benchmark experinctdrly indicate a strong lack of
specificity of MIDAS method, that cannot be modedhby conventional type | error
correction methods. Della Beffa et al. [13] hasvedhat the integration of results
generated by parametric and non-parametric ASEstien methods strongly reduce
type | errors. However, in our experimental framgwae have to handle not only
type | errors but also need to discriminate betwibenALS-specific neurodegerative
effect induced by paraquat and its intrinsic tdyioeffect. To address both the
moderation of multiple testing errors in ASEs datet and extrapolation of the
ALS-specific events from the toxicity effect of pguat we used a biological
approach. Transcription profiling was done on twoviro models for ALS: paraquat
treatment and SOD1 expression in SH-SY5Yneurohiastcell line. Four prototypic
situations were investigated: Paraquat experinfdtSY5Y neuroblastoma cell line
with (para.t) and without (para.n) paraquat treatm&OD experiment SH-SY5Y
stably transfected with wt (sod.n) and ALS muta®fD8 G93A (sod.t). Gene/exon-
level expression summaries were generated using RMgérithm [10] and quantile
[32] sketch normalization, analyzing Paraquat a@dDSxperiments independently.
Sample group homogeneity was confirmed by Princ{pammponent Analysis and
hierarchical clustering (not shown). ASEs were dei@ in each of the two
experiments using the model based algorithm MiIDAS: 0.05). ASEs detected in

paraquat and SOD experiments were respectively 2nd81974. 105 exon-level



probe sets alternatively spliced and associated 82 gene-level probe sets were
found in common between the ASEs detected in the twodel systems.

Subsequently, the presence of a common trend betwre® paraquat and SOD
experiments was detected at exon-level using ttegrative correlation coefficient

(IC) [36] applied on SI. 49 exon-level probe sdisveed a common trend between
paraquat and SOD experiments as instead 56 prabeslsewed an opposite trend.
Analyzing only the subset of probe sets charaadrlzy a common trend within the
two model systems, 35 out of 49 probe sets werecaged with reference sequence
transcripts and more than one exon probe set wapingaon the same transcript.
Within those transcripts we have identified 7 A%issociated with 5’ end exons and
7 ASEs associated with internal coding exons ofwkmpredicted mRNA isoforms.

We have also detected 1 ASE associated 5’ end exoths3 ASEs associated with
internal coding exons of genes where the splicweneis associated with an exon in
common with all the known and predicted transcispforms. It is notable that the
level of the ASEs is relatively low in intensityy general it is represented by a
variation of approximately 50% SI signal. We havsoaevaluated the SI mean
centered distribution of the ALS associated ASEsm tissue data set provided by
Affymetrix and encompassing 10 adults tissues. The ALS adsdciexon-level

probes show a complex pattern in the analyzedesssu

1.3.9 Conclusions

Our results, generated using a semi-synthetic dataand real data, allows the

generation of general and ALS-specific conclusions.



General conclusions

In a biologically defined framework, ASEs are reymeted more prevalently by
changes in the ratios between the transcribed nssfdhan the appearance of new
isoforms. This results in relatively small exondéexpression changes, as observed
by ourselves in ALS ASEs. Furthermore, the measentraf exon-level expression
based only on 4 probes is less stable than th&drpeed at gene-level (> 10 probes).
This results in a relatively high fluctuation ofetmaw exon-level intensity signal
measured in different arrays. The above mentiongatatities combined with the
lack of a specifically devoted statistical framelwbrghlights the need for performing
exon-level analysis using a high number of repdisat.e. in our case we used five
replications for a cell line based experiment. Ahd mandatory need for reducing
false discovery rates in ASEs detection by takindvaatage of biological
instruments, i.e. intersection of data derived frdifferent experimental models.
ALS specific conclusions: Our analysis indicateattASEs are part of the ALS
phenotype in ex-vivo models of the pathology. Hogrevhe presence of common
splicing events characterized by opposite trendhentwo models might have two
possible explanations: i) the paraguat model ssiffiesm the lack of a non optimal
setting of the paraquat treatment to simulate argbrALS effect as can be simulated
by the stable transfection of mutant SOD geneth® mechanisms of action of
paraquat and SOD in neurodegeneration, although lotked to oxidative stress,

only partially overlap. This observation causescsf#ion as to whether the



deregulation of the balanced expression of gernfnss is involved in ALS and

cannot be linked to the specific functionality desv gene isoforms.

A literature search of the combination of gene nah& associated ASEs and the
“neurodegeneration” keyword highlighted the impoda of NDRG2 and SOX9
genes in neurodegeneration. Specifically NDRG2aisigularly interesting since it is
associated with Alzheimer's disease [37] and tre¢ fnember of the NDRG family
has been thoroughly studied as an intracellularteproassociated with stress
response, cell growth, and differentiation. A narsgmutation in the NDRG1 gene
causes hereditary motor and sensory neuropathycGthslarie-Tooth disease type
4D [38]. SOX9 is instead associated with demyeiitptliseases [39]. Furthermore, a
search of the OMIM database shows other links betwd.S transcripts and specific
brain functions. LMO3 and GPM6B are expressed ial giells, and PREX1 in
mouse cerebellum. Furthermore, PREX1 and PREXZemyalators of Purkinje cell
morphology and cerebellar function since Prex1/Prdruble knockout mice are
ataxic and have reduced basic motor activity, atabrposture and gait, and
impaired motor coordination at a young age [40]isltnotable that although the
number of splicing events associated with ALS mitkd, they are not equally
distributed respectively in the 5’ end, coding a\eénd of the gene, but 50% of the
events are localized in the 5° UTR region, suggesthe presence of a deregulation
not only at splicing but also at the transcriptideael. We are actually investigating
the characteristics of the putative promoter regjiohthe 7 genes characterized by

5'UTR splicing events.



2. Next-Generation Sequencing of

non-coding RNAs

In this section a work dealing with high-throughgetjuencing is presented. First a
biological description of RNAs which are not traatsdd into proteins is given. Then
Next-Generation sequencing methodology is describedeneral, then only the
specific technology used for experiments underyamals described in mode details.
The last section concerns a software package tthavedloped for non-coding RNAs

sequences analysis.

2.1 Introduction

Most types of RNA molecules do not codify for ot products and are called non-
coding RNAs. They constitute a large family of atbant and functionally important
RNAs such as transfer RNA and ribosomal RNA, asl wsl microRNA, small
nucleolar RNA, short interfering RNA. Recent bianhatic studies suggest the
existence of thousands of non-coding RNA [41]. Hoftware package presented
afterwards is specifically focused on the analg$isicroRNAs (miRNAS), a class of
post-transcriptional regulators. They consist & short nucleotide RNA sequences
that bind to complementary sequences in the 3’ @ndnultiple target mRNAs,
usually silencing them. MicroRNAs target 60% of gdines, are abundantly present

in all human cells and are able to repress hundoédargets each. More than 700



MIRNAs have been identified in humans and over 8@0e are predicted to exist.
Due to their abundance and far-reaching potemh@dRNAs can have very different
functions in physiology, from cell differentiatido the regulation of fat metabolism.
They display different expression profiles fromstis to tissue, reflecting the
diversity in cellular phenotypes suggesting a roletissue differentiation and

maintenance.

2.2 Methods

Studying genome sequences has become fundamentahdiw research in biology
and medicine. In general, sequencing a moleculeMA/RNA means splitting this
molecule into segments to determine the ordersafuicleotide bases (A - adenine, C
- cytosine, G - guanine, T - thymine). DNA sequagchas accelerated biological
research and discovery: the fast speed of sequemas been fundamental in the
sequencing of the human genome (Human Genome Brojecthe 70's shotgun
sequencing first appeared: it was then possibkplib long DNA strands into short
(100-1000 bp) partially overlapping segments. Ttiese segments were sequenced
using the chain termination method [42] (Sangerhm@)t. Computer programs then
used the overlapping ends of different reads tobeenthem into a continuous
sequence. This sequencing method was successfgultetexpensive and new low-
cost technologies were needed. Although shotgunesegng was the most advanced
technique for sequencing genomes (1995-2005), t#¢bbnologies started surfacing,

called Next-Generation Sequencing.



The term Next-Generation Sequencing indicates thgbhughput methods
characterized by massive parallel production anmeguent analysis of millions of
short-length (25-500 bp) sequences of genome (cakkads”), in a short time (day).
Microarrays had the unchallenged primacy in Trapsmmics analysis in the last ten
years and they were also widely used in other gio& areas. But their main
limitation is that they are available only for someganisms. Instead, using Next-
Generation Sequencing the whole transcriptome pioaganism could be potentially
sequenced, allowing the identification of each $caupt as well as their expression
profile. For RNA and microRNA expression profilinBNA sequencing (RNA-seq)
has significant advantages compared with microamssthods: it detects more

efficiently common and rare transcripts.

NGS differs from shotgun Sanger sequencing becaosg not need in vivo cloning.
Other differences between the single techniquegegerted in the following table

[43] [44] [45] [46] [47].

Read length Throughput Timing Accuracy
Sanger 1000 bp 0.5 MB 1 day 0.99.999
454 200-500 400-600 MB/rup 10 hours 0.99995
Solexa 35-150 10GB 4 days 0.99995
SOLID 35-75 20 GB/run 5 days 0.99988




Three main Next-Generation Sequencing technolagiesd in the last decade:
» 454 pyrosequencing (Roche, 2005) [48].
» Solexareversible terminator sequencing (lllumina, 20[3&).

» SOLID sequencing by ligation (Applied Biosystems, 20G0).

These platforms enable:
- at genomic level: whole genome re-sequencing antbde sequencing;

- at transcriptomic level: small RNA analysis, gerpression profiling and

whdranscriptome analysis;
- at epigenomic level: chromatin immunoprecipitats@guencing (ChlP-Seq)

and methylatiorabsis.



2.2.1 SOLID by Applied Biosystems

SOLID - Sequencing by Oligonucleotide Ligation dbetection - is one of the most
recent Next-Generation Sequencing technologieseldped in 2007 by Applied
Biosystems, that since November 2008 constitutgetteer with Invitrogen

Corporation, the Life Technologies company.

The SOLID™ sequencing system is based on sequdigalon of dye labeled
oligonucleotide probes where each probe queries ltage positions at a time.
SOLID™ System enables parallel sequencing of clpraahplified DNA fragments
linked to beads. This system uses four fluoresdges to encode for the sixteen

possible two-base combinatiortsd.17).

a4 B i o o N\ Fig.17[51] Each reverse, complement and reversed

A :
. . complement couple of bases is representaley

C
8: same color (e.g. TA, AT, GC, CG).

G
\T o ./

It is possible to convert data from color spaceah® corresponding nucleotides or

“base space” knowing the identity of the first basée read.

. . Fig.18 [51] The color space sequence is decoded startingtfrem
R AE A ( ) first k b final ehim I
: irst known base (A) to get a final sequencehmbase space.
6C CA €C TC (Atog q P
Fom
_C_G GT (GG) AG Because each couple of adjacent colors mustéabase in
A1 06) TT CT
| common, it is easy to translate the sequencelofsin
AT GG
‘ Y \/ Y ‘ consecutive di-bases, then into a unique sequartbe base space.
AT G GA



Each color can be also associated to a numbebl(ge; 1 - green, 2 - yellow, 3 - red)
because it is computationally convenient to keepdhginal color space sequence
and translate it into bases only at the end ofahalysis of a data set, after pre-

processing.

C330 0103031311 31
CGCCTTGGCCGTACAGCA

In the SOLID System the conversion of a sequend2NoA& from the color space into
nucleotide base space is usually done after haligged the sequence to a reference
genome transcribed in color space (with tools B&¢RIMP- SHort Read Mapping

Package [53]).

Advantages of this system:
- ability to detect complicated genomic vaaas.
- complete large-scale sequencing and tagriempets more cost effectively
than previously possible.
- double check: since each base is interrdgatiee in independent reactions, the
information about each base is includedvm &djacent pieces of color space
data.

- higher accuracy for SNP detection and 99.84%e-calling accuracy.



Sequencing by ligation

The DNA strand in analysis is fragmented into segsieo which edges are
artificially tied two universal primers (adapter,F32). Then these segments are put
in a pool of beads in microreactors and it is fkilat each bead will be ligated only
to a unique sequence. Then the sequence on eatlslkaaplified (several copies of

the same sequence are tied to the bead).

Umvegfsal Seq primer  « ) m‘m’/ mm’/

/PORN
PRIMER ROUND 1 ﬂim +

Fluorescence

Universal seq primer (n) IAT _ ‘X*’

| 3%
& 5

P1 Adapter TA Template Seguence

On each sequence of the bead a universal primecleadtides long hybridizes with
the P1 adapter of the sequence and then one dbtingpossible fluorescent dye-

labeled di-bases ligates to the sequence [51].



Cleave off Fluor

Cleavage Agent *
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Several cycles of ligation, detection and cleavage needed to get the complete

sequence in the color space.

‘ﬂWm“MHnnﬁnm“T"
AN
Universal seq primer (n-1) g
3 TrrTTTYTETETTITIT .. 2. Primer reset < 1. Melt off extended
' sequence
3 i
LAk . ALLLRLINSNRRRIRRRRRIRIRNRNRRRRRRER 3’

Then the universal primer on the original sequerxaeset to be long (n-1)
nucleotides to repeat the ligation step with therescent di-bases and obtain a new

sequence in color space [51].

7. Repeat steps 1-5 with new primer
se s>

1 base

PRIMER ROUND 2 \ ! !
; _1 \

Universal seq primer (n-1) AA CA CG AA TA CC
3 1 ) TTTETIT IR I TTITIT I ITIIIT NN

|  ERRNRRNGREONRENENNORRNERENIRSARNEN
T GT GC TT AT GG
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The number of ligation cycles depends on the lenftine sequence to be analyzed,
e.g. if the sequence is 35 nucleotides long, thellebe needed 7 ligation cycles

repeated 5 times [51].

Read Position |0/ 1)2/3{4]5| 6| 7|8] sl i3

Universal seq primer (n)
3 veverreereTIITY

Unwersal seq primer n-1)
 yrrorrorToTT

Unwersal seq primer (n-2]
 YTTPTTTTTTI

Universal seq primer n-3)
3 oo™

15|16} 1718/19{2021 ?2;23 222 275!28 29‘3ﬂ|31 323334135

—n

(%]

Cad

5

¢ Universal seq primer (n-4)

T weererIeTIETTY e o0 0 o0 ole

® |ndicates pasitions of interrogation  Ligation Cycle [l 21 8 4 8 5

Once this table is ready, knowing the first basenfthe universal primer, the colors

can be aligned to a reference genome translatiéw icolor space.

2.3 Results

| worked on this project during the second yedrloD., in Italy. AImost all the work
was done in R (some parts were written in C, tmdarfaced with R). The project
concerns some algorithms, part of a package cab&DLID, for the quantitative
secondary analysis of non-coding transcriptome esegjng data generated with
SOLID System platform. The package was initiallgideed as stand-alone package

but subsequently was integratecimeChannelGUI



2.3.1 ncSOLID

ncSOLID was built with the aim of organizing RNA-seq datto a data structure
that allows the statistical detection of differahtexpression for non-coding RNAs
(ncRNASs), e.g. microRNAs. The library had a R ifaee to SOCS software [52]
which was used to map and quantify sequence data.

SOCS (Short_Oligonucleotides in Color Space) isr@gfam to map color space
sequence data to a reference genome. It allowsintappcolor space data in a more
flexible, mismatch-tolerant (0-5 possible mismagheontext to maximize the
number of usable sequences within a given datd kethigher is the tolerance (high
number of allowed mismatches), the lower the amof@ingjected sequences, but the
longer becomes the computational runtime.

SOCS maps at lower tolerances first, reducing tae do be mapped at higher

tolerances.

During the mapping process, if a read maps to twoare [52]:

- non-identicabenomic substrings within the maximum toleranceliuscores

and mismatch counts are used to get the aptmatch (unambiguous matching).
- identicalgenomic substrings, all matching locations are iclmned ambiguous
(ambiguous matching).

Once the number of optimal matches is determineggrage maps of each reference

chromosome are computed.

ncSOLID library allows to run multiple instances of SOCxverage data produced

by SOCS are segmented to select peaks of ncRNAessipn, which are then



organized in an ExpressionSet object [52], a datactsire usually employed to
collect data from microarrays. It binds togethempression measurements with

covariate and administrative data, convenientdsuits manipulation.

This structure of the expression level of trangsrip then quantified as coverage per
million reads to the transcriptome. Those data wwsed to detect differentially
expressed NncRNAs using several types of statigfms example Rank product,
presented in the first chaptesection 1.2.2 In the following, the workflow to
analyze ncRNAs witincSOLID is shown.

SOLID output files are in .csfasta (color spacdadpgor the sequences and .qual
format for the scores associated to each sequeribe ifasta file.

The sequences of the .csfasta file (and respestioees file. qual) are first trimmed
(trimSOLID.R), to remove the adapter P2 at the @nelch sequence.

Trimming the sequences has three reasons:

- since non-coding RNAs are quite short (1&@Band reads length on SOLID
system are longer (35-75 bp), it is possibht reads are at least partially
contaminated by P2 adaptor.

- while the current matching tools providedtbe SOLID are designed for reads
of equal lengtmcSOLID library allows trimming: adaptor removal, to geet
desired read length.

- trimming can substitute mismatching atehd of the sequence (3’).

This trimming algorithm was evaluated on a dateceestituted by four .csfasta files

(sequences long 35 bp) and four .qual files, twattment and two control cases, that

were mapped on the chromosome 22.



Given a sequence of given length (e. g. 35 bppng hypothesizes a minimum
length (20 bp) not to be overcome and a step oting (5 bp), trimSOLID.R cut

sequences from the end to get sequences of thedlésngth (35, 30, 25, 20 bp).

Example: Three sequences of one of the four filesnput are trimmed of five

elements, starting from the end of the sequence.

35 bp:

133230310310120332321003330220313
133232130123212022023133333322332
T03211231113210120233303333322333

30 bp:

1332303103101203323210038213
1332321301232120220231333323
T7032112311132101202333033323

25 bp:

133230310310120332320333
133232130123212022023333
T0321123111321012023B8333

20 bp:

133230310310120332321
133232130123212022023
703211231113210120233

The reads in the .csfasta files always begin Witfthat is not included in the length

of the read, 35 in the example above) and are itotest of numbers from O to 3 that



substitute the four colors that identify each ceupfi nucleotides.

They will be translated in the base space latedanng this pre-processing step it is
better to keep this format to avoid errors of thatnsn in the final sequence. The
sequences in the .qual files contains sequencgsaiity scores, 35 scores for each
read, if this is 35 bp long, for example. Here raftarts of two of the files in input, in
.csfasta and .qual format respectively, are sh@&ch sequence is preceded by the
respective identification number.

File.csfasta

.« 920 6_719 F3
T33230310310120332321003330221330113

« 920_7_366_F3
133232130123212022023133333322313132

.« 920 8 370 F3
T03211231113210120233303333322313133

« 920 8 721 F3
T01032201322220030211103310121333113

« 920 11 374 F3
T30100313223202232201333333323313303

e 920 11 1252 F3
T33211130130120211100330212330313113

« 920 11 1559 F3
T13130113320230022223233333333213323



File.qual

920 6 719 F3
812186161944 18235217 26 268 16 25 13 24 7 22 18 24 21 27 24
6613 4 26 24

920 7 366_F3
14232027792717262541423 687 618414713214456447
4 410

920 8 370 F3
1220169122010211817711218136664101517 14444124
44444

920 8 721 F3
211541265205444642771062991020246 164152164 10
4410

920 11 374 F3
27252127272519918272720108612184461254444444 4
4 420

920 11 1252 F3
27 27 22 252627 27 62621 26 26 74291511 1520142166454 7
2210106 10 6 13

920 11 1559 F3
A74104657684641544AWMATALAAAAGCALLALG
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Then SOCS must be run N times (runNSOCS.R), bechusee the samples in

analysis, choosing a mismatch tolerance, to geeémh sample a “.map” file, that
contains the mapping of the reads in the samptagoeference chromosome of the
genome. The sequences of the genome in the .map dile segmented, i.e. the
regions where the reads are concentrated are difide the regions of the genome
not covered by reads, to get the expressions oNAsResetSOCS.R), organized in
an ExpressionSet structure. Then the coverageeothihomosome in analysis with
the resulting ExpressionSet must be evaluated @GER) to verify whether it must

be improved (and repeat the previous steps of theeps increasing the trimming



factor) or if it can be further analyzed to detdifferential expression between the
control and treatment case.

The libraryncSOLID was created to become part of the libraries ofc@&noluctor
but it was not submitted because in the meanwhiherotools for the secondary
analysis of RNA-seq came out and performed bdtr SOCS. These tools are now

part ofoneChannelGU| as described below.

2.3.2 Extension of the R library oneChannelGUI

oneChannelGUIwas first built up by Prof. Raffaele Calogero araworkers, in
2007 [4] as graphical interface to analyze data §etn microarray experiments and
recently (2010) it has been extended to analyzerdisaelts obtained with Next-
Generation sequencing technologies, focusing itiqodar on microRNA analysis.
The aim of this extension of the library is the @getary analysis of non-coding
RNAs, short reads aligned against the relativareafee genome.

The raw data resulting from a Next-Generation Seqgng experiment cannot be
directly statistically analyzed. The data in inpaitoneChannelGUIcan come from
the following different mapping tools, freely axable online: SHRIMP (SHort Read
Mapping Package) [53], miRanalyser [54], MicroRaz¢55], miRExpress[56],
miRProf (web tool).

When the data in input are loaded in the prograthely do not come from one of the
above-mentioned tools for the primary analysis, ythare reorganized as

ExpressionSet, as done mtSOLID (section 2.3.). This structural reorganization



can be done witkbenominatoror a segmentation approach basedlupseq both R
libraries. It is then possible to normalize theadahd this is done by the program
using a method that will be described hereaftahenthird chapter [57] and that is
part of a R library calle@dgeR[58], for the detection of differential expressioh
short reads. For a quality control, principal comgat analysis and hierarchical
clustering are available, as already for the datenfmicroarray experiments. And it
is also available a multidimensional scaling ppobvided again bydgeRpackage.
As statistics, Rank Productsdction 1.2.2 and edgeR (section 3.2.2 are
implemented. Rank Product was evaluated on a samthatic data set in chapter 1
and it was demonstrated that it is a powerful tepn to detect differential
expression among data from microarray experimdniisit can be used also in short
reads analysis, as well adgeR In the next chapter there will be given an exangdl

the use of these two methods, combined to findlagign in some shRNAs samples.

2.4 Conclusions

While defining the projectncSOLID was meant to be a new R package in
Bioconductor. After the development of the tools#emed more convenient to
include this software in the already existimgeChannelGUIpackage, extending its

functions to the secondary analysis of non-codihNAR



3. Short hairpin RNAs modeling

This last chapter deals with the analysis of shRMAgeriments, which were made
with the purpose of finding some regulated shRN#& tould be used as biomarkers

during liver regeneration.

Short hairpin RNAs belong to the class of non-cgditNAs and are concerned in
section 3.1 Before discussing the analysis of regulationndiMAs data sets and the
related results obtained with different statistisaftwares, a technical description of

these tools is given.

3.1 Introduction

Non-protein-coding RNA molecules with hairpin shaidencing gene expression are
called short hairpin RNAs (shRNAs). shRNAs can lyatlsesized in vitro or
transcribed in vivo to suppress the expressiorafet genes in cultured cells [59].
They are part of the RNA interference system (RNAI) evolutionally conserved
gene silencing mechanism present in a variety &Bmwtic species. It has been
widely used as a novel effective tool for functibganomics studies, displaying a
great potential in treating human diseases, ergcazareatment, and there has been a
recent development in the use of RNAI in the préeenand treatment of viral
infections[60] [61]. A deep analysis of data sets of ShRNAs with the tairdetect
biomarkers for liver regeneration was made andilithie presented later on in this

thesis. A previous study (2008) was made by Larg2eet al. [62] to identify tumor



suppressor genes relevant to human cancer (ligstaplishing the feasibility of in
vivo RNAI screens. A project focused on the deeplyais of data (counts) from
shRNAs experiments recently began with a paperQRbg Frank Klawonn, Torsten
Woustefeld and Lars Zender [63], where the futurespective is to determine the
cause of variations between experiments in diffecemditions, which is the topic
presented in the next sections: defining the optstatistics to select significantly

regulated shRNAs.

3.2 Methods

“Next-Generation” is the term with which high-thghput sequencing technologies
raised in the last five years, are indicated. Amreed at the beginning skction 2.2
these short sequences can be produced in diffevags by the three different
equipments: 454 by Roche, Solexa by lllumina, SObyDApplied Biosystems. In
the next section the Solexa technology is describathderstand how shRNAs were

sequenced and subsequently analyzed from a stakigtint of view insection 3.3

3.2.1 Solexa technology by Illumina

Solexa sequencing uses four fluorescently labealetentides instead of associating a
di-base to each color as done in SOLID. The samm@paration methods used differ
slightly from that used in the SOLID system, bue tbasic goal is the same:

generating large numbers of unique “polonies” (pwyase generated colonies) that



can be simultaneously sequenced. These parallgioea occur on the surface of a
“flow cell” (a microscope slide) which provides ardge surface area for many

thousands of parallel chemical reactions.

As in the SOLID Next-Generation technologg¢tion 2.2.), Solexa uses sequences
that in average are 35 bp long, but instead of excjng by ligation they are

chemically synthesized.

Sequencing by synthesis
Solexa’s strategy is the amplification of DNA on amay followed by synthesis by
incorporation of modified nucleotides linked to @ad dyes [64]. The first step to

prepare the DNA library to be sequenced is to ramgdragment DNA and ligate

two adapters to the ends of the fragments.

1. Preparation of DNA sample 2. Attach DNA to solid surface
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Single-stranded fragments must be then attachetbnaly to the solid surface of the flow
cell channels, which are already partially covelsd primers that will be used in the

following phase of the process [65].

3. Bridge amplification 4. Fragments become double stranded

Attached Free
\terrnmus termipus

Add unlabeled nucleotides and enzyme to start gflmbe bridge amplification: the

enzyme incorporates nucleotides to build doublarsted bridges on the substrate.

5. Denaturation of double-stranded molecules 6. Amplification
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Denaturation implies that single-stranded fragmangésnow attached to the surface; several
millions of dense clusters of double-stranded DA generated.

7. Determination of the first base 8. Determination of the second base

Lasar

The first sequencing cycle begins by adding fobeled reversible terminators, primers and
DNA polymerase. After laser excitation, the emittiorescence from each cluster is

captured and the first base identified. The negtecgf sequencing repeats the incorporation
of four labeled reversible terminators, primers &MWA polymerase. Then the image is

captured with the laser as before and the secoselibaecorded [65].The sequencing cycles
are repeated to determine the sequence of basedragment, one base at a time. The
results are aligned and compared to a referencesagdencing differences are found

(TAAG is the upper sequence in the picture).
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3.2.2 Detection methods

While the first project described in this thesisthwialternative splicing events
detection in microarray data and the second onle thé secondary analysis of non-
coding RNAs, this last project gives the impressbmepresenting a combination of
the previous two parts of this manuscript, dealwith the detection of differential

expression in RNAs sequences. Hereafter are pegsdht methods used in the
analysis of some shRNAs data. BatigeR[57] andDESeq[66] are based on the
hypothesis that the reads can be approximated gatiMe Binomial distributions

[67] [68] [69] [70] [71] [58] [66], while Rank Pragtt is a non-parametric method.

Both edgeRand DESeq authors state that the read counts follow a Muftiab

distribution [71] [72] which can be approximated d&yoisson model [73] [74] [75].
This is because the Multinomial is the multivariatese of a Binomial distribution
which converges to a Poisson when the sample silarge and the probability of

success/failure is close to zero.

In a Poisson distribution the unique parameteittiermodel is the mean that is
equal to the variance But the authors addgeR[58] and others [69] [70] [68] agree
that the assumption of Poisson distribution far thad counts is too tight because
the variance of the data is greater than the meanally. This is called
“overdispersion problem” [58] [66] and can be sadlvEthe count data are modeled
as Negative Binomial distributions witlv = g+ au® |, where the proportionality

constan'a  is estimated from the data y << o*



edgeR

This is the first and very recent (2010) librargated in the R environment for the
analysis of differential expression of count datadoced by Next-Generation
sequencing technologies; in particuedgeR[58] has the aim of deeply analyzing
RNA-seq reads. subsequent other libraries are @asedgeR(empirical analysis of
DGE in R):DESeq[66], described afterwardbaySed76] andDEGSeq[72], whose
performance was first evaluated at the same timeedgeR and DESeq but
subsequently abandoned because considered |legsdadhan the other two statistics
to focus mostly the attention on the three staBsgiresented in this sectioedgeR
includes a new method of normalization of shortdseao that they become

comparable between different samples of the sandé@ferent conditions.

Some widespread previous scaling techniques are:

» adjusting counts to reads per kilobase per milli@pped RPKM technique),
l.e.normalizing for RNA length and for the total readwber in the
measurement [77];

» data standardization by dividing each list of ceuny the total number of reads
in the list [78],

» performing an hyper-geometric test computing ptealto account for sample
biases [71];

» quantile normalization [79] [80], as already usednbrmalize data resulting

from microarray experiments [32].

The authors oédgeRin the related article on the description of timethod find the

second method, even if intuitive, too simple fornmdiological applications [57].



They assess that the number of reads that shouydora gene depends not only on
the expression level and length of the gene but #le composition of the RNA
population that is being sampl§al7]. Hence if a large number of genes are highly
expressed in one condition, fewer tags are avail&il the remaining genes in that
sample. This artifact, if not adjusted, distorts thsults of the differential expression
analysis and results in higher false positive raféBis is what they tried to account
for proposing a new normalization method, able tampare Next-Generation
Sequencing data across samples, estimating a lsugedling factor from the raw

data. They started from two basic hypothesis:

1. A gene with the same expression level in two dasmphould not be detected

as differentially expressed.

2. The amount of reads mapping a certain gene deentle expression features

of the whole sample rather than only on the gempeession level.

Let Yy be the observed count for gegén the samplé&, summarized from the raw
reads ; le4y  be the true unknown expressioel |&4 the length of geng; N, the

total number of reads for libraky The expected values ¥, can be estimated as:

~

Y,

gk

_Habs 0 with s = zG: L (23)
~ g Tk Kk~ 1,ng g
Kk g=

S is the total RNA output of a sampte

While Ny is known, S is unknown and can extremely vary from sampleaime

[57] and cannot be directly estimated. The rela®A production of two samplds



K is f, =% and can be estimated using ghted trimmed mean (average after

removing the upper and lowg¥ of the data) of the logarithm of the expression

ratios. The gene log fold changes are definedlasr® [57]:

Y, ! N, j (24)

M, =log,| —%—*
¢ gz[ng./Nk.

and the absolute expression levels as:

A, = %Iogz((ng/ N )* (Y /N, ) (25)
the proposed normalization is the trimmed mealpindA, values and is called by
the authors ofedgeR“TMM normalization” (Trimmed Mean of M values).yb
default the trim foiMg is 30% and fohyis 5%.

After trimming, a weighted mean &y and A is taken, with weights computed as
the inverse of the approximate asymptotic varian@@snputed using the delta
method presented in [81]. The normalization factimns samplek with reference

sampler, are

D WyM g,
log,(TMM| ) = & (26)

D W
g

Yo/ Ny and weights Wy =
Y /N ghts ™

gr r

Nk _ng + Nr _Ygr
N, Y. N,Y,,

gk

with fold change Mg = Iogz(
with Yq andYg > O.

edgeRworks only with data sets with replicated expenise



If the replicates are only two the “effective” ldoy size (the total sum of counts of a
sample) is determined dividing the sample takerefssence by/f,  and multiplying
the non reference one bj\/f_k

Then thesage.testlgorithm from the R librargtatmodcan be used to compute the
p-value for Fisher’s exact test for each gene.

Normalization factors across several samples catob®uted selecting one sample
as reference and computing TMM normalization faéboreach non reference sample
[57] to determine the “effective” library size (@thumber of counts in each sample)
of the samples in each condition. Then the staéisanalysis is performed following
the method proposed in [71] using a likelihooda#dist to evaluate the differences in
expression between libraries: they compute the mmaxi likelihood estimates under
the under the null hypothesis that each gene naws the same mean expression in

different samplesThe standard likelihood ratio statistic,

D= —2In[i} (27)
L

H,

where Ly is the likelihood for the null model andy; the likelihood for the
alternative modelD was computed ang-values for each gene were obtained
exploiting the fact that, under the null hypotheé#ss statistic has an approximated

X* distribution with one degree of freedom.



DESeq

This method is based on the previously describggaékageedgeRand similarly
based on the hypothesis that each single read camnbe described by a Negative

Binomial distribution,
K, = NB(y; ,07) with  u<<o? (28)

which unique and unknown parameters are the medrthevariance of the reads
that must be estimated from the data. This disivbucan be also parametrized, as
suggested in [67] with respect to the probabilifygnd the number of failures before
a succesgj as

2
p= o M (29)
o g - U

Normally the number of replicates is low and ser¢his an evident need for further

modeling assumptions [66] and the authorBBEeqghypothesize that:
1.The mea y; of genén samplg, is proportional to the library siz

Hi =G o5y LS, (30)

with ¢ ,;, gene abundan.o(i)experimental condition of sampjle
2. The variancio® is constituted by two terms:
o2 = + (v, ) 31
i~ Hi i —Vipe(i) (31)
H; is the mean and the other term igdlevariance.

3. The raw variance is proportional to the gene abood



Vioh =V, o) (32)
Then the model must be fitted to the data, estimgas G, VoS follows:
A . kij
§ = medlan(—fm — (33)
| |_|t=1 kit
k

~ 1 ij
Gp=" 2. &
7 om, ; §, (34)

with m ~ number of replicates of conditi o

\7p (aip) =W, (qip ) ~Zp 53
2
1 Ki .
with w,=—— -G
g mp_lj:p%):—p[ j p]
_ Gy, 1
z =—2 -
8 mp iip%;%t? j

where the denominator oéj can be imagined as seugo-reference” sample
obtained computing the geometric mean across sanfd. Once these parameters
are estimated, under the null hypothesis thg, =qz i.e. the gene abundance is
equal in the two conditions A and B, it is possibbetest the data for differential

expression, defining as test statistic the totaht® in the two conditions

Kia = Z Ki Kig = Z Ki

io(1)=A i:p(1)=B (36)

with Kis = Kia + Kjg

The p-value of a couple of observed count sumsasum of all the probabilities less

or equal to ga, kg), given the total surks , with a, b with values [(ksa]



3 pab)

atb=kig
A, K — p(ab)< p(kia kg ) 37
P(kia, ke) S p(a.b) (37)

atb= kiS

This approach is similar to that adopted in theclar{69] that is of the same authors
of edgeR p(a,b), assuming that the counts are independent, igtbduct of the
single marginal probabilities & andb. To compute these two probabilities first is

possible to compute the average of the countslezkeaths

" K;
Qo = Z (_j (38)

ip( =B} S
and the mean and variance of the data in condifioare respectively (from

equations(30), (31))

lZ[iA = Z(Qio DAS])

T (39)

Rank Product

This method [14] has been already mentioned irpteeious two chapters (described
in section 1.2.2 : it was used in the pipe-line to detect altaugasplicing events in

data sets produced with microarray platforms anchit complete the extension of
the R libraryoneChannelGUIto analysis of non-coding RNA-seq. Rank Produat ca
be used with a great variety of different typesdata in input because it is a non-
parametric statistic based on fold change andirgghgsed now in RNA interference

[82], as well as in metanalysis [83]. Rank Prodwes used with 100 permutations

and 50 iterations were made to be sure not to langeegulated shRNAs.



3.3 Results

Here is presented an analysis of seven shRNAsseétdaall produced using lllumina
Genome Analyzer technology and kindly provided bgrida Pesic and Ramona
Rudalska, Ph.D. students of the group of Prof. LZemder and Dr. Torsten

Woistefeld.

3.3.1 Short hairpin RNAs experiments

The data sets produced by R. Rudalska and M. eesie from in vitro experiments

on a set of short hairpin RNAs that targets gefiefimnic liver disease.

Hereafter the number of reads in each samplesabf eathe seven experiments and

the number of treatment (T) and control (C) caseshown:

- Data sets with replicated experiments
R1. 1980 shRNAs: 4C, 4T (fromuseliver cell lines)
R2. 1830shRNAs: 3C, 3T (fromauseliver cell lines)

R3. 1911 shRNAs: 3C, 4T (fromuseliver cell lines)

- Data sets without replicated experiments

R4. 20440 shRNAs: 1C, 1 T (frbomanliver cell lines)
M1l. 234shRNAs: 1C, 1T (fromouseliver)
M2. 230shRNAs: 1C, 1T (fromouseliver)
M3. 236shRNAs: 1C, 1T (fromouseliver)

Data sets with no replicates were analyzed in glsimway than the ones with

replicates.



3.3.2 Filters and data normalization

The analysis is illustrated based on the R1 ddtaceastituted by four samples for

each condition (treatment and control cases).

Filters

The first approach was to not consider the rowthefshRNAs data sets containing
too many zeros, that are troublesome from a cortipot point of view. The
following example shows which type of row wasdikd out in first analysis,

resulting in 1854 shRNAs after the filter, fromtarting total number of 1980.

T1 T2 T3 T4 C1 C2 C3 C4

8 0 0 0O 0 O O O deleted
O 0 0 0 8 0 O O deleted
8 8 0 0O 0 0 O O taken

O 0 0 08 8 0 0 taken

8 0 0 0 8 0O O O taken
Only those rows presenting, in at least one otweconditions, at least one element
different from zero, were retained. An alternatmere stringent filter was,

T1 T2 T3 T4 C1 C2 C3 C4

80 0 O O 0O O O deleted
O 0 O O 18 0 0O O deleted



O 0 0 0 0 O deleted
O 0 18 19 0 O deleted
O 0 18 0 0O O deleted
O 0 18 19 0 O taken
100 18 19 0 O taken

0O 0O 18 19 200 taken
100 18 19 200 taken
10 11 18 19 200 taken
100 18 19 20 21  taken
10 11 18 19 20 21 taken

0O 00O O 0O O 0O W O O o0
© © © © © © O O o o©

This filter considers only those rows in which, oth conditions, half or more
elements were different from zero. This resultedl#®9 remaining shRNAs. But
from a biological point of view there was a losdad much information. And the last
and most successful approach was to keep only s$itRBIAs that had half or more
element different from zero only in the treatmdigcause if the control is initially O
or very low and the treatment is very high thigiteresting from a biological point of

view and must be further analyzed.

T1 T2 T3 T4 C1 C2 C3 C4

80 0 O O 0O O O deleted
O 0O O O 18 0 0O O deleted
9 0 0O 0 O O O taken

O 0 O O 18 19 0 O deleted

8 0 O 0 18 0 0O O deleted



8 9 0 0 18 19 0 O taken
8 9 100 18 19 0 O taken
8 9 0 0O 18 19 200 taken
8 9 100 18 19 200 taken
8 9 10 11 18 19 200 taken
8 9 100 18 19 20 21  taken

8 9 10 11 18 19 20 21 taken

After this filter 1802 shRNAs remained. If a datet 9s without replicated
experiments of the same condition zeros do not megthing from a statistical point
of view and all the rows with zeros can be ignowalother filter was tried, on the p-
values of the data set after the statistical amalydeletion of all the regulated
shRNAs in which range(T) intersected range(C), waihge = (min, max), like in the

following example:
T1L T2 T3 T4 C1 C2 C3 C4

shRNA.1 100 300 400 110200 180 20 10 deleted

shRNA.2 100 15 50 8 5 10 20 2 deleted

In the first example 200 and 180 are in the range({L00, 400), while in the second
one 15 and 8 are in the range(C) = (2, 20) so Heeyn too noisy to be considered
reliable. This filter subsequent to the statistiealalyses was removed because

biologically it was too stringent.



Dealing with zeros

Instead in the experiments with replicates, evaarahe (third) preliminary filter
applied to reduce the size of the data set throwirtgunuseful noisy data, there will
be still some read counts equal to zero in somgkesmmHence this raised the need to

better deal with these zeros, which can cause ctatpoal problems.

The first approach was to create four differenetypf data sets to be subsequently

subdued to differential expression analysis:

— Raw: the raw original data set

T1 T2 T3 T4 CC2 C3 C4

shRNA.1 8 10 0 O 18 20 0 O

shRNA2 810 0 0 O O O O

— LC.: filtered data set where to all the reads wadedda pseudo-count of 1
(called sometimes Laplace Correction (LC) [84] [888]), as also proposed in
[63]. This method allows to account for the followyi problem: fold-change
(FC) between low values is less statistically digant then the fold-change
between high values, which are more reliable. kanwle: FC = 10/2 = 5; FC
= 11/3 = 3.6, while FC = 100/20 =5 and FC = 10#24.8.

T1 T2 T3 T4 CC2 C3 C4

shRNA.1 9 111 1 19 211 1

ShRNA.2 9 111 1 1 1 1 1



— NA: filtered data set in which 0 was changed in#® (dot available elements)
if the other elements of the shRNA were differemdnf 0 (SshRNA.1);
otherwise zeros were unchanged (SshRNA.2). Thenp#sdo-count 1 was
added everywhere. Changing O into NA means pointungthat 0 means that

nothing was detected, because of experimental woisther reasons.
T1 T2 T3 T4 CC2 C3 C4

shRNA.1 8 10 NA NA 18 20NA NA

SshRNA.1 9 11 NA NA 19 21NA NA

ShRNA.2 8 1I0NA NA 0 O O O

shRNA.2 9 11NANA 1 1 1 1

— Mean: the filtered data set in which each 0, wdssstuted with the mean of
the other non-zero elements of the same conditiothe other elements of the
shRNA were different from 0 (shRNA.1); otherwiseraze were unchanged
(shRNA.2). Then the pseudo-count 1 was added.

T1 T2 T3 T4 1CC2 C3 C4

ShRNA.1 8 10 9 9 18 2019 19

shRNA.1 9 11 10 10 19 2120 20

shRNA2 8 10 9 9 0 O O O

ShRNA.2 91110 10 1 1 1 1

Then the results obtained analyzing these four data with the three statistics in

section 3.2.2were compared.



Initially there was the idea to not consider in #malysis the columns of the data set
(with replicated experiments) that contained mbent50% of zeros, as suggested by
Prof. Raffaele Calogero, because considered uhleji#oo noisy. But in the case
considered here, all the samples had more than &0&6n-zero elements. So not
considering C2, C3 columns that contained 20% obgzewas tried. But lately this
approach was abandoned because it was leadingréagloss of information.

In the case of data sets without any replicate@ex@nt dealing with zero was not a
problem: seen that the elements equal to zero avéeev (10-15) they were removed

from the data set, instead of adding a pseudo-cafult

Normalization

edgeRandDESeqinclude a normalization methoddgeRuses TMM normalization,
taking one sample of a certain condition as refsgen compute TMM of the other
samples,DESeqcorrects the library size multiplying it by a ssdhctor estimated
from the raw data. While Rank Product has not anatization method.

A comparison between the raw data and the rescafexs with the standard
normalization (dividing each sample by the relabbdary size, as mentioned in
section 3.2.2, edgeRandDESeqproposed ones was made. The conclusion was that
these three types of normalization are equivaledtso data to be submitted to Rank
Product were previously rescaled widESegnormalization, the most recent method.
Actually the first analyses were run comparing RBuits obtained on data sets with

standard and DESeq normalization: the results iereame.



No normalization Dividing by sample sum
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Fig.19 A is the control: sample Al and A2 are compareith &iqqg-plot, before and after three types

of normalization (dividing by sample sum,edgeR and DESeq factors).



No normalization Dividing by sample sum
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Fig.20 B is the treatment case: sample B1 and B2 are amdwith a g-plot, before and after three

types of normalization.

3.3.3 Regulation detection

Within all the results obtained wibESeq edgeRandRP only those witHog,(FC) >
1 and p-values< 0.05 or p-adjusted& 0.1 respectively, were retained. The p-values
were adjusted witlp.adjust algorithm of the R librarystats with the method of

Benjamini Hochberg (BH) [35], to account for mplé testing problem.



For each of the four possible data sets (Raw, L&, Mean)log,(FC) was computed
(the samdog,(FC) of LC was assigned to NA). And only those tatgd shRNAs
which presented a consisteluig,(FC) were retained, i.e. only those for which
(log2FC.LC/log2FC.Mean) > 0 so that the two valbad the same sign to point out

uniquely up (+) or down (-) regulation.

Data sets with replicates
To each of the three data sets were respectivelyealpone or more statistics:

- Raw:DESeq, edgeR, RP.

- LC: DESeq, edgeR, RP

- NA: RP was the only method applied becaldeSeqandedgeRcan only
analyze data without NA (for undefined elements)ile RP can not
consider NA in the analysis.

- Mean:DESeq, edgeR, RP

Then the intersection of the values (p-values, Ipesaadjusted) found with at least

two methods€dgeRandDESeq edgeRandRP, DESegandRP) was taken.

Hereafter the Venn Diagrams of the results obtaiagutesented for the data sets R1,
R2, R3. PVALUES label points out the number of slaBNvith p-value < 0.05,
while PADJUSTED label points out the number of sWRNvith p-value adjusted

with BH method that is 0.1.
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UP DOWN
ShRNAs with p-value 0.05
LC NA.LC LC NA.LC
Mean.LC 0 Mean.LC 0
ShRNAs with p-value adjusted 0.1
LC NA LC NA.LC
Mean 0 Mean.LC 0

If the intersection of the results obtained witHestst two methods between LC, NA

and Mean is considered, the significant valuegtadollowing ones:




P-values P-values adjusted
UP DOWN UP DOWN
R1 93 106 31 37
R2 132 77 45 7
R3 188 183 125 118

Table 7.P-values and p-values adjusted with BH method efdhta sets with replicates (R1, R2,

R3) are shown respectively for the up- and downHatgd shRNAs.

Data sets without replicates

To each of the three data sets were respectiv@iyeapDESeq, edgeR, RRvithout
any previous transformation of zeros because these removededgeRdoes not
work without replicated samples and it resultedsaful. The union of the results
found with DESeq and RP constituted the number of regulated shRNAs, as

summarized in the table below:

P-values P-values adjusted
UP DOWN UP DOWN
R4 1020 1945 0 79
M1 15 14 2 1
M2 12 19 0 1
M3 11 14 0 0

Table 8. P-values and p-values adjusted with BH methodhefdata sets with replicates (R4, M1,
M2, M3, M4) are shown respectively for the up- aogvn-regulated shRNAs.




3.4 Conclusions

The results of this study are shown in the tablethe previoussection 3.3.3and
looking at them it is evident that Benjamini & Hdehrg p-value adjustment cut off

many data.

The pipe-line used to analyze the data withouticgaies is more simple than the one
used for the other analysis and also less reliabtsause of this lack of available
replication: hence no comparison through sampleshefsame condition can be

made.

NA and Mean modified data sets give the best resant to reduce the number of
false values the intersection of the common valseonsidered. NA seems to find
much more regulated shRNAs than Mean but many emtlare false values.
Furthermore, the shRNAs whose regulation is dedeayetwo or three different types

of modified data sets instead of only one, arelgunere reliable.

Afterwards part of the results, obtained for thee¢hdata sets with replicates (R1, R2,
R3), is presented. All the presented shRNAs hereafe up-regulated (if the control
Is lower than the treatment) or down-regulatedtlig control is higher than the
treatment) respectively and present a p-value loaveequal to 0.05, i.e. they are
statistically significant. ShRNA IDs written in rgdp-regulated) and green (down-
regulated) point out that the results have thelpevadjusted with BH that is less or
equal to the 0.1 threshold, beyond having p-vatwesl or equal to 0.05. ShRNA IDs

highlighted in gray were detected simultaneouslyhwiC, NA, Mean methods.
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949,74
1395,75
0
36,07
1,20
0
738,15
1226,24
128,64
98,58
0
44,48
82,95
143,06
15,63
663,61
6,01
40,87
453,23

log2FC
-6,14
-6,13
-6,05
-5,99
-5,97
-5,62
-5,52
-5,16
-5,14
-5,00
-4,99
-4,85
-4,85
-4,68
-4,59
-4,38
-4,36
-4,32
-4,25
-4,20
-4,14
-4,10
-4,06
-4,06
-4,02
-3,90
-3,89
-3,82
-3,78
-3,77
-3,74
-3,73
-3,55
-3,54
-3,53
-3,52
-3,46
-3,40
-3,37
-3,36
-3,34
-3,31
-3,30
-3,29
-3,29
-3,27
-3,25
-3,25
-3,22
-3,22
-3,22
-3,19



R2. Up-regulated shRNAs

C1 C2 C3 T1 T2 T3 log2FC
u.R2.shRNA.1 0,89 1,12 1,05 17,45 3860,88 0 9,48
u.R2.shRNA.2 0 2,24 0 857,55 570,42 59,50 8,34
u.R2.shRNA.3 0 0 0 560,90 126,20 0 8,20
u.R2.shRNA.4 0 0 0,35 304,13 136,30 119,00 7,70
u.R2.shRNA.5 0 5,61 0 1353,64 257,45 7,68 7,67
u.R2.shRNA.6 3,56 0 0 4,99 1171,13 0 7,64
u.R2.shRNA.7 0 0 0 0 447,59 1,92 7,59
u.R2.shRNA.8 0 0 0 4,99 429,92 1,92 7,55
u.R2.shRNA.9 0 1,12 0 191,95 412,25 13,44 7,48
u.R2.shRNA.10 0 2,24 1,05 855,06 0,84 5,76 7,26
u.R2.shRNA.11 0 0 0 266,74 1,68 1,92 6,87
u.R2.shRNA.12 0,89 4,49 0,35 797,72 0 1,92 6,64
u.R2.shRNA.13 0 2,24 0 371,44 18,51 19,19 6,49
u.R2.shRNA.14 0 0 0,70 0 231,37 3,84 6,30
u.R2.shRNA.15 0,89 1,12 3,50 573,36 15,14 0 6,24
u.R2.shRNA.16 0 0 0,70 176,99 35,34 5,76 6,19
u.R2.shRNA.17 5,33 1,12 0,70 413,82 266,70 0 6,17
u.R2.shRNA.18 0 0 1,40 104,70 148,07 1,92 6,11
u.R2.shRNA.19 0 0 0 2,49 27,76 124,76 6,08
u.R2.shRNA.20 0 1,12 0 4,99 215,38 0 6,02
u.R2.shRNA.21 0 0 0,70 94,73 92,55 1,92 5,99
u.R2.shRNA.22 0 0 5,60 0 353,36 143,95 5,98
u.R2.shRNA.23 0 0 0 0 120,31 15,36 5,90
u.R2.shRNA.24 2,67 2,24 6,29 57,34 682,32 13,44 5,80
u.R2.shRNA.25 0 0 0 2,49 120,31 0 5,76
u.R2.shRNA.26 0 3,37 0 294,16 9,25 0 5,75
u.R2.shRNA.27 0 0 0,35 127,14 0 9,60 571
u.R2.shRNA.28 0 2,24 12,59 406,34 399,63 72,94 5,68
u.R2.shRNA.29 0 1,12 0 34,90 132,93 0 5,63
u.R2.shRNA.30 0 0 0 0 0,84 105,57 5,56
u.R2.shRNA.31 0 0 0 0 98,44 3,84 5,51
u.R2.shRNA.32 0 6,73 6,29 643,16 5,05 36,47 5,49
u.R2.shRNA.33 0 0 0 77,28 12,62 0 5,33
u.R2.shRNA.34 0 0 0,35 57,34 0,84 38,39 5,23
u.R2.shRNA.35 0 0 5,60 0 266,70 23,03 521
u.R2.shRNA.36 0 0 3,85 82,27 133,77 7,68 5,20
u.R2.shRNA.37 0 0 0 0 15,99 63,34 5,16
u.R2.shRNA.38 3,56 0 0 0 183,41 19,19 5,13
u.R2.shRNA.39 0 3,37 0 184,47 3,37 0 5,07
u.R2.shRNA.40 0 2,24 0 59,83 89,18 0 5,07
u.R2.shRNA.41 0 8,98 0 368,95 0,84 3,84 5,06
u.R2.shRNA.42 0 8,98 0 368,95 0,84 3,84 5,06
u.R2.shRNA.43 0 0 0 0 61,42 11,52 5,05
u.R2.shRNA.44 7,11 12,35 0,35 393,88 322,23 3,84 5,03
u.R2.shRNA.45 2,67 0 19,23 625,71 20,19 80,61 4,91
u.R2.shRNA.46 0,89 12,35 0,70 458,69 15,14 0 4,88
u.R2.shRNA.47 2,67 0 0 19,94 116,95 1,92 4,84
u.R2.shRNA.48 0 0 0 0 40,38 21,11 4,82
u.R2.shRNA.49 0 0 0 57,34 0 1,92 4,77
u.R2.shRNA.50 0 0 0 2,49 55,53 0 4,74
u.R2.shRNA.51 0 5,61 2,45 229,35 0,84 38,39 4,72
u.R2.shRNA.52 0 0 0 0 1,68 53,74 4,68



d.R2.shRNA.1
d.R2.shRNA.2
d.R2.shRNA.3
d.R2.shRNA.4
d.R2.shRNA.5
d.R2.shRNA.6
d.R2.shRNA.7
d.R2.shRNA.8
d.R2.shRNA.9
d.R2.shRNA.10
d.R2.shRNA.11
d.R2.shRNA.12
d.R2.shRNA.13
d.R2.shRNA.14
d.R2.shRNA.15
d.R2.shRNA.16
d.R2.shRNA.17
d.R2.shRNA.18
d.R2.shRNA.19
d.R2.shRNA.20
d.R2.shRNA.21
d.R2.shRNA.22
d.R2.shRNA.23
d.R2.shRNA.24
d.R2.shRNA.25
d.R2.shRNA.26
d.R2.shRNA.27
d.R2.shRNA.28
d.R2.shRNA.29
d.R2.shRNA.30
d.R2.shRNA.31
d.R2.shRNA.32
d.R2.shRNA.33
d.R2.shRNA.34
d.R2.shRNA.35
d.R2.shRNA.36
d.R2.shRNA.37
d.R2.shRNA.38
d.R2.shRNA.39
d.R2.shRNA.40
d.R2.shRNA.41
d.R2.shRNA.42
d.R2.shRNA.43
d.R2.shRNA.44
d.R2.shRNA.45
d.R2.shRNA.46
d.R2.shRNA.47
d.R2.shRNA.48
d.R2.shRNA.49
d.R2.shRNA.50
d.R2.shRNA.51
d.R2.shRNA.52

c1
61,35
1148,75
951,37
563,71
413,44
288,08
22,23
59,57
1417,27
521,03
0
5092,03
106,70
254,29
157,38
1044,72
3054,15
223,17
3243,53
781,54
2160,58
500,58
305,86
146,71
3721,88
0
317,42
16,00
1138,08
445,45
110,25
1664,44
304,08
4023,30
145,82
814,44
1143,42
1737,35
1186,98
2329,51
1579,09
220,50
522,81
1244,78
546,81
548,59
1312,35
3284,43
2255,71
3570,73
885,57
4008,18

R2. Down-regulated shRNAs

C2
1671,35
2246,05

282,86
974,30
2840,95
1094,40
16699,99
1359,30
920,42
6120,79
1515,32
9224,39
411,94
671,23
1260,52
2537,89
9375,93
6206,09
2040,64
3347,18
4345,05
3048,61
3305,65
4688,52
1091,03
4464,03
1269,50
1419,91
1229,10
1708,39
106,63
569,09
239,08
13193,42
3113,71
2796,05
1146,03
11975,55
2030,53
2614,21
4827,71
197,55
1256,04
1708,39
1,12
1302,06
3100,24
4653,73
1249,30
12633,31
3413,41
8674,39

C3
12,24
123,10
86,73
129,04
0
0,35
18,53
0
396,22
170,66
0
670,74
0
2,10
61,20
236,40
366,84
25,18
221,36
46,16
144,78
0
161,21
229,41
209,82
0,35
46,16
57,00
246,89
87,78
14,34
197,23
85,33
371,74
92,67
152,12
176,95
438,88
54,90
108,76
110,86
16,79
54,20
177,30
62,25
39,52
222,76
102,81
333,97
1341,13
141,98
137,09

T1
2,49
7,48
2,49

0
4,99
0
52,35
7,48
2,49
0
12,46
164,53
0
0
17,45
24,93
107,19
0
114,67
0
14,96
17,45
27,42
64,81
32,41
99,72
4,99
34,90
0
4,99
0
54,84
2,49
9,97
77,28
122,15
32,41
314,10
24,93
74,79
0
0
57,34
137,11
7,48
0
107,19
181,98
12,46
4,99
172,01
27,42

T2
0
3,37
0
5,05
10,94
0,84
34,49
0
21,87
79,93
2,52
27,76
0,84
11,78
0
2,52
79,09
56,37
3,37
27,76
99,28
0
18,51
33,65
74,88
0
4,21
5,89
38,70
2,52
0,84
0,84
6,73
440,86
4,21
0
36,18
49,64
23,56
37,02
250,72
6,73
18,51
4,21
15,99
62,26
0,84
173,31
135,45
10,10
0
519,10

T3
1,92
9,60
1,92
1,92
3,84
5,76

67,18
1,92
3,84
3,84

32,63
1,92
1,92
7,68

47,98

80,61

76,78

61,42
34,55
65,26
49,90
32,63
30,71
24,95
34,55
1,92
42,23
61,42
1,92
23,03
7,68
174,66
36,47
13,44
24,95
214,97
88,29
103,65
28,79
7,68
3,84

23,03
109,40
30,71
34,55
859,88
46,07
119,00

log2FC
-7,50
-7,10
-7,10
-7,09
-7,02
-6,87
-6,72
-6,60
-6,35
-6,26
-6,23
-6,03
-6,02
-5,62
-5,61
-5,57
-5,56
-5,54
-5,48
-5,47
-5,43
-5,34
-5,22
-5,22
-5,13
-5,10
-5,06
-4,96
-4,92
-4,92
-4,87
-4,86
-4,83
-4,80
4,77
-4,74
-4,64
-4,60
-4,53
-4,52
-4,52
-4,47
-4,43
-4,42
-4,41
-4,39
-4,38
-4,36
-4,35
-4,32
-4,31
-4,26



c cCccccCccCccCccCcccCccCccCccCccCccCccCcccccccccccccCccCc o C

= = L =5 =5 =5 =5 =5 =

.R3.shRNA.1

.R3.shRNA.2

.R3.shRNA.3

.R3.shRNA.4

.R3.shRNA.5

.R3.shRNA.6

.R3.shRNA.7

.R3.shRNA.8

.R3.shRNA.9

.R3.shRNA.10
.R3.shRNA.11
.R3.shRNA.12
.R3.shRNA.13
.R3.shRNA.14
.R3.shRNA.15
.R3.shRNA.16
.R3.shRNA.17
.R3.shRNA.18
.R3.shRNA.19
.R3.shRNA.20
.R3.shRNA.21
.R3.shRNA.22
.R3.shRNA.23
.R3.shRNA.24
.R3.shRNA.25
.R3.shRNA.26
.R3.shRNA.27
.R3.shRNA.28
.R3.shRNA.29
.R3.shRNA.30
.R3.shRNA.31
.R3.shRNA.32
.R3.shRNA.33
.R3.shRNA.34
.R3.shRNA.35
.R3.shRNA.36
.R3.shRNA.37
.R3.shRNA.38
.R3.shRNA.39
.R3.shRNA.40
.R3.shRNA.41
.R3.shRNA.42
.R3.shRNA.43
.R3.shRNA.44
.R3.shRNA.45
.R3.shRNA.46
.R3.shRNA.47
.R3.shRNA.48
.R3.shRNA.49
.R3.shRNA.50
.R3.shRNA.51
.R3.shRNA.52

C1
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
3,92
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
1,31
0,00
0,00
0,00
0,00
0,00
0,00
1,31
0,00
0,00
0,00
0,00
10,46
1,31
0,00
0,00
0,00
0,00
2,61
0,00
0,00
2,61
0,00
3,92
3,92
0,00
0,00
0,00

R3. Up-regulated shRNAs

Cc2 C3 Tl T2 T3
0,00 0,00 0,00 23467,85 25494,06
0,00 0,00 0,96 17170,01 8841,16
0,00 0,00 43,99 5613,10 4028,81
0,00 0,00 0,00 4995,95 3651,11
0,00 0,00 3,83 438,52  1056,08
0,00 0,00 20,08 5915,64 4,44
0,00 0,00 2416,78 0,00 2904,59
0,00 0,00 297,44  1094,30 3288,22
0,00 0,00 321,35 1347,76 5,92
0,00 0,00 350,99 0,00 0,00
0,00 1,17 69,82 383,00 1528,58
0,00 0,00 0,00 4127,75 0,00
0,00 0,00 0,00 580,14 700,60
0,00 0,00 1917,55 1351,78 1,48
0,00 0,00 2005,54 1307,52 1,48
0,00 0,00 0,96 2,41 3246,75
0,00 4,68 7403,37 6,44 54,80
0,00 0,00 2411,05 377,37 39,99
0,00 3,51 4248,26 0,80 0,00
0,00 0,00 187,45 0,00 5,92
0,00 0,00 0,00 2120,20 0,00
16,51 2,34 127,20 6976,95 8140,56
0,00 0,00 0,00 2410,67 4,44
2,25 3,51 2043,79 1918,24 1764,08
3,00 0,00 1589,51 3644,98 14,81
0,00 0,00 41,12 439,33 453,24
0,00 0,00 167,37  1973,76 0,00
7,51 0,00 0,00 1809,61 2,96
0,00 0,00 0,00 1206,95 622,10
0,00 0,00 658,95  1248,79 48,88
4,50 0,00 0,96 1915,02 1164,21
0,00 0,00 0,00 613,13 1541,91
0,00 0,00 882,74 0,00 956,84
0,00 0,00 0,00 1810,42 2,96
0,00 2,34 2,87 2977,94 1,48
0,75 0,00 43,99 0,00 4,44
0,00 2,34 241,01  5555,17 2283,98
0,00 0,00 0,00 0,00 2208,44
0,00 2,34 1134,27 1789,50 0,00
0,00 0,00 0,96 0,00 0,00
0,00 0,00 1616,29 0,00 4,44
0,00 0,00 1129,49 31,38 305,12
0,00 0,00 1920,42 0,80 881,30
27,77 0,00 1256,69 929,35 17,77
0,00 0,00 384,47 453,01 552,48
0,00 3,51 574 1380,75 1692,99
2,25 0,00 858,83 0,00 648,76
4,50 2,34 28,69 571,29 730,22
4,50 2,34 28,69 571,29 730,22
0,00 0,00 268,74 15,29 909,44
0,00 1,17 496,36 613,13 493,23
0,00 0,00 0,00 0,00 528,78

T4
0,00
0,00
0,00
0,95

5052,00
544,70
12,32
23,68
8576,94
4000,49
3790,18
72,94
2190,18
99,47
0,00
5,68
0,00
0,95
1431,38
2374,90
406,40
1392,54
0,00
985,20
0,00
1221,08
0,00
5035,90
178,09
50,21
1592,43
444,29
0,00
0,00
0,00
2068,92
397,87
178,09
0,00
1688,10
2,84
154,41
0,00

11425,50
1,89

760,69
656,49

3919,97

3919,97
0,00
0,00

598,70

log2FC
13,47
12,56
11,14
10,97
10,57
10,56
10,28
10,10
10,07
9,98
9,94
9,93
9,66
9,61
9,59
9,57
9,47
9,36
9,31
9,22
9,20
9,14
9,13
9,13
9,03
8,97
8,96
8,90
8,87
8,87
8,83
8,75
8,74
8,72
8,65
8,64
8,63
8,63
8,62
8,62
8,56
8,56
8,49
8,37
8,34
8,27
8,21
8,14
8,14
8,12
8,10
8,04



R3. Down-regulated shRNAs

C1 c2 C3 T1 T2 T3 T4 log2FC

d.R3.shRNA.1  4896,19 1107,84 0 0 1,61 5,92 0 -9,42

d.R3.shRNA.2  2650,09 135,85 0 0,96 0 1,48 0 -9,13

d.R3.shRNA.3 1,31 3,75 2279,03 2,87 2,41 0 0 -8,33

d.R3.shRNA.4 10073,46 1727,80 3328,45 50,69 0 16,29 8,53 -7,98

d.R3.shRNA.5  1835,58 600,45 1,17 0 0 7,41 1,89 -7,91

d.R3.shRNA.6  7887,50 4263,22 380,23 0 0,80 0 67,26 -7,85

d.R3.shRNA.7 26,15 0 1395,73 1,91 0 2,96 0 -7,71

d.R3.shRNA.8  2426,52 0 0 3,83 0 0 9,47 -7,53

d.R3.shRNA.9  2677,54 2,25 0 14,35 0,80 0 0 -7,53
d.R3.shRNA.10  1337,46 3934,47 2459,19 3,83 9,66 39,99 0 -7,48
d.R3.shRNA.11 0 174,88 2511,84 7,65 0 8,89 0 -7,43
d.R3.shRNA.12 2672,31 0 51,48 0 0 10,37 6,63 -7,42
d.R3.shRNA.13 4004,54 2811,62 98,27 35,39 0 14,81 2,84 -7,33
d.R3.shRNA.14 0 0 760,46 0 2,41 0 0,95 -7,08
d.R3.shRNA.15 753,06 0 10,53 0,96 0 0 2,84 -7,00
d.R3.shRNA.16 0 44,28  1634,39 0 0 11,85 1,89 -6,97
d.R3.shRNA.17 504,65 0 0 0,96 0 0 0,95 -6,80
d.R3.shRNA.18 0 0 17526,73 0 8,85 0 202,72 -6,76
d.R3.shRNA.19 1,31 623,72 538,17 0 1,61 8,89 0 -6,73
d.R3.shRNA.20 0 0,75 1735,01 0,96 19,31 0 0 -6,57
d.R3.shRNA.21 1,31 0 549,87 1,91 1,61 1,48 0 -6,33
d.R3.shRNA.22 0 655,24 10138,62 0 0,80 189,59 0 -6,21
d.R3.shRNA.23 465,43 2371,79 1121,96 15,30 3,22 47,40 5,68 -6,12
d.R3.shRNA.24 3,92 3,75  25600,43 562,35 0 0 0,95 -5,91
d.R3.shRNA.25 1519,19 1504,89 1,17 14,35 0 48,88 0,95 -5,88
d.R3.shRNA.26 0 1020,77 792,04 4,78 0 32,59 0 -5,86
d.R3.shRNA.27  4303,94 109,58 797,89 97,55 22,53 0 0 -5,81
d.R3.shRNA.28 768,75 3,00 1614,50 53,56 0,80 0 0 -5,77
d.R3.shRNA.29 31,38 1123,60 60,84 2,87 0 23,70 0,95 -5,68
d.R3.shRNA.30 1115,21 3014,27 0 0 99,77 2,96 0,95 -5,67
d.R3.shRNA.31 2,61 1001,26 0 0,96 2,41 20,74 0 -5,57
d.R3.shRNA.32 1,31 0 6074,28 117,64 18,51 29,62 2,84 -5,55
d.R3.shRNA.33 3613,63 294,22 2,34 0 57,93 0 58,73 -5,43
d.R3.shRNA.34 5866,27 3761,84 18,72 91,81 39,43 179,22 0,95 -5,35
d.R3.shRNA.35 0 117,09 1443,69 45,91 0 5,92 0,95 -5,19
d.R3.shRNA.36  1261,63 0 0 13,39 0 28,14 0,95 -5,18
d.R3.shRNA.37 1842,12 86,32 861,07 73,64 0 0 28,42 -5,13
d.R3.shRNA.38 19851,45 14146,68 1132,49 849,27 175,41 299,20 13,26 -5,13
d.R3.shRNA.39  2580,79 0 0 92,77 2,41 1,48 0 -5,09
d.R3.shRNA.40  1460,36 0 0 46,86 6,44 0 0 -5,09
d.R3.shRNA.41 1893,10 412,06 2,34 35,39 24,14 0 28,42 -5,06
d.R3.shRNA.42  7680,93 6016,54 0 82,25 10,46 448,80 5,68 -5,05
d.R3.shRNA.43  4296,09 12,76 1977,18 61,21 42,65 148,12 0 -5,03
d.R3.shRNA.44 0 0 1016,67 28,69 10,46 0 0 -4,97
d.R3.shRNA.45 1,31 1236,93 10665,09 234,31 245,41 0 26,52 -4,96
d.R3.shRNA.46  8996,17 10881,71 170459 68,86 4,02 1014,61 1,89 -4,72
d.R3.shRNA.47 2182,04 68,30 527,64 2,87 20,12 114,05 0,95 -4,71
d.R3.shRNA.48 1936,25 382,79 0 6,69 4,02 102,20 2,84 -4,69
d.R3.shRNA.49 0 683,77 4886,80 0 3,22 281,42 0 -4,69
d.R3.shRNA.50 320,31 21,02 90,08 0 0,80 11,85 5,68 -4,69
d.R3.shRNA.51 0 48,04 518513 73,64 0 0 195,15 -4,68

d.R3.shRNA.52 1,31 114,84 6697,85 333,78 0,80 2,96 38,84 -4,58
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