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Introduction 

I started Ph.D. in Complex Systems in Post-Genomic Biology in January 2008. The 

first two years I worked at the Department of Clinical and Biological Sciences of  San 

Luigi Hospital at Orbassano (Torino), under the supervision of Prof. Raffaele 

Calogero. I worked at the definition of the optimization of the analysis workflow for 

the detection of alternative splicing events (ASEs) by mean of Affymetrix exon array 

data analysis. This work resulted in the following publication: C. Della Beffa, F. 

Cordero, R.A. Calogero, Dissecting an alternative splicing analysis workflow for 

GeneChip® Exon 1.0 ST Affymetrix arrays. BMC Genomics 2008.  

Since January 2008 until the end of March 2009 I continued the evaluation of several 

published statistics for alternative splicing events detection to further improve the 

pipe-line analysis. In the meanwhile, from October 2008 to January 2009 I  

collaborated at a project on amyotrophic lateral sclerosis, leading in March 2009 to 

the  publication of an article at the International Conference on Complex, Intelligent 

and Software Intensive Systems: S.C. Lenzken, S. Vivarelli, F. Zolezzi, F. Cordero, 

C. Della Beffa, R.A. Calogero, Silvia Barabino, Genome-Wide Search for Splicing 

Defects Associated with Amyotrophic Lateral Sclerosis (ALS), CISIS 2009. 

Since April 2009 until February 2010 I started a project on the development of a 

quantitative analysis workflow for non-coding RNA quantification by Next- 

Generation Sequencing (NGS). This resulted in an extension of oneChannelGUI 

library, that now allows the quantitative analysis of non-coding NGS data. 



oneChannelGUI was originally a software package for single channel microarray 

data analysis developed in our lab and it is maintained by our group as our 

contribution to the Bioconductor project. 

Since March 2010 I moved to Helmholtz Zentrum für Infektionsforschung 

(Helmholtz Centre for Infection Research) in Braunschweig, where I have worked 

under the supervision of Prof. Frank Klawonn. The project I am involved concerns 

the analysis of several experimental data sets of short hairpin RNAs (shRNAs) for the 

detection of liver regeneration biomarkers. My actual task is defining the optimal 

statistics to select significantly regulated shRNAs.                                                                     

On the basis of the work I did during my Ph.D. training, the thesis is divided into 

three main topics: 

      1. Alternative splicing events detection methods. 

      2. Next-Generation Sequencing for non-coding RNAs analysis. 

      3. Regulation detection in short hairpin RNA sequencing reads.  

Before explaining in brief the contents of this thesis, it is important to say that these 

past three years I have created algorithms and analyzed data mostly using R code and 

environment. R environment can be freely downloaded from the Bioconductor web 

site www.bioconductor.org, which contains many “libraries”, sets of  algorithms to be 

used for different kinds of analysis of genomic (and in part also proteomic) 

experimental data. I have also written routines in C code, interfaced with R 

environment to speed up some algorithms.  



Each chapter is organized in this way: it begins with a general biological description 

of the phenomenon that deals with the developed computational tool; which 

instruments were involved in the experimental production of the analyzed data 

(microarrays, next-generation sequencing); which analytical methods were employed; 

the results obtained, explained in detail (publications, software, study of real data).   

In the following a brief summary of the thesis topics.  

Chapter 1 begins with a biological introduction (section 1.1) to alternative splicing 

mechanisms and presenting GeneChip® Exon 1.0 ST platform because all the data 

analyzed to detect splicing came from experiments with this type of microarrays. 

Always in introductory part of the first chapter, there is a brief description of 

oneChannelGUI, a graphical interface for pre-processing (quality control, filtering, 

study design, probe set summary and normalization) and analysis (statistical 

evaluation, ASEs detection, biological classification) of microarray and deep 

sequencing data. Section 1.2 deals with techniques to detect ASEs. The final section 

presents in detail two articles I contributed to in 2008 and 2009. In the first article: C. 

Della Beffa, F. Cordero, R.A. Calogero, Dissecting an alternative splicing analysis 

workflow for GeneChip® Exon 1.0 ST Affymetrix arrays. BMC Genomics 2008, the 

performances of some statistical methods to detect ASEs at exon-level in microarray 

data are evaluated. These methods were subsequently implemented in the R library 

oneChannelGUI. The second article: S.C. Lenzken, S. Vivarelli, F. Zolezzi, F. 

Cordero, C. Della Beffa, R.A. Calogero, S. Barabino, Genome-Wide Search for 

Splicing Defects Associated with Amyotrophic Lateral Sclerosis (ALS). 



International Conference on Complex, Intelligent and Software Intensive Systems; 

CISIS 2009, was published as part of the CISIS conference. In this study the pipe-line 

presented in the article of 2008 is applied to amyotrophic lateral sclerosis models to 

identify alternative splicing events. 

Chapter 2 begins a new part of the thesis with a biological description (section 2.1) 

of non-coding RNAs (specifically focused on microRNAs) and of a recent high-

throughput technology called Next-Generation Sequencing (NGS) (section 2.2) 

devoted to the generation of massive DNA/RNA sequences data. The sequences I 

analyzed were obtained with one of the most recent Next-Generation Sequencing 

technology, called SOLiD, developed by Applied Biosystems company. Following 

section 2.3 deals with ncSOLID R library, through which next-generation sequences 

data for quantification of non-coding RNAs are analyzed. This library became part of  

the library oneChannelGUI.  

Chapter 3 deals with the project I am actually working at Helmholtz Centre for 

infective diseases  research  in Germany. Short hairpin RNAs (shRNAs) (section 3.1) 

are a type of silencing RNAs that, in this case, have been used as biomarkers to 

support liver regeneration. The purpose of this study was to detect regulated 

(up/down) shRNAs between a normal and a disease condition. ShRNAs were first 

sequenced with Illumina Genome Analyzer (section 3.2), another NGS technology, 

and then analyzed (section 3.3) with the most recent published methods, using 

different kinds of data normalization and filtering techniques to reduce the noise of 

the data set. 



1.  Alternative splicing detection methods  

This first chapter is organized in seven sections and several subsections. The 

introduction explains the mechanism of alternative splicing, showing which are the 

main types of detected events; then array platform used for genomic experiments is 

presented. Subsequently oneChannelGUI software part of the Bioconductor open-

source project is briefly described. In the “Methods” section, first the workflow for 

the analysis is dissected step by step, from pre-processing (summarization, 

normalization, filtering) to the proposed methods for the statistical analysis of the 

genomic data. In the section “Results and conclusions”, the two articles I contributed 

to during the Ph.D. period are presented in detail, starting with the involved type of 

experiments, which resulting data were pre-processed before being subjected to a 

deep analysis from a statistical point of view to detect alternative splicing events 

(ASEs). 

 

1.1  Introduction 

Alternative splicing is a process by which the exons of the RNA produced by gene 

transcription (pre-mRNA) are joint in multiple combinations during RNA splicing 

(mRNA). The resulting different mRNAs may be translated into different protein 

isoforms.                                                                                                                  

Alternative splicing is a widespread phenomenon in eukaryotes, greatly increasing 



the diversity of proteins that can be encoded by the genome. Abnormal variations in 

splicing might contribute to  the development of cancer or genetic diseases.                                                 

Several types of alternative ASEs are commonly known [1], between them “exon 

skipping”, where an exon may be spliced out of the primary transcript or retained, is 

the most common in mammalians.                                                                                 

A high-throughput approach to investigate splicing is DNA microarray-based 

analysis. The array platform produced by Affymetrix is a 1.28 cm2 silicon chip 

divided into micro-cells (features) on which DNA fragments constituted of 25 base 

pairs (probes) are synthesized to be hybridized with cDNA or cRNA sequences 

(targets), previously labeled with fluorescent molecules to get a bright signal, 

proportional to expression level. In this way the global expression of the 

transcriptome is available and it is possible to grasp information on the expression of 

thousands of genes at the same time, with a unique microarray and this can reveal the 

presence of alternatively spliced mRNAs.  

In the studies shown in the articles in section 1.3, data were produced with exon 

arrays. These arrays (GeneChip® Exon 1.0 ST) contain over 1.4 million probe sets 

(constituted by up to four probes each), spread across exons from all known genes, 

enabling two complementary levels of analysis: gene expression (gene-level) and 

alternative splicing (exon-level). 

The pipe-line to detect alternative splicing events in microarrays experiments, 

(section 1.3), was implemented as part of the software oneChannelGUI, coded in R.    



R is a programming language and environment, suitable for people working with 

statistics because it is rich of libraries, sets of algorithms, to statistically analyze data  

coming from biological experiments. Twice a year these libraries are updated and 

new libraries come out. oneChannelGUI was developed by Prof. Raffaele Calogero, 

Dr. Francesca Cordero and Dr. Remo Sanges and became part of the Bioconductor 

[3] libraries in October 2007 [4]. My contribution was related to the addition of the 

code for the analysis at exon-level presented in the paper described later on.  

oneChannelGUI is based on two previous software packages: 

• limma  (linear models for microarray data) [5]: is a generalisation of Lönnstedt 

and Speed model [6], a parametric empirical Bayesian approach using a 

mixture of normal distributions and a conjugate prior, deriving a simple 

expression for the posterior odds of differential expression for each gene. The 

posterior odds expression is a useful means of ranking genes with respect to 

their differential expression [5]. 

• affylmGUI : a graphical interface to analyze data from Affymetrix microarrays 

using limma. 

oneChannelGUI  is a R library that extends the capabilities of affylmGUI graphical 

interface. This library was developed to simplify the use of Bioconductor tools for 

beginners having limited or no experience in writing R code [4]. This library allows a 

complete analysis of different type of data sets, from pre-processing (quality control, 

filtering) to differential expression detection, biological interpretation and 

classification. Affymetrix 3' IVT, Human Gene 1.0 ST and exon arrays were first 

implemented [4].  



1.2  Methods 

Generally splice detection methods are based on similar hypothesis [7]:  

• the exons that constitute a gene are assumed to be proportional to each other 

across different samples; 

• a model to predict exon response is fit; 

• a statistic to measure how much biased is the data with respect to the model, is 

used: a p-value is computed to establish the significance of the obtained 

results. 

The steps that precede splicing events detection are schematically shown below:  

Data →→→→ Summarization →→→→ Normalization →→→→ Filters →→→→ Statistics →→→→ ASEs detection 

Raw data coming from replicated biological experiments are the fluorescent signals 

of the probe sets describing exons. They must be summarized to get a mean value 

(expression) representing each exon/gene. Then exon intensities must be normalized 

with respect to their respective gene intensity to make exon expressions independent 

from the gene they constitute. These values are filtered to remove the lowest and 

noisiest values that are most likely to be not significant after further statistical 

analysis and that interfere with ASEs detection, constituting false values.               

The expression of a transcriptome obtained with microarrays experimental data is 

proportional to the fluorescence intensity obtained from hybridization of transcripts 

with DNA probes on microarrays. Once experimentally obtained the bright signal 

(due to a fluorescent dye on the probes) there are some techniques to obtain gene 



expression (called summarization methods, which compute the mean intensity of the 

probe sets) and methods to filter the signal, that can be contaminated by: 

• background noise: noise due to experimental background, for example to 

unspecific hybridization of the probes with sequences different from those of 

genes complementary to them;  

• bias: system errors that can be deleted normalizing the signals with respect to     

those of a reference array (for example the array with mean expression values); 

• outliers: extreme values (very high/low with respect to the mean values of the 

signals) in some replicates of an experimental sample. 

 

After having filtered out the signal with background adjustment techniques (to delete 

unspecific hybridization), normalization and research of extreme values (which are 

likely mistakes and hence to be deleted) it is possible to analyze alternative splicing 

events using different detection methods. 

The following two subsections deals with the pre-processing phase and the statistical 

analysis of the data, respectively. 

 

1.2.1  Summarization, normalization and filters 

Summarizing, normalizing and filtering the data is important before performing deep 

statistical analysis of any genomic data set. In this section these three techniques of  

handling data, are presented in detail. 

 

 



Summarization 

A general summarization model, to get gene/exon expression from probe set 

intensities, formulated by Li and Wong [8], is based on the hypothesis that the 

intensity measured for arrays j = 1…J and probes k = 1…K is 

(1) 

•                                 difference of intensities; 

• jϑ  expression value for array j; 

• kφ   PM probe affinity (cross-hybridization); 

• jkε  error. 
 

This is the base on which are constructed the following two algorithms,   

• RMA (Robust Multi-array Analysis, Irizarry 2003) [9], [10] 

(2) 
 

• PLIER (Probe Logarithmic Intensity Error, Affymetrix 2004) 

Similar to RMA but keeps into account MM probes yet [11] [12], 

(3) 

 

Normalization 

To get exon expressions independent from their gene expression, we compared the 

performance of the ASEs detection methods with the following Splice Index (SI), 

(4) 

where exon means exon expression, gene means gene expression. 
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Filters 

The following five filters were used to remove the noisy elements: 

• Background correction removes intensity signals low with respect to a 

threshold (intensities lower than 1 in our case are transformed into 0). 

• Cross-hybridization correction deletes the probe sets in which every probe 

perfectly/partially matches more than one sequence of the transcript. 

• Delta Splicing Index considers only the intensities which difference between 

SI of treatment and control is higher than a fixed threshold. 

(5) 

 Here the Splice Index is computed as the log2 of the ratio between a value (T or 

 C) with respect to its mean value. Delta Splice Index is the absolute difference 

 between the SI of treatment and control cases.  

• Multiple mRNAs retention  is a filter to retain only genes associated to more 

than one transcript in the ENSEMBL database. 
 

• Detection Above BackGround (DABG) compares each probe signal to a 

distribution of background probes with the same G/C content [13]. A DABG p-

value representing the probability that the signal intensity is part of the null 

distribution is computed and only probes with a p-value lower than a p-value 

cutoff are retained. We also decided to consider only 90% of values filtered by 

DABG. 

 

Hereafter are presented seven statistical methods, known from literature, which 

performances were evaluated at exon-level on a benchmark experiment.  
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1.2.2  Detection methods 

In this section some published methods (MiDAS, Rank Product, OS, ORT, MADS, 

FIRMA, SPACE) for alternative splicing events detection are described, tested on a 

benchmark experiment on exon probe sets  and on real data. 

 

MiDAS 

Proposed by Affymetrix, MiDAS (Microarray Detection of Alternative Splicing) [7] 

is an ANOVA (analysis of  variance) based method. This detection statistic is based 

on the logarithm of the Splicing Index (presented in the previous normalization 

description in section 1.2.1), a basic metric for the analysis of ASEs: it is a measure 

of how much exon specific expression differs between two samples [7]. The first step 

is to normalize the exon-level signals with respect to the gene-level signals and then 

take the logarithm of this ratio, mathematically transformed into the difference 

between logged signal of each exon and its gene).  

(6) 

 

• i     exon,  j array,  k gene; 

•       exon-level expression; 

•       gene-level expression. 

SI is used to remove the gene-level differential expression, in the estimation of ASEs. 

If the Splicing Index of an exon is constant in all the experiments, then we can say 

that this exon is not spliced.  
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A model for possible splicing is: 

(7) 

• i  exon,  j array,  k gene; 

•        exon-level expression; 

• ikα  ratio of exon signal to its gene signal in the sample where it is maximally  

expressed; 

•                        proportionate expression of exon i of gene k in sample j; 

•        gene-level expression. 

Dividing both sides of the model by         we obtain the Splicing Index and taking the  

logarithm reduces this to an additive model: 

(8) 

 

Gene-level analysis 

MiDAS includes an error term ijkε   and possible interactions ikγ  comparing: 

(9) 

wondering if                                    across samples and exons. 

 

 

Exon-level analysis 

MIDAS considers the situation an exon at a time [7], so that                is constant and  

it is appropriate to consider the model excluding interactions: 

(10) 
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to test the hypothesis of no alternative splicing by testing for the constant effects 

model                         for all j samples. 

Let us define Sensitivity and Specificity statistical measures:                                                                                                                                                               

• TP – condition present &  positive result 

• TN – condition absent  &  negative result 

• FP – condition absent  &  positive result (type I error) 

• FN – condition present &  negative result (type II error) 

• TRUEs = TP + FN 

 

• FALSEs = TN + FP 

 

• True Positive Rate  
 
 

• True Negative Rate  
 

• False Positive Rate  
 

• False  Discovery Rate 

 

A Receiver Operating Characteristic (ROC) curve is a graphical plot of the 

Sensitivity versus (1 - Specificity): it measures how well a statistic differentiates true 

alternatives from false positives.  

To do that we need a known set that does not exhibit alternative splicing (the null set) 

to be compared with a known set that does exhibit alternative splicing (the alternative 

set). MIDAS shows considerable improvement in the ROC curves when using exon-

level detection over gene-level detection [7]. 
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Fig. 1 Exon-level MiDAS on a colon cancer data set, from [7].  
 

 

 

 



Rank Product 

Rank Product [14] is a method usually used to detect gene differential expression in 

microarray data;  it is a non-parametric statistic that detects items (genes/exons) that 

are consistently highly/lowly ranked (outliers) with respect to their differential 

expression in a number of lists, for example replicate experiments. Rank Product is 

based on the assumption that the probability of finding a specific gene among the 

top/down r of n items in a list is p = r / n. Computing this gene rank probability for 

every experiment and multiplying these results leads to the definition of  Rank 

Product [15] 

                  RPk =                                                                                (11) 

•       is the rank of gene k in replicate i ; 

• ni  total number of genes in replicate i. 

 

For single-channel arrays, e. g. Affymetrix GeneChip arrays, the Rank Product values 

are calculated over all possible pair-wise comparisons between samples. Therefore 

the Rank Product value cannot be used directly to assess the significance of an 

observed expression change because we are interested in the combined probability 

that a gene shows a certain expression pattern, across all the arrays. A simple 

permutation-based estimation procedure provides a very useful way to determine how 

likely it is to observe a given Rank Product value or better in a random experiment.  
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The step by step procedure of the Rank Product algorithm is the following:  

  1.    Compute the fold change (FC) between each pair of intensities belonging to  

      samples in different conditions (e. g. treatment and control), for each gene. 

         Associate to each FC a position (rank) in the list, according to the FC increasing 

      value. Then compute the Rank Product of these ranks, as shown in (11). 

  2.    Generate p permutations of the elements (genes) of the data set within each       

       sample, respectively. Then repeat what already done for the original data set at 

      step 1: compute for each gene the FC between the gene intensity of each couple 

       of new samples. Subsequently, associate ranks to these FCs and compute Rank 

       Products as in (11).    

  3.   Compare the Rank Products computed in step 1 and 2: count how many times  

       the Rank Products of the permuted gene intensities (computed at step 2) are  

       smaller or equal to the Rank Product of the gene intensities in the original data 

      set (step 1). Call this result c. 

  4.   Calculate the mean value for the Rank Product of each gene as c / p.      

  5.   Calculate the p-value as (c / p) / (n * p), where n is the total number of items in 

      each sample.  

 

Only those genes which have p-value lower than a certain threshold (commonly 0.05) 

are retained because considered differentially expressed. 

 

 

 



Advantages of Rank Product over previous statistical techniques: 

• simple: a few weak assumptions on data (equal variance for all the genes);  

• intuitive: the method is based on the idea that relevant changes should always 

be large, while small changes may have statistical but rarely biological 

significance [15]. 

• significant results with small data sets: a few replicates because Rank Product 

does not rely on estimating the measurement variance for each single gene.  

In conclusion, Rank Product represents a powerful test statistics for defining 

differentially expressed genes in microarray experiments and its use could potentially 

be extended to proteomic data analysis and high-throughput sequencing techniques. 

 

OS & ORT 

Although OS (Outlier Sum) [16] and ORT (Outlier Robust T-test) [17] were 

developed with the aim of outlier identification in cancer samples, they were tested 

on their capability of ASEs detection, interpreting ASEs as exonic outliers. OS and 

ORT are two statistical methods based on scaling and centering of resulting 

intensities from experiments, i. e. on the data standardization. 

The classical standardization is  

where x  is the mean value of x and σ  is the standard deviation of x.  

 

σ
xx

t
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Tibshirani and Hastie [16] define the t-statistic to be used in OS, with the median 

value instead of the mean and the median absolute deviation (mad) instead of the 

variance,                                                                                                                    (12) 

Instead Baolin Wu [17] defines the t-statistic to be used in ORT in the following way, 

(13) 

 

with ijx  gene expression,                                                                                                                      

                                                                      

                                                                        

                                                                                         1 – normal tissue sample   

                                                                                         2 – disease tissue sample    

 

n1  number of genes of the normal sample, n2 number of genes in the disease sample, 

n1 + n2 = n  total number of genes.  

Baolin Wu [17] re-defines OS, so the final statistics are respectively: 

• OS – Tibshirani & Hastie:            

      (14)                                      

                                                                                                      (15) 

                                where I is the indicator function and IQR the interquantile range as follows, so 

         that values greater than the limit                                                 are defined to 
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         be outliers in the usual statistical sense [16] [17]. Then they set the outlier sum 

         to the larger of                in absolute value. This is called “two-sided outlier-sum 

         statistic” [16] and explicitly looks for outliers in group 2, treating group 1 as  

         reference.                 

• OS – Baolin Wu:                                      

(16) 

 

          where R is the set of “outlier disease samples” defined by the following 

          heuristic criterion [17]: 

                                                                                           (17)                    

         This is equivalent to “OS – Tibshirani & Hastie”, since the subtraction and  

         scaling would not change the order of the observed values [17]. 

• ORT – Baolin Wu:   

 

(18) 

 

          where Uj is the set of the disease sample in which there is an outlier,  

(19) 
 

These techniques hypothesize that only some disease samples contain outliers. When 

the sum of all the intensities overcomes an ‘a priori’ limit, there happened alternative 

splicing. ORT is a method consequent to OS and better than this one: while OS gives 

good results with a few samples, ORT works better with many samples.  
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MADS 

MADS (Microarray Analysis of Differential Splicing) [18] is a method to discover 

differential alternative splicing from exon microarray data, similar to MiDAS 

(previously described) because based on Splicing Index (section 1.2.1) as the ratio of 

its background-corrected probe intensity to the estimated gene expression index [18]. 

Then two separate one-sided t-tests are used to assess whether the Splicing Indices of 

a probe are significantly higher or lower in one sample group over another group [18] 

and these constitute the p-values for individual probes. Then p-values are  

transformed via the formula                         (    Fisher’s method). 

Under the null hypothesis that the exon targets are not differentially spliced, the p-

values follow a uniform [0,1a] distribution, and the transformed p-values follow a                 

---- distribution with 2 degrees of freedom. The sum of the transformed p-values 

follows a      distribution, where k is the number of probes. This sum of the 

transformed p-values is used to calculate a probe-set-level p-value, which is used to 

rank all probe sets [18].  

Therefore the main distinction between MADS and MiDAS is that MADS calculates 

splicing indices and p-values of individual probes separately, prior to the 

summarization of a probe-set-level p-value. By contrast, Affymetrix’s approach first 

calculates an overall exon-level expression index (from four probes per probe set), 

prior to SI calculation and statistical testing. MADS software is available at 

http://biogibbs.stanford.edu/zyxing/MADS/
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FIRMA 

FIRMA (Finding Isoforms using Robust Multichip Analysis) [19] algorithm detects 

alternatively spliced exons in individual samples, without  replication or pre-defined 

groups in the samples, from GeneChip Human Exon 1.0 ST  data. It does not take 

into account the fact that in some probe sets, some/all probes overlap in sequence, 

introducing additional correlation which may bias alternative splicing detection [19]. 

This algorithm is sample-by-exon specific: each exon and sample pairing is given a 

score that is comparable across either samples, genes or exons [19]. This score 

derives from previous information from the estimation step, based on RMA 

summarization. For an exon array, a more general additive model can be considered, 

including the possibility of alternative splicing or different levels of expression per 

exon,                                                                                                                          (20) 

• ej is the relative change in exon expression for exon j;  

• dij is the interaction between chip and exon giving the relative change for 

sample i in exon j; 

• pk( j) is the nested relative probe effect for the k-th probe in exon j; 

•           error. 

Large values of this parameter dij point out differential alternative splicing. Rather 

than estimate dij explicitly, it is proposed to fit the standard RMA model in  

(21) 

for an exon array. In this way, the problem of detecting alternative splicing is 

considered as a problem of outlier detection. 

( )( ) ( ) ( )jijkjkijjijijk2  +p+d+e+c=PMlog ε

)( jijkε
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Let define                                  as the residuals from fitting the standard model in first 

equation. Then for each exon j and sample i, a summary score based on the four 

residuals (one for each probe) from exon j and sample i gives a measure of the 

discrepancy dij in the expression of the exon in that sample. Several scoring functions 

could be used (mean, median, lower quartile, minimum of the absolute residuals),  the 

median of the residuals in an exon gave the best tradeoff between sensitivity to the 

size and sign of the residuals and robustness to the small number of probes [19]. 

This gives a final score statistic, 

(22) 

 

The estimate of the standard error s is the median absolute deviation of the residuals 

and this helps in comparing the scores between different genes. The term ej is not 

estimated separately, because it is comprised into the probe estimates.  

Two main differences between MiDAS and FIRMA are the type of summarization 

used to get exon/gene signals and the fact that MiDAS requires samples with 

replicates while FIRMA does not. But these two techniques were both tested on a 

reference data set with replicated experiments in each condition. 

FIRMA algorithm is implemented in the aroma.affymetrix R library. 
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SPACE 

SPACE (Splicing Prediction And Concentration Estimation) is an algorithm to 

predict and quantify alternatively spliced isoforms using microarrays. It has been 

developed to [20]  

    1.  Estimate the number of different transcripts expressed under several conditions.  

    2.  Predict the precursor mRNA (pre-mRNA) splicing structure. 

    3.  Quantify the transcript concentrations including unknown forms. 

This algorithm applies 'non-negative matrix factorization' (NMF) to the matrix of 

data [20]. NMF is a factorization for non-negative multivariate data. Given a matrix 

of non-negative data V, NMF finds an approximate factorization V  ≈ W·H into 

matrices with non-negative elements W and H. 

When applied to microarray data, NMF separates the data matrix for each gene into 

the product of two positive components corresponding to the structure of the gene 

transcripts and their individual concentrations, respectively.  

SPACE includes also an algorithm to determine the internal dimension of the 

factorization that is an estimate of the number of transcripts of each gene. SPACE 

original algorithm is written with MatLab 7.1 and is freely available online as 

additional file of its reference paper [20]. SPACE was implemented in R code to be 

evaluated with the benchmark experiment, afterwards presented (section  1.3.3).  

The following table summarizes the different shown methods with the relative 

summarization techniques (if defined within the method), filters and statistical tools. 



 
 

Summarization 

 

Filters 

 

Statistic 

MiDAS PLIER - ANOVA based on SI 

Rank Product - - signal ranking 

OS - - t-test 

ORT - - t-test 

SPACE - - expressions factorization 

MADS similar to PLIER crosshyb, BG based on SI after BG 

FIRMA RMA BG score ranking 
 

Table 1. The seven above-mentioned methods for alternative splicing events detection are based on 

different statistics and suggested to be used in association to some particular summarization and 

filtering tools. 

 

In the next section, each method performance will be evaluated on a reference 

benchmark experiment, specifying how the data are previously summarized, if 

possible and which different filters where used to avoid noisy and unclear results in 

the detection of alternative splicing events. At the beginning, analyses with MiDAS 

and Rank Product were performed in Windows XP operating system. MADS, 

FIRMA and SPACE were also run in Windows XP. But Rank Product resulted to be 

quite slow and with the purpose of  increasing the number of permutations (from 100 

to 1000 or 10000), it was better to run it on UNIX server. The entire project was 

developed in R environment, on Windows XP or UNIX environment. 

 

 

 



        1.3  Results and conclusions 

Dissecting an alternative splicing analysis workflow for 

GeneChip® Exon 1.0 ST Affymetrix arrays 
 

In the article here presented [13] an exon-level data analysis workflow is dissected to 

test the performance of each step and optimizing the detection of ASEs. Tissues 

comparison is characterized by big changes in isoforms expression, which might not 

be the case in other situations. In tissues comparison only part of the TPs is known on 

the basis of published data, while in a spike-in data set true positives are known.  

 

 

 

 

 

 

 

                                                            

                                                               Tissue comparison 

Fig. 2 Tissue-specific SLC25A3 transcripts from [21]. The expression plot shows the mean log2 

intensity signals (with standard error bars) of core probe sets targeting SLC25A3 exons in the  

thyroid compared to non-thyroid tissue (bottom). The probe sets are plotted from left to right by 

genomic location (5' to 3'). The horizontal dashed line shows the mean log2 intensity of the negative 

control probe sets. Probe sets with intensities below this line are most likely unexpressed. In this 

case these probe sets are targeting either intronic regions or UTRs (in orange). Ensembl transcripts 

for SLC25A3 are shown below the plot. Probe sets with Benjamini-Hochberg corrected p-values 

less than 0.0001 are indicated by a black arrow.



 

 

 

 

 

 

                                                            

                                                    Exons 

Fig. 3 Example of significant change in exonic log2 intensity between treatment (32.2, red) and 

control case (128, blue), in the benchmark experiment. It is evident that the exon in forth position is 

differentially expressed, with a log2 (FC) equal to 1.   

 

Tissue splicing events are not the ideal instrument to test an analysis workflow. 

Hence, a semi-synthetic exon-skipping benchmark experiment from GeneChip® 

Exon 1.0 ST  microarray data was built up for this evaluation. The final results point 

out that summarization methods (RMA, PLIER) do not affect the efficacy of 

statistical tools in detecting ASEs. However, data pre-filtering is mandatory if the 

detected number of false ASEs is meant to be reduced. MiDAS and Rank Product 

methods efficiently detect true ASEs but they suffer from the lack of multiple test 

error correction. The intersection of MiDAS and Rank Product results efficiently 

moderates the detection of false ASEs.  

The last subsection concerns an attempt of improvement of the pipe-line with some 

other available statistical tools.  



1.3.1  Introduction  

GeneChip® Exon 1.0 ST is a new microarray platform developed and marketed by 

Affymetrix [22]. This microarray platform changes the conventional view of 

transcript analysis since it allows the evaluation of the expression level of a transcript 

by querying each exon component. This enables the study of specific alterations in 

splicing patterns such as those found in association with cancers [22]. 

The GeneChip® Exon 1.0 ST microarray platform is based on methods quite 

different from the 3' IVT arrays expression detection. Whilst the conventional 

Affymetrix GeneChips feature a probe set consisting of 11–20 probes selected from 

the 3' end of the mRNA sequence, the new all-exon arrays have 4 probes selected 

from each putative exonic region. To generate the target, Exon 1.0 ST arrays use T7 

linked random hexamers for cDNA synthesis, instead of those of all previous 

Affymetrix expression arrays, which employed an oligo-dT linked T7 and thus 

required an intact poly-A tail. Importantly, this new WT Sense Target Labeling 

Assay generates DNA targets and therefore results in DNA/DNA duplex formation 

during hybridization, as opposed to DNA/RNA hetero-duplexes in conventional 

arrays. It has been shown that there is close agreement between the conventional 

Affymetrix 3' IVT arrays and the new Exon 1.0 ST arrays [23]. Furthermore, Exon 

1.0 ST sensitivity of gene expression detection was shown to be in the same range of 

3' IVT arrays [2]. Though at gene-level 3' IVT and Exon 1.0 ST show similar 

behavior, Exon 1.0 ST technology raises some issues about the computational 



instruments to be used for the analysis of exon-level data. Affymetrix proposed an 

analysis workflow based on pre-filtering of the expression data [7], transformation of 

exon-level intensity data in gene-level normalized values called Splice Index (section 

1.2.1) and statistical validation based on an ANOVA based method based on 

measuring differences between an exon-level signal and aggregated gene-level signal 

called MiDAS (section 1.2.2). 

There has however been no way to date of defining the efficacy of this workflow or 

of different statistical methods in the detection of alternative splicing events. The 

ideal instruments to evaluate the effect of data pre-processing and the efficacy of 

different statistical methods on differential expressions are benchmark spike-in 

experiments [24], where a limited number of transcripts are spiked-in at various 

concentrations in a common mRNA background. 

In spike-in based experiments it is therefore possible to investigate differential 

expression sensitivity as a function of the false discovery rate (1-specificity). In this 

study a semi-synthetic exon-skipping experiment, encompassing 268 exon skipping 

events, was generated starting from the Latin-square spike-in experiment of Abdueva 

[2]. The semi-synthetic exon-skipping data set was used to evaluate the effects of 

data pre-processing as well as the performance of two statistical methods, MiDAS [7] 

and Rank Product [15], on ASEs detection. 

 

 



1.3.2  Methods  

Exon-skipping events were generated using experimental data, kindly provided by 

Abdueva [2]. MiDAS p-values were calculated using the software provided by 

Affymetrix in the APT tools (http://www.affymetrix.com). Rank Product (section 

1.2.2) is a non-parametric statistics that detects items that are consistently highly 

ranked in a number of lists and the significance of the detection is assessed by a non-

parametric permutation test [15]. RP was coded in R, modifying the available 

implementation (Bioconductor [3] RankProd package [14]), to be used for ASEs 

detection. 

Specifically, in ASEs detection RP is run on the lists made by SIs (RPSI) or intensities 

(RPI) for all exon data set without considering their association to a specific gene and 

the significance of the detection is assessed using 500 permutations of those lists. 

Gene-level implementation of RP, i. e. running RP only on the subset of exons 

belonging to a specific gene, is computationally demanding and it is characterized by 

a very poor sensitivity. The modified RP method as well as all the filtering 

procedures are embedded in the Bioconductor oneChannelGUI [4] package.  

 

 

 

 



1.3.3  Results  

A benchmark experiment to validate ASEs detection methods 

Exon skipping events were generated using the experimental data, kindly provided by 

Abdueva [2]. The Abdueva data set is a Latin-square experiment encompassing 25 

genes, selected as ideal spike-in genes due to their expression absence in HeLa cells, 

which represents the mRNA background of the experiment.  

 

 

Fig. 4. Example of a set of exon skipping events, from [13]. The gene-level probe set (gene) G1 

is made of 5 exon-level probe sets (exons) E1, E2, E3, E4, E5. Exon-level probe set signals 

associated with 128 pM spike-in are black whereas signals associated with 32 pM spike-in are gray. 

New genes are created combining exon-level expressions derived from different spike-in 

concentrations. In this specific case, the combination of 128 and 32 pM spike-in signals for gene G1 

are used for the generation of 5 new genes (G1skipE1, G1skipE2, etc) each one characterized by a 

skipping event, given by the spike-in at 32 pM, in one of the 5 exons of gene G1. The unspliced 

exons are instead given by the 128 pM spike-in. For the sake of simplicity only one out of the three 

technical replicates is shown.  

 



The spike-in concentrations were 0, 2, 32, 128 and 512 pM and the 25 genes were 

grouped in 5 subsets. Each experimental point was technically replicated three times 

for a total of 15 arrays. To build the exon skipping benchmark experiment 4 out of 

the 5 groups of spike-in genes (20 out of 25 genes) were used. 

 

 

 

 

 

 

Fig. 5. Example of a set of exon-skipping cleaning procedure, from [13]. The cleaning 

procedure, applied to all new genes characterized by a skipping event, retains only those where the 

synthetic skipping event represents the smallest intensity or SI value within the exons belonging to 

the gene. Here, it is shown the example of gene G5, which is made of 7 exons and therefore 

produces 7 new genes, G5skipE1, G5skipE2, etc. In G5skipE3 gene, exon E3 should be the only 

exon characterized by the smallest SI. G5skipE3 gene is retained in the set 128-32, since E3 (gray) 

is characterized by the smallest SI within all 7 exons (black). The gene is instead removed in the set 

2-0 since exon E5 has a SI smaller than the one of exon E3. 

We focused on those because they were all part of the Exon 1.0 ST core annotation 

subset. The overall idea of the generation of synthetic exon skipping events is based 

on the availability of exon-level signals for spike-in genes. Therefore, it is possible to 

create new genes characterized by skipping events combining, for the same gene, 

exon-level expressions derived from different spike-in concentrations. An example is 

given in Fig. 4, where the combination of 128 and 32 pM spike-in signals for gene 

G1 are used for the generation of 5 new genes each one characterized by a skipping 

event in one of the 5 exons of gene G1.



In our semi-synthetic data set the new genes, characterized by skipping events, are 

generated using different associations of spike-in concentrations to evaluate the effect 

of signal intensity in the detection of alternative splicing. For each exon of the 20 

genes we produced three sets of synthetic exon skipping events: 128-32, 32-2, 2-0. 

Specifically in the exon skipping set called 128-32 any of the new genes has all exons 

signals given by the log2 intensity (log2I) measured upon a spike-in of 128 pM unless 

the exon skipped, which has the log2I measured upon a spike-in of 32 pM (Fig. 4, 

G1skipE1, G1skipE2, etc.). The gene-level log2I is instead the one measured for the 

128 pM spike-in (Fig. 4). Same design applies to the other two sets of exon skipping 

events, 32-2 and 2-0. 

This semi-synthetic benchmark experiment embeds a total of 268 exon skipping 

events. Furthermore, the skipping events were manually inspected, in each of the 

three exon-skipping sets (128-32, 32-2, 2-0), in order to retain only those genes 

where the skipping event represents the smallest intensity signal or Splice Index 

(section 1.2.1) within each synthetic gene (Fig. 5).  

This cleaning procedure yields: 

• a total of 172 skipping events out of the original 268 for the 128-32 group, 195 

for the 32-2 group and 179 for the group 2-0, if intensity data are used. 

• a total of 174 skipping events out of the original 268 for the 128-32 group, 193 

for the 32-2 group and 164 for the group 2-0, if SI data are used. 

To identify exon-skipping events a comparison between two different conditions, i. e. 

unspliced versus spliced, is needed. Detection of exon-skipping events for the subset 



128-32 was done comparing it to the unspliced set spiked in at 512 pM (called 512), 

for the subset 32-2 comparing it to the unspliced set spiked-in at 128 pM (called 128) 

and for the subset 2-0 comparing it to the unspliced set spiked-in at 32 pM (called 

32). These comparisons embed a certain level of differential expression at gene-level. 

The expected gene-level differential expression is given by log2(128/512) = -2 for the 

comparison of the 512 versus the 128-32 subset and by log2(32/128) = -2 for the 

comparison 128 versus 32-2 subset. It is instead log2(2/32) = -4 for the comparison 32 

versus 2-0 subset. 

RMA versus PLIER summarization 

RMA and PLIER algorithms were used to combine the intensities belonging to the 

probes of each probe set to form one expression measure for each gene/exon-level 

probe set (summarization). The effect of these summarization methods on detection 

of alternative splicing events was investigated using MiDAS. A Receiver Operating 

Characteristic (ROC) curve was used to evaluate the effect of intensity summaries on 

alternative splicing detection (Fig. 6, continue lines). Our data suggest that the 

efficacy of detecting exon skipping events is not affected by summarization methods. 

On the other hand the reduction of the complexity of the data set, e. g. selecting only 

those ENSEMBL [25] genes associated with more than one transcript isoform 

(multiple mRNAs filter), strongly increases the sensitivity of the test (Fig. 6, dashed 

lines). Comparing the ROC curves of the 3 groups of data (Fig. 6, Fig. 7, Fig. 8) it is 

evident that multiple mRNAS filter throws out many more false values, after MIDAS 

analysis of the data set summarized with PLIER or RMA.  



Filtering approaches to moderate multiple testing errors 

A critical issue, highlighted in Fig. 2, is the important number of multiple testing 

errors that are accumulated if the full set of Exon 1.0 core data is used for the  

detection of ASEs. To moderate this critical issue, we decided to reduce the 

complexity of the data set filtering non-informative data (TN) before statistical  

analysis, using annotation and intensity based filters. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 [13] MiDAS exon skipping detection using RMA or PLIER summarization. ROC curves 

were used to identify the effect of data summarization on the detection of ASEs. ASEs were 

detected using MiDAS on the full core Exon 1.0 ST data set (continuous lines) using RMA (red 

line) or PLIER (black line). The same analysis was also applied to a subset of the core Exon 1.0 ST 

data set by encompassing only those gene/exon-level probe sets passing the multiple RNAs filter 

(dashed lines), i. e. those exons of genes associated to more than one mRNA isoform in ENSEMBL 

database.



 

 

 

 

 

 

 

 

 

Fig. 7 Comparison of ROC curves of 128-32 group on the results obtained with MIDAS analysis, 

with data summarized in two different ways with PLIER or RMA. 

 

 

 

 

 

 

 

Fig. 8 Comparison of ROC curves of 2-0 group on the results obtained with MIDAS analysis, with 

data summarized in two different ways with PLIER or RMA.



Cross hybridization filter 

We investigated the effect of removing those probe sets characterized by a certain 

level of probe promiscuity among transcribed sequences (cross hybridization filter). 

Specifically, using the exon-level probe set annotation information provided by 

Affymetrix, we removed all probe sets where all the probes in the probe set perfectly 

match more than one sequence in the putatively transcribed array design content as 

well as those where the probes either perfectly match or partially match more than 

one sequence in the putatively transcribed array design content. This filter could have 

an important effect on the correct association of the gene expression signal. However, 

it affects a very limited number of exon-level probe sets and therefore it does not 

produce an important reduction of the size of non-informative data (Table 2). True 

Positives (TP), i. e. the semi-synthetic skipped genes previously described, are not 

affected by this filter since their exon-level probe sets are not annotated within the 

cross-hybridizing probe sets. 

 

Multiple mRNAs filter 

This filter uses the Affymetrix annotation that links each gene-level probe set to a 

specific GeneBank (GB) accession number (ACC), which represents the target 

sequence used to design the probes associated to a gene-level probe set. Then, Entrez 

Gene Ids (EGs) are retrieved querying with these ACCs a specific organism oriented 

Bioconductor annotation package (org.Hs.eg.db, org.Mm.eg.db or org.Rn.eg.db).



EGs are used to query ENSEMBL database and all ENSEMBL transcripts associated 

to any of them are retrieved. Subsequently, the filter procedure retains only those EGs 

associated to more than one ENSEMBL transcript. The EGs, retained by this filtering 

procedure, are mapped again to their gene-level probe sets. Multiple mRNAs filter 

strongly reduces the number of core exons because it retains only exons of genes 

which are linked to multiple transcripts in the ENSEMBL database and for this 

reason it results to be more effective than the other filters as shown both in Table 2 

and in Fig. 2. The new genes, with skipping events, generated in our data set are not 

affected by this filter since they do not exist in nature. 

 

128.32 vs 512 32.2 vs 128 2.0 vs 32 

TP TN TP TN TP TN 

Multiple 

mRNAs 

172 

(1.00) 

71037 

(0.31) 

195 

(1.00) 

71307 

(0.31) 

179 

(1.00) 

71037 

(0.31) 

Cross-

hybridization 

172 

(1.00) 

228264 

(1.00) 

195 

(1.00) 

228264 

(1.00) 

179 

(1.00) 

228264 

(1.00) 

DABG ≤ 0.05 

(in 90% arrays) 

172 

(1.00) 

197951 

(0.86) 

185 

(0.95) 

197951 

(0.86) 

170 

(0.95) 

197951 

(0.86) 

 

Table 2. Effect of annotation and intensity based filters on the selection of TP and reduction of 

unspliced exon set (TN). The effects of filtering by means of annotation (Cross 

Hybridization/Multiple mRNAs filters) or intensity signal (DABG filter) are evaluated using exon-

skipping events at various concentrations. 



DABG filter 

In EXON 1.0 ST GeneChips, to determine if a given probe signal is detected above 

background (DABG), its intensity is compared to a distribution of background probes 

with the same G/C content.  

 

 

 

Fraction of TPs 

 

Enrichment of TPs 

 

Multiple mRNAs 

 

0.727612 

 

268.8188 

DABG 

P-value: 0.01 0.3656716          56.2037 

P-value: 0.0001 0.3656716 66.25635 

P-value: 0.00001 0.3656716 71.07364 

 

Cross-hybridization 

 

0.727612 

 

72.7612 

Splicing Index 

Threshold: 0.001 0.727612 75.5265 

Threshold: 0.003 0.727612   81.04057 

Threshold: 0.005 0.5932836   70.70971 

 

Table 3. Fraction of TPs is the number of detected TPs divided by the total number of known 

positive values. Enrichment of TPs is the number of TPs detected with respect to the total number 

of expected TPs. In red is shown the best enrichment in TPs and in blue the greatest fraction of TPs. 

It is evident from the values above reported that multiple mRNAs filter detects many more TP than 

any other filter, also more than Splicing Index filter with threshold 0.003. Because of this 

enrichment results it was decided to use as filter only multiple mRNAs as an important step of the 

pie-line to reduce the number of non informative probes. 



A p-value is computed representing the probability that the signal intensity is part of 

the null distribution. Specifically the DABG p-value filter, used in this work, is 

designed to retain only probe sets characterized by a DABG p-value ≤ 0.05 in all the 

arrays. Although this filter reduces the data set under analysis (Table 2), it is much 

less effective than multiple mRNAs filter (Table 2). Increasing the stringency of this 

filter affects the total number of non-informative data (TN), which is reduced, but 

also part of the TPs are lost. DABG p-values could be useful in the detection and 

removal of low intensity signals which could produce misleading results when 

alternative splicing events are evaluated using the Splice Index, where signal 

intensity component is lost to remove the bias due to the presence of gene-level 

differential expression. However, in our data set a filter based on this approach is 

much less effective than that based on multiple mRNAs filter (Table 2). 

 

 

 

 

 

 

 

 

 

 



 

        

 

 

 

 

 

 

 

Fig. 9 Comparison of the fraction of TPs (frac.TP on y axis, Sensitivity) of the different filters that 

were used, trying to reduce the data set in analysis (32-2 group). ‘Filter’ is the multiple mRNAs 

filter, ‘cross’ is the cross-hybridization filter. DABG and SI were tried with different thresholds.  

 

 

 

 

 

 

 

Fig. 10 Comparison of the enrichment of TPs (enrichment.TP on y axis) of the different filters that 

were used to reduce the data set in analysis (32-2 group). ‘Filter’ is the multiple mRNAs filter, 

‘cross’ is the cross-hybridization filter. DABG and SI were tried with different thresholds.  

 



Efficacy of MiDAS and Rank Product in the detection of  ASEs 

We evaluated the efficacy of the detection of ASEs, using a linear model based 

algorithm (MiDAS) and a permutation based algorithm (Rank Product). MiDAS was 

applied on SI transformed data as RP was applied instead using SI, RPSI, or directly 

to exon intensity signals, RPI. RP was implemented both at gene-level and exon-

level. Gene-level implementation of RP indicates that the analysis is performed gene 

by gene and the permutations are generated within the list of exons of the same gene. 

Exon-level implementation of RP considers instead exons as items of a unique list, 

independent from their association with a gene. The exon-level implementation of RP 

has better sensitivity than that of the gene-level version and is faster since 

permutations are calculated only once and not gene by gene. Both MiDAS and RP 

seem to be effective in the detection of alternative splicing events independently from 

the presence of a certain level of gene differential expression and with limited 

dependency on gene-level intensity (Fig. 11). RP seems to perform slightly better 

than MiDAS. RPI (Fig. 13) gives the most homogeneous results independently of the 

intensity signals associated with ASEs (Fig. 12). Independently from the statistics in 

use, at p-value ≤ 0.05 (Table 4) the TPs detection is reasonably efficient for both 

methods, but is associated with a significant amount of False Positive values (FPs). 

We also evaluated, at the three intensity ranges under study, the number of TPs and 

Fps that can be detected intersecting all probe sets characterized by a p-value ≤ 0.05 

both for MiDAS and RP (Table 4). The integration of the two statistical procedures 

improves the reduction of FPs without greatly affecting the sensitivity (Table 4). 



 

 

 

 

 

 

 

1 - Specificity 

Fig. 11. ROC curves were used to detect the efficacy of MiDAS in the detection of ASEs.  

 

 

 

 

 

 

 

 

 

1 - Specificity 

Fig. 12 ROC curves were used to detect the efficacy of RPSI in the detection of ASEs. RP was 

calculated using exon signal normalized with respect to gene signal, i. e. SI.  

Sensitivity 
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 1 - Specificity 
Fig. 13 ROC curves were used to detect the efficacy of RPI in the detection of ASEs. RPI was 

calculated using exon intensity signal without any further normalization. 

The availability of a new instrument to study the behavior of transcription isoforms 

within a specific biological context, e. g. different cancer isolates, tissues, and 

differentiation/development stages, creates new opportunities for biologists. 

However, workflow for the detection of alternative splicing events using this new 

microarray technology has still to be investigated in order to define the importance of 

each analysis step and its strength and weakness. Our data point out that a major 

problem in ASEs detection is due to the multiple testing problem. In statistics, 

family-wise error rate (FWER) is the probability of making one or more false 

discoveries (FP) among all the hypotheses when performing multiple pairwise tests. 

Since FWER controlling procedures are often too conservative in high dimensional 

screening studies [26], they are rather weak if applied to exon-level analysis where 

the number of tests increases more than 10 times with respect to gene-level. For 

Sensitivity 



example, the human core data set is made of 22011 gene-level probe sets and 287329 

exon-level probe sets. A better balance between the raw p-values and the stringent 

FWER-adjusted p-values may be provided by false discovery rate controlling and 

related procedures [26]. Benjamini & Hochberg [26] and Benjamini & Yekutieli [26] 

have developed efficient FDR controlling procedures currently called BH and BY. 

However, such approaches cannot be used to moderate multiple testing problems in 

exon-level analysis since, generally, the raw p-value distribution obtained with 

MiDAS is not uniform in the non significant range. Furthermore, in the case of BH, 

the assumption that the tests are independent is not fulfilled since exons belonging to 

the same gene are clearly correlated. 

 
128.32vs512 32.2vs128 2.0vs32 

TP FP TP FP TP FP 

MIDAS + multiple 

mRNAs filter 

119 

(0.68) 

2416 

(0.03) 

176 

(0.91) 

2319 

(0.03) 

138 

(0.84) 

2338 

(0.03) 

Rank Product 
174 

(1.00) 

12941 

(0.18) 

193 

(1.00) 

11883 

(0.17) 

164 

(1.00) 

9989 

(0.14) 

Intersect MIDAS & 

Rank Product 

119 

(0.68) 

436 

(0.006) 

176 

(0.91) 

424 

(0.006) 

138 

(0.84) 

375 

(0.005) 

Table 4: MiDAS and RP alternative splicing detection. RPI is the Rank Product calculated using 

the intensity signals without SI calculation. Statistical analyses done using MiDAS or RPI, 

calculated using intensity signals, at p-value ≤ 0.05 are contaminated by a significant number of Fps 

due to the multiple test problem. The intersection of the results using the two methods significantly 

reduces the number of Fps. 



On the basis of the impracticality of applying conventional methods to moderate  

FWER, the reduction (filtering) of the data set size of previous statistical testing is, in 

our opinion, mandatory.                                                                                              

Our data point out that a significant reduction of the data set size can be realized by 

considering only probe sets associated with at least two alternative spliced isoforms 

in the ENSEMBL database (multiple RNAs filter). However, this approach limits the 

strength of the analysis since it cannot be applied in the case of the identification of 

non-annotated isoforms. If a study focuses on the discovery of non-annotated 

isoforms, an intensity filter, e.g. DABG p-values filter, can be used although its effect 

is not as strong as that based on annotation (Table 2). In this case, it would be 

necessary to clean the results of the large amounts of false positives, validating data 

by using alternative technologies such as the high-throughput re-sequencing 

techniques, e. g. Solexa (Illumina) or SOLiD (Applied Biosystems). These would 

however increase the complexity of the analysis due to the high computational 

demands of these techniques. We also investigated the performance of two statistical 

methods, one based on linear model analysis (MiDAS), developed by Affymetrix for 

the detection of ASEs, and another non-parametric (RP). Both methods, applied at 

exon-level and thus not taking into consideration the association of an exon to a 

specific gene, perform quite well in the detection of the true exon skipping events 

embedded in our data set (Fig. 11). The amount of FPs associated to an arbitrary p-

value threshold of 0.05 is in both cases very high (Table 2) and the application of a 

more stringent p-value threshold reduces the number of FPs but also impacts 



negatively on TP rate. However, since the two statistics used for ASEs detection are 

based on completely different assumptions, it is feasible that random events (FPs) 

contaminating the TPs will not be the same. Therefore, the intersection of the results 

obtained by both statistics, given an arbitrary p-value threshold, effectively reduces 

FPs (Table 4). Since at the present time statistics specifically devoted to the detection 

of ASEs which also address the multiple test problem are not available, our approach 

represents an efficient temporary solution for moderating FWER. 

 

 

 

 

 

 

 

 

 

 

 

 



1.3.4  Conclusions 

                     The semi-synthetic data set presented here represents a suitable instrument for testing 

the efficacy of new statistics for exon-level analysis. Furthermore, it allowed us to test 

the efficacy of a basic workflow (Fig. 14) for ASEs using a GeneChip Exon 1.0 ST 

platform. However, our data highlights that more work is needed to design powerful 

instruments for ASE detection which must take into account the multiple testing 

problem. 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Workflow for exon-level analysis. Workflow proposed for the detection of ASEs. a) The 

number of probe sets to be considered for the analysis is reduced on the basis of ENSEMBL 

isoform knowledge (multiple RNAs filter). Eventually, a filter based on the quality of the intensity 

signal (DABG filter) might be considered as an additional filter. b-c) Statistical analysis is done 

using a model based algorithm (MiDAS) and a non-parametric algorithm (RP). d) Intersection of 

data derived by the two statistical analyses, using a common arbitrary p-value threshold (e. g. 0.05), 

is used to reduce the number of FPs. 



1.3.5  Pipe-line improvements 

The performance of other methods was evaluated while trying testing MiDAS and 

Rank Product: OS and ORT. Then between the end of the year 2008 and March 2009 

I worked, in chronological order, with MADS, FIRMA and SPACE. These methods 

did not give the expected good results. In the following table are shown the 

summarization techniques used to get mean intensities from the raw files and which 

filters were applied to reduce the number of  false values. The following sections 

briefly explain why OS, ORT, MADS, FIRMA and SPACE methods were no more 

taken into account. Then follows a brief description of limma R package and FEVS, 

showing that intersecting MiDAS and RP results is the best choice because in this 

way a greater number of TPs is detected than with limma and FEVS. 

 Summarization Filters Statistic 

MiDAS PLIER, RMA 
SI, BG, DABG, 

crosshyb, 
multiple mRNAs 

ANOVA based on SI 

Rank 
Product 

PLIER, RMA 
SI, BG, DABG, 

crosshyb, 
multiple mRNAs 

signal ranking 

OS RMA - t-test 

ORT RMA - t-test 

FIRMA RMA BG score ranking 

MADS similar to PLIER crosshyb, BG 
based on SI after BG 

filter 

SPACE RMA - 
expressions factorization 

 

 



Table 5. The seven methods for alternative splicing events detection are based on different statistics 

and suggested to be used in association to some particular summarization and filtering tools. 

defined within the method. Making a comparison with Table 1, in bold are highlighted the new 

summarization and filtering tools that were used, beyond the one already proposed in association 

with the method description.   

     

OS – Outlier Sum 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.15 OS results (Baolin Wu version), 1000 points and 100 permutations. Too low Specificity. 

 

As already mentioned in section 1.2.2, there are two versions of Outlier Sum statistic, 

one proposed by Tibshirani and Hastie [16] and an equivalent one proposed by 

Baolin Wu [17]. Tibshirani and Hastie statistic was first used (implemented in R code 



from the formula in [16]) but then it was worth wondering whether it was different or 

faster to use the version of  Baolin Wu, which has a structure more similar to Outlier 

Robust T-test, directly including data standardization in the outlier sum detection. 

Both versions were applied to the semi-synthetic data set 100 and 1000 times, each 

time permuting the labels of the treated samples. The first OS version was slow and 

surprisingly found less TPs than the second one. Both versions were tried at gene- 

level and the results with both methods were quite poor: too few TPs were found with 

a very low Specificity. 

 

ORT – Outlier Robust T-test 

 

 

 

 

 

 

 

 

 

 

 

Fig.16 ORT with 1000 points and 100 permutations. Too low Specificity. 



ORT was run with 1000 points and 100 permutations (OS and ORT were run also 

with 1000 permutations but the results were the same and the analysis was too slow). 

Both the results of OS methods and ORT are scores, not p-values and are not in the 

range [0,1a]. To get p-values instead of scores the genes were divided in classes with 

respect to the number of exons that constitute them (e. g. class 1 - genes with 12 

exons), resulting in 103 gene classes. For each class of genes random genes (1000 

exon permutations) were generated with the same number of exons, taken within the 

exons of that class of genes. Simulations were done using 1000 points (0.1-100 by 

0.1) as thresholds. At each point the number of scores were overcoming this threshold 

and to them was associated 1, while 0 to the ones which did not. Then p-values were 

computed multiplying each 1/(total number of values).  

As shown in Fig.15 and Fig.16 the results were unsatisfactory and after several 

months of trials, increasing the number of permutations and points, with and without 

SI normalization of the data, analyses with OS and ORT (one week long) were 

definitively abandoned. 

 

MADS - Microarray Analysis of Differential Splicing 

The data set provided by MADS article [18], constituted of three control replicates 

and three treatment ones, was analyzed with our algorithm, filtering out the genes 

with multiple mRNAs and applying then MiDAS and Rank Product and intersecting 

their results to verify whether the number of true positive and negative values found 

was greater than the number found with MADS.  



The semi-synthetic data set (section 1.3.3) could not be analyzed in MADS algorithm 

because it takes only CEL files (not modified raw data). The data set in article [18] 

came from a mouse experiment realized with Mouse Exon 1.0ST arrays and MADS 

analysis provided p-values related to each transcript; p-values under the threshold 

0.05 were TPs, above were TNs.  Therefore we used the MADS data set to evaluate 

the performance of our pipe-line. MADS data set contains: 40 TPs (i. e. validated 

splicing events detected with MADS), 23 TNs gold-standard (i. e. already known) 

values (exons). At exon-level, 24 TPs, 20 TNs were found with MADS. Filtering out 

these exons with the multiple mRNAs filter: 19 TPs and 14 TNs were found. Then 

running MiDAS: 4 TPs, no TNs with MiDAS ; while with Rank Product 7 TPs and 1 

TN.  In conclusion, MADS finds more TPs than the intersection of MiDAS and Rank 

Product, but MADS results are contaminated by a large number of TNs. 

 

FIRMA – Finding Isoforms using Robust Multichip Analysis 

The semi-synthetic data set and the one provided by MADS reference article [18] 

were analyzed with FIRMA algorithm, implemented in the Bioconductor [3] library 

aroma.affymetrix. FIRMA is a method for detecting alternatively spliced exons in 

individual samples without replication and it was used with samples with replicates. 

FIRMA results were difficult to be interpreted because a threshold  to compute TPs 

and TNs could not be defined. 

 

 



SPACE - Splicing Prediction And Concentration Estimation 

This algorithm deconvolutes the exon array data in the transcription isoforms 

associated to them. SPACE was written in MatLab and it was translated into R code. 

We tested it with the semi-synthetic data set but it produces a higher number of 

transcripts than the real ones, with the semi-synthetic data set and the data used to 

validate SPACE [20]. SPACE did not work well when increasing the number of its 

internal iterations (normally set to 1). Another problem was that a parameter 

representing the predicted maximum number of transcripts of a gene had to be equal 

to 10 (default value), if else different results were obtained as many times SPACE 

was run. Even the author of the program agreed with the above-mentioned problems 

and we decided to consider SPACE results not reliable.  

Comparison of MIDAS/RP intersection with limma and FEVS 

The benchmark experiment (section 1.3.3) was tested on limma R package [21] for 

differential expression analysis for microarray data and FEVS - Filtering Enhanced 

Variable Selection [27]. FEVS is a new multiple testing strategy for identifying 

differentially expressed variables, based on the combination of several filtering 

methods, instead of focusing only on a particular one. The authors of FEVS proved 

that it controls the FDR and that it gains sensitivity in the detection of truly 

differentially expressed elements. The following table, showing the results obtained 

running the analysis of the benchmark experiment on MiDAS, RP, limma and FEVS, 

points out that FEVS has a very good control of FDR but fails to detect many TPs. A 



better performance is given by limma, although in case of high expression levels the 

detection of TPs is very poor,  which might be due to the increasing of variance as a 

consequence of high expression levels. The intersection between MiDAS and RP still 

detects the highest number of TPs but is less efficient in controlling the FDR with 

respect to the other two methods. 

 

 

 

 

 

 

 

 

Table 6. The number of true (TPs) and false positive values (FPs) found with five methods of 

detection of alternative splicing events is here shown. It is evident that the intersection of the results 

obtained with MiDAS and RPI  gives a high number of TPs, decreasing much the number of FPs.   

                                                                                                              

 

 



Genome-wide Search For Splicing Defects Associated 

with Amyotrophic Lateral Sclerosis 
 

In this article we presented [28] a study in which we tried to detect gene and isoform 

specific events associated to the Amyotrophic Lateral Sclerosis (ALS). 

SOD1 enzyme  is a powerful antioxidant that protects the body from damage caused 

by superoxide, a toxic free radical. It has been proposed that defects in splicing of 

some mRNAs, induced by oxidative stress, can play a role in ALS pathogenesis. 

Alterations of splicing patterns have also been observed in ALS patients and in ALS 

murine models, suggesting that alterations in the splicing events can contribute to 

ALS progression.  

Using Exon 1.0 ST GeneChips, the SH-SY5Y neuroblastoma cell line has been 

profiled after treatment with paraquat, which by inducing oxidative stress alters the   

patterns of alternative splicing. Furthermore, the same cell line stably transfected with 

wt and ALS mutant SOD has also been profiled. The integration of the two ALS  

models efficiently moderates ASE false discovery rate, one of the most critical issues 

in high-throughput ASEs detection.  

 

1.3.6  Introduction 

Amyotrophic Lateral Sclerosis (ALS) is a progressive, usually fatal, 

neurodegenerative disease caused by the degeneration of motor neurons, the nerve 



cells in the central nervous system that control voluntary muscle movement [29]. As 

a motor neuron disease, the disorder causes muscle weakness and atrophy throughout 

the body as both the upper and lower motor neurons degenerate, ceasing to send 

messages to muscles [29]. ALS is one of the most common neuromuscular diseases 

worldwide, and people of all races and ethnic backgrounds are affected. One to 2 

people per 100,000 develop ALS each year. ALS most commonly strikes people 

between 40 and 60 years of age, but younger and older people can also develop the 

disease. Men are affected slightly more often than women. A definitive cause for 

ALS is not clear and the onset of the disease has been linked to several factors, 

including: exposure to viruses, neurotoxins, or heavy metals; genomic mutations; 

immune system and enzymatic abnormalities. "Familial ALS" accounts for 

approximately 5%–10% of all ALS cases and is caused by genetic factors. Of these, 

approximately 1 in 10 are linked to a mutation in copper/zinc superoxide dismutase 

(SOD1), an enzyme responsible for scavenging free radicals. This enzyme is a 

powerful antioxidant that protects the body from damage caused by superoxide, a 

toxic free radical. Free radicals are highly reactive molecules produced by cells 

during normal metabolism. Free radicals can accumulate and cause damage to DNA 

and proteins within cells. Although it is not yet clear how the mutant SOD1 gene 

mutation leads to motor neuron degeneration, selective vulnerability of motor 

neurons likely arises from a combination of several mechanisms, including protein 

misfolding, mitochondrial dysfunction, oxidative damage, defective axonal transport, 

excitotoxicity, insufficient growth factor signaling, and inflammation [29]. 



Furthermore, alterations of splicing patterns have also been reported in ALS patients 

and in ALS murine models, suggesting that alterations in pre-mRNA splicing events 

can contribute to ALS progression [30] [31]. Recently, it has been proposed that 

defects in splicing of some mRNAs, induced by oxidative stress, can play a role in 

ALS pathogenesis. The recent commercialization by Affymetrix of Exon 1.0 ST 

GeneChips (Exon GeneChips) allows the definition of both transcription patterns and 

of alternative pre-mRNA maturation events. Using this microarray platform we have 

profiled two ex vivo ALS models to identify the mRNA isoforms associated with 

ALS disease. 

 

1.3.7  Methods 

Benchmark experiment 

A semi-synthetic exon-skipping events data set [13] was used to evaluate the limits of 

statistical methods used in the detection of alternative splicing events (ASEs). ASEs 

were detected using the model based method developed by Affymetrix: MiDAS. 

MiDAS is an ANOVA based method measuring differences between an exon-level 

signal and aggregated gene-level signal. MiDAS p-values were calculated using the 

software provided by Affymetrix in the APT tools. Data were analyzed on R 2.7.0 

and Bioconductor 2.2 [3]. Gene/exon-level expression summaries were generated 

using RMA algorithm [10] and quantile [32] sketch normalization by means of 

Affymetrix APT tools as suggested by Della Beffa et al. in [13].  



ALS experiments 

Alternative splicing events (ASEs) were detected using two experimental models: 

paraquat neurodegeneration model and ALS SOD model. Paraquat model: paraquat 

treatment on SH-SY5Y neuroblastoma cell line was carried out as described by 

Maracchioni and coworkers [33]. ALS SOD model: SODSH-SY5Y stably transfected 

with SOD1 wt and ALS mutant SOD1 G93A were grown as those for the paraquat 

experiment. Four prototypic situations were investigated: Paraquat experiment: SH-

SY5Y neuroblastoma cell line with (para.t) and without (para.n) paraquat treatment. 

SOD experiment SHSY5Y stably transfected with wt (sod.n) and ALS mutant SOD1 

G93A (sod.t). Each condition was replicated 5 times. After extraction and quality 

check 1.5 µgs total RNA was subjected to removal of ribosomal RNA following the 

procedure suggested by Affymetrix. The resulting total RNA was then used to created 

the biotin-labeled library to be hybridized on GeneChip® Exon 1.0 ST human 

microarrays following the procedure described by the manufacturer. GeneChips 

hybridization, washing and scanning was done as suggested by the manufacturer. The 

resulting CEL files were analyzed using oneChannelGUI 1.6.5 [4]. ASEs events 

were detected by MiDAS comparing para.t versus para.n and comparing sod.t versus 

sod.n. Only ASEs characterized by showing a MiDAS p-value ≤ 0.05 in both 

experimental models were selected. Exon-level probe set mapping was performed by 

BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi), interrogating ASPIC database [34] 

and the genome browser at NCBI. 

 



1.3.8  Results 

ALS models microarray data analysis 

The results obtained with our benchmark experiment clearly indicate a strong lack of 

specificity of MiDAS method, that cannot be moderated by conventional type I error 

correction methods. Della Beffa et al. [13] has shown that the integration of results 

generated by parametric and non-parametric ASEs detection methods strongly reduce 

type I errors. However, in our experimental framework we have to handle not only 

type I errors but also need to discriminate between the ALS-specific neurodegerative 

effect induced by paraquat and its intrinsic toxicity effect. To address both the 

moderation of multiple testing errors in ASEs detection and extrapolation of the 

ALS-specific events from the toxicity effect of paraquat we used a biological 

approach. Transcription profiling was done on two ex vivo models for ALS: paraquat 

treatment and SOD1 expression in SH-SY5Yneuroblastoma cell line. Four prototypic 

situations were investigated: Paraquat experiment: SH-SY5Y neuroblastoma cell line 

with (para.t) and without (para.n) paraquat treatment. SOD experiment SH-SY5Y 

stably transfected with wt (sod.n) and ALS mutant SOD1 G93A (sod.t). Gene/exon-

level expression summaries were generated using RMA algorithm [10] and quantile 

[32] sketch normalization, analyzing Paraquat and SOD experiments independently. 

Sample group homogeneity was confirmed by Principal Component Analysis and 

hierarchical clustering (not shown). ASEs were detected in each of the two 

experiments using the model based algorithm MiDAS (p ≤ 0.05). ASEs detected in 

paraquat and SOD experiments were respectively 2778 and 1974. 105 exon-level 



probe sets alternatively spliced and associated with 82 gene-level probe sets were 

found in common between the ASEs detected in the two model systems. 

Subsequently, the presence of a common trend between the paraquat and SOD 

experiments was detected at exon-level using the integrative correlation coefficient 

(IC) [36] applied on SI. 49 exon-level probe sets showed a common trend between 

paraquat and SOD experiments as instead 56 probe sets showed an opposite trend. 

Analyzing only the subset of probe sets characterized by a common trend within the 

two model systems, 35 out of 49 probe sets were associated with reference sequence 

transcripts and more than one exon probe set was mapping on the same transcript. 

Within those transcripts we have identified 7 ASEs associated with 5’ end exons and 

7 ASEs associated with internal coding exons of known/predicted mRNA isoforms. 

We have also detected 1 ASE associated 5’ end exons and 3 ASEs associated with 

internal coding exons of genes where the splicing event is associated with an exon in 

common with all the known and predicted transcript isoforms. It is notable that the 

level of the ASEs is relatively low in intensity, in general it is represented by a 

variation of approximately 50% SI signal. We have also evaluated the SI mean 

centered distribution of the ALS associated ASEs in the tissue data set provided by 

Affymetrix and encompassing 10 adults tissues. The ALS associated exon-level 

probes show a complex pattern in the analyzed tissues. 

1.3.9  Conclusions 

Our results, generated using a semi-synthetic data set and real data, allows the 

generation of general and ALS-specific conclusions. 



General conclusions 

In a biologically defined framework, ASEs are represented more prevalently by 

changes in the ratios between the transcribed isoforms than the appearance of new 

isoforms. This results in relatively small exon-level expression changes, as observed 

by ourselves in ALS ASEs. Furthermore, the measurement of exon-level expression 

based only on 4 probes is less stable than that performed at gene-level (> 10 probes). 

This results in a relatively high fluctuation of the raw exon-level intensity signal 

measured in different arrays. The above mentioned criticalities combined with the 

lack of a specifically devoted statistical framework highlights the need for performing 

exon-level analysis using a high number of replicates, i.e. in our case we used five 

replications for a cell line based experiment. And the mandatory need for reducing 

false discovery rates in ASEs detection by taking advantage of biological 

instruments, i.e. intersection of data derived from different experimental models. 

ALS specific conclusions: Our analysis indicates that ASEs are part of the ALS 

phenotype in ex-vivo models of the pathology. However, the presence of common 

splicing events characterized by opposite trends in the two models might have two 

possible explanations: i) the paraquat model suffers from the lack of a non optimal 

setting of the paraquat treatment to simulate a chronic ALS effect as can be simulated 

by the stable transfection of mutant SOD gene. Ii) the mechanisms of action of 

paraquat and SOD in neurodegeneration, although both linked to oxidative stress, 

only partially overlap. This observation causes speculation as to whether the 



deregulation of the balanced expression of gene isoforms is involved in ALS and 

cannot be linked to the specific functionality of a few gene isoforms. 

A literature search of the combination of gene name ALS associated ASEs and the 

“neurodegeneration” keyword highlighted the importance of NDRG2 and SOX9 

genes in neurodegeneration. Specifically NDRG2 is particularly interesting since it is 

associated with Alzheimer's disease [37] and the first member of the NDRG family 

has been thoroughly studied as an intracellular protein associated with stress 

response, cell growth, and differentiation. A nonsense mutation in the NDRG1 gene 

causes hereditary motor and sensory neuropathy, Charcot-Marie-Tooth disease type 

4D [38]. SOX9 is instead associated with demyelinating diseases [39]. Furthermore, a 

search of the OMIM database shows other links between ALS transcripts and specific 

brain functions. LMO3 and GPM6B are expressed in glial cells, and PREX1 in 

mouse cerebellum. Furthermore, PREX1 and PREX2 are regulators of Purkinje cell 

morphology and cerebellar function since Prex1/Prex2 double knockout mice are 

ataxic and have reduced basic motor activity, abnormal posture and gait, and 

impaired motor coordination at a young age [40]. It is notable that although the 

number of splicing events associated with ALS is limited, they are not equally 

distributed respectively in the 5’ end, coding and 3’ end of the gene, but 50% of the 

events are localized in the 5’ UTR region, suggesting the presence of a deregulation 

not only at splicing but also at the transcriptional level. We are actually investigating 

the characteristics of the putative promoter regions of the 7 genes characterized by 

5’UTR splicing events. 



2. Next-Generation Sequencing of 

       non-coding  RNAs 

In this section a work dealing with high-throughput sequencing is presented. First a 

biological description of RNAs which are not translated into proteins is given. Then 

Next-Generation sequencing methodology is described in general, then only the 

specific technology used for experiments under analysis is described in mode details. 

The last section concerns a software package that I developed for non-coding RNAs 

sequences analysis. 

 

2.1  Introduction 

Most  types of RNA molecules do not codify for protein products and are called non-

coding RNAs. They constitute a large family of abundant and functionally important 

RNAs such as transfer RNA and ribosomal RNA, as well as microRNA, small 

nucleolar RNA, short interfering RNA. Recent bioinformatic studies suggest the 

existence of thousands of non-coding RNA [41]. The software package presented 

afterwards is specifically focused on the analysis of microRNAs (miRNAs), a class of 

post-transcriptional regulators. They consist of  22 short nucleotide RNA sequences 

that bind to complementary sequences in the 3’ end of multiple target mRNAs, 

usually silencing them. MicroRNAs target 60% of all genes, are abundantly present 

in all human cells and are able to repress hundreds of targets each. More than 700 



miRNAs have been identified in humans and over 800 more are predicted to exist. 

Due to their abundance and far-reaching potential, miRNAs can have very different 

functions in physiology, from cell differentiation to the regulation of fat metabolism. 

They display different expression profiles from tissue to tissue, reflecting the 

diversity in cellular phenotypes suggesting a role in tissue differentiation and 

maintenance. 

 

2.2  Methods 

Studying genome sequences has become fundamental for basic research in biology 

and medicine. In general, sequencing a molecule of DNA/RNA means splitting this 

molecule into segments to determine the order of its nucleotide bases (A - adenine, C 

- cytosine, G - guanine, T - thymine). DNA sequencing has accelerated biological 

research and discovery: the fast speed of sequencing has been fundamental in the 

sequencing of the human genome (Human Genome Project). In the 70’s shotgun 

sequencing first appeared: it was then possible to split long DNA strands into short 

(100-1000 bp) partially overlapping segments. Then these segments were sequenced 

using the chain termination method [42] (Sanger method). Computer programs then 

used the overlapping ends of different reads to combine them into a continuous 

sequence. This sequencing method was successful but quite expensive and new low-

cost technologies were needed. Although shotgun sequencing was the most advanced 

technique for sequencing genomes (1995–2005), other technologies started surfacing, 

called Next-Generation Sequencing.  



The term Next-Generation Sequencing indicates high-throughput methods 

characterized by massive parallel production and subsequent analysis of millions of 

short-length (25-500 bp) sequences of genome (called “reads”), in a short time (day). 

Microarrays had the unchallenged primacy in Transcriptomics analysis in the last ten 

years and they were also widely used in other biological areas. But their main  

limitation is that they are available only for some organisms. Instead, using Next-

Generation Sequencing the whole transcriptome of any organism could be potentially 

sequenced, allowing the identification of each transcript as well as their expression 

profile. For RNA and microRNA expression profiling, RNA sequencing (RNA-seq) 

has significant advantages compared with microarray methods: it detects more 

efficiently common and rare transcripts.  

NGS differs from shotgun Sanger sequencing because does not need in vivo cloning. 

Other differences between the single techniques are reported in the following table 

[43] [44] [45] [46] [47]. 

 

 Read length Throughput Timing Accuracy 

Sanger 1000 bp  0.5 MB 1 day 0.99.999 

454 200-500 400-600 MB/run  10 hours 0.99995 

Solexa 35-150 10GB  4 days 0.99995 

SOLiD 35-75 20 GB/run 5 days 0.99988 

 

 



Three main Next-Generation Sequencing technologies raised in the last decade: 

• 454 pyrosequencing (Roche, 2005) [48]. 

• Solexa reversible terminator sequencing (Illumina, 2006) [49]. 

• SOLiD sequencing by ligation (Applied Biosystems, 2007) [50]. 

 

These platforms enable: 

- at genomic level: whole genome re-sequencing and de novo sequencing;  

- at transcriptomic level: small RNA analysis, gene expression profiling and 

                                                whole transcriptome  analysis;     

- at epigenomic level: chromatin immunoprecipitation sequencing (ChIP-Seq) 

                                 and methylation analysis. 

 

 

 

 

 

 

 

 

 



2.2.1 SOLiD by Applied Biosystems 

SOLiD - Sequencing by Oligonucleotide Ligation and Detection - is one of the most 

recent Next-Generation Sequencing technologies, developed in 2007 by Applied 

Biosystems, that since November 2008 constitute, together with Invitrogen 

Corporation, the Life Technologies company. 

The SOLiD™ sequencing system is based on sequential ligation of dye labeled 

oligonucleotide probes where each probe queries two base positions at a time. 

SOLiD™ System enables parallel sequencing of clonally amplified DNA fragments 

linked to beads. This system uses four fluorescent dyes to encode for the sixteen 

possible two-base combinations (Fig.17). 

      Fig.17 [51] Each reverse, complement and reversed 

      complement couple of bases is represented by the 

      same color (e.g. TA, AT, GC, CG). 

 

 

 

It is possible to convert data from color space to the corresponding nucleotides or 

“base space” knowing the identity of the first base in the read.  

                                                                                                                                                                                                                                                                                                                            Fig.18 [51] The color space sequence is decoded starting from the  

                                                     first known base (A) to get a final sequence in the base space.  

                                                     Because each couple of  adjacent colors must have a base in  

                                                     common, it is easy to translate the sequence of colors in  

                                                    consecutive di-bases, then into a unique sequence in the base space.  

 



Each color can be also associated to a number (0 - blue, 1 - green, 2 - yellow, 3 - red) 

because it is computationally convenient to keep the original color space sequence 

and translate it into bases only at the end of the analysis of a data set, after pre-

processing. 

C 3 3 0 2 0 1 0 3 0 3 1 3 1 1 2 3 1 
 

C G C C T T G G C C G T A C A G C A 

 

 

In the SOLiD System the conversion of a sequence of DNA from the color space into 

nucleotide base space is usually done after having aligned the sequence to a reference 

genome transcribed in color space (with tools like SHRIMP- SHort Read Mapping 

Package [53]). 

Advantages of this system: 

    -  ability to detect complicated genomic variations. 

    -  complete large-scale sequencing and tag experiments more cost effectively 

       than previously possible. 

    -  double check: since each base is interrogated twice in independent reactions, the 

       information about each base is included in two adjacent pieces of color space 

       data. 

    -  higher accuracy for SNP detection and 99.94% base-calling accuracy. 

 

 



Sequencing by ligation 

The DNA strand in analysis is fragmented into segments to which edges are 

artificially tied two universal primers (adapter P1, P2). Then these segments are put 

in a pool of beads in microreactors and it is likely that each bead will be ligated only 

to a unique sequence. Then the sequence on each bead is amplified (several copies of 

the same sequence are tied to the bead). 

On each sequence of the bead a universal primer n nucleotides long hybridizes with 

the P1 adapter of the sequence and then one of the four possible fluorescent dye-

labeled di-bases ligates to the sequence [51]. 



Several cycles of ligation, detection and cleavage are needed to get the complete 

sequence in the color space. 

 

 

 

 

Then the universal primer on the original sequence is reset to be long (n-1)  

nucleotides to repeat the ligation step with the fluorescent di-bases and obtain a new 

sequence in color space [51].  

 

 

 

 

 

 



The number of ligation cycles depends on the length of the sequence to be analyzed, 

e.g. if the sequence is 35 nucleotides long, there will be needed 7 ligation cycles 

repeated 5 times [51]. 

 

 

 

 

 

 

 

Once this table is ready, knowing the first base from the universal primer, the colors 

can be aligned to a reference genome translated in the color space. 

 

2.3  Results 
I worked on this project during the second year of Ph.D., in Italy. Almost all the work 

was done in R (some parts were written in C, then interfaced with R). The project 

concerns some algorithms, part of a package called ncSOLID, for the quantitative 

secondary analysis of non-coding transcriptome sequencing data generated with 

SOLiD System platform. The package was initially designed as stand-alone package 

but subsequently was integrated in oneChannelGUI. 



2.3.1 ncSOLID 

ncSOLID was built with the aim of organizing RNA-seq data into a data structure 

that allows the statistical detection of differential expression for non-coding RNAs 

(ncRNAs), e.g. microRNAs. The library had a R interface to SOCS software [52] 

which was used to map and quantify sequence data. 

SOCS (Short Oligonucleotides in Color Space) is a program to map color space 

sequence data to a reference genome. It allows mapping of color space data in a more 

flexible, mismatch-tolerant (0-5 possible mismatches) context to maximize the 

number of usable sequences within a given data set. The higher is the tolerance (high 

number of allowed mismatches), the lower the amount of rejected sequences, but the 

longer becomes the computational runtime. 

SOCS maps at lower tolerances first, reducing the data to be mapped at higher 

tolerances.  

During the mapping process, if a read maps to two or more [52]: 

   -  non-identical genomic substrings within the maximum tolerance, quality scores 

      and mismatch counts are used to get the optimal match (unambiguous matching). 

   -  identical genomic substrings, all matching locations are considered ambiguous 

      (ambiguous matching). 

Once the number of optimal matches is determined, coverage maps of each reference 

chromosome are computed.  

ncSOLID library allows to run multiple instances of SOCS. Coverage data produced 

by SOCS are segmented to select peaks of ncRNA expression, which are then 



organized in an ExpressionSet object [52], a data structure usually employed to 

collect data from microarrays. It binds together expression measurements with 

covariate and administrative data, convenient for results manipulation. 

This structure of the expression level of transcripts is then quantified as coverage per 

million reads to the  transcriptome. Those data are used to detect differentially 

expressed ncRNAs using several types of statistics (for example Rank product, 

presented in the first chapter, section 1.2.2). In the following, the workflow to 

analyze ncRNAs with ncSOLID is shown. 

SOLiD output files are in .csfasta (color space fasta) for the sequences and .qual 

format for the scores associated to each sequence in the .fasta file. 

The sequences of the .csfasta file (and respective scores  file. qual) are first trimmed 

(trimSOLID.R), to remove the adapter P2 at the end of each sequence. 

Trimming the sequences has three reasons: 

    -  since non-coding RNAs are quite short (18-28 bp) and reads length on SOLiD 

        system are longer (35-75 bp), it is possible that reads are at least partially 

        contaminated by P2 adaptor. 

     -  while the current matching tools provided on the SOLiD are designed for reads 

        of equal length, ncSOLID library allows trimming: adaptor removal, to get the 

        desired read length. 

     -  trimming can substitute mismatching at the end of the sequence (3’). 

This trimming algorithm was evaluated on a data set constituted by four .csfasta files 

(sequences long 35 bp) and four .qual files, two treatment and two control cases, that 

were mapped on the chromosome 22. 



Given a sequence of  given length (e. g. 35 bp), if one hypothesizes a minimum 

length (20 bp) not to be overcome and a step of trimming (5 bp), trimSOLID.R cut 

sequences from the end to get sequences of the desired length (35, 30, 25, 20 bp).  

Example: Three sequences of one of the four files in input are trimmed of five 

elements, starting from the end of the sequence. 

35 bp: 

T33230310310120332321003330221330113 

T33232130123212022023133333322313132 

T03211231113210120233303333322313133 
 

30 bp: 

T332303103101203323210033302213 

T332321301232120220231333333223 

T032112311132101202333033333223 
 

25 bp: 

T3323031031012033232100333 

T3323213012321202202313333 

T0321123111321012023330333 
 

20 bp: 

T33230310310120332321 

T33232130123212022023 

T03211231113210120233 
 

 

The reads in the .csfasta files always begin with T (that is not included in the length 

of the read, 35 in the example above) and are constituted of numbers from 0 to 3 that  



substitute the four colors that identify each couple of nucleotides. 

They will be translated in the base space later on; during this pre-processing step it is 

better to keep this format to avoid errors of translation in the final sequence. The 

sequences in the .qual files contains sequences of quality scores, 35 scores for each  

read, if this is 35 bp long, for example. Here after parts of two of the files in input, in 

.csfasta and .qual format respectively, are shown: each sequence is preceded by the 

respective identification number. 

File.csfasta 

• 920_6_719_F3 

          T33230310310120332321003330221330113 
 

• 920_7_366_F3 

          T33232130123212022023133333322313132 
 

• 920_8_370_F3 

          T03211231113210120233303333322313133 
 

• 920_8_721_F3 

          T01032201322220030211103310121333113 
 

• 920_11_374_F3 

          T30100313223202232201333333323313303 
 

• 920_11_1252_F3 

          T33211130130120211100330212330313113 
 

• 920_11_1559_F3 

          T13130113320230022223233333333213323 

 



File.qual 

• 920_6_719_F3 

          8 12 18 6 16 19 4 4 18 23 5 21 7 26 24 8 26 5 16 25 13 24 7 22 18 24 21 27 24   

          6 6 13 4 26 24 
 

• 920_7_366_F3 

          14 23 20 27 7 9 27 17 26 25 4 14 23 4 22 6 6 7 6 18 4 14 7 13 21 4 4 5 6 4 4 7     

          4 4 10  
 

• 920_8_370_F3 

          12 20 16 9 12 20 10 21 18 17 7 11 21 4 12 9 13 6 6 6 4 10 15 17 14 4 4 4 12 4  

          4 4 4 4 4 
 

• 920_8_721_F3 

          21 15 4 12 6 5 20 5 4 4 4 6 4 27 7 10 6 20 6 19 9 10 20 24 6 16 4 15 21 6 4 10  

          4 4 10  
 

• 920_11_374_F3 

          27 25 21 27 27 25 19 9 18 27 27 20 10 4 12 5 6 12 18 4 4 6 12 5 4 4 4 4 4 4 4 4   

          4 4 20  
 

• 920_11_1252_F3 

          27 27 22 25 26 27 27 6 26 21 26 26 7 12 12 25 15 11 15 20 14 21 6 6 4 5 4 7  

          22 10 10 6 10 6 13 
 

• 920_11_1559_F3 

          4 7 4 10 4 6 5 7 6 8 4 6 4 15 4 4 4 12 4 4 4 4 7 4 4 4 4 4 6 4 4 4 4 4 6  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Then SOCS must be run N times (runNSOCS.R), because N are the samples in 

analysis, choosing a mismatch tolerance, to get for each sample a “.map” file, that 

contains the mapping of the reads in the sample to the reference chromosome of the 

genome. The sequences of the genome in the .map files are segmented, i.e. the 

regions where the reads are concentrated are divided from the regions of the genome 

not covered by reads, to get the expressions of ncRNAs (esetSOCS.R), organized in 

an ExpressionSet structure. Then the coverage of the chromosome in analysis with 

the resulting ExpressionSet must be evaluated (covSOCS.R) to verify whether it must 

be improved (and repeat the previous steps of the process increasing the trimming



 factor) or if it can be further analyzed to detect differential expression between the 

control and treatment case.  

The library ncSOLID was created to become part of the libraries of Bioconductor  

but it was not submitted because in the meanwhile other tools for the secondary 

analysis of RNA-seq came out and performed better than SOCS. These tools are now 

part of oneChannelGUI, as described below.  

 

2.3.2  Extension of the R library oneChannelGUI  

oneChannelGUI was first built up by Prof. Raffaele Calogero and co-workers, in 

2007 [4] as graphical interface to analyze data sets from microarray experiments and 

recently (2010) it has been extended to analyze the results obtained with Next-

Generation sequencing technologies, focusing in particular on microRNA analysis. 

The aim of this extension of the library is the secondary analysis of non-coding 

RNAs, short reads aligned against the relative reference genome. 

The raw data resulting from a Next-Generation Sequencing experiment cannot be 

directly statistically analyzed. The data in input to oneChannelGUI can come from 

the following different mapping tools, freely available online: SHRIMP (SHort Read 

Mapping Package) [53], miRanalyser [54], MicroRazers [55], miRExpress[56], 

miRProf (web tool). 

When the data in input are loaded in the program, if they do not come from one of the 

above-mentioned tools for the primary analysis, they are reorganized as 

ExpressionSet, as done in ncSOLID (section 2.3.1). This structural reorganization 



can be done with Genominator or a segmentation approach based on chipseq, both R 

libraries. It is then possible to normalize the data and this is done by the program 

using a method that will be described hereafter in the third chapter [57] and that is 

part of a R library called edgeR [58], for the detection of differential expression of 

short reads. For a quality control, principal component analysis and hierarchical 

clustering are available, as already for the data from microarray experiments. And it 

is also   available a multidimensional scaling plot, provided again by edgeR package. 

As statistics, Rank Product (section 1.2.2) and edgeR (section 3.2.2) are 

implemented. Rank Product was evaluated on a semi-synthetic data set in chapter 1 

and it was demonstrated that it is a powerful technique to detect differential 

expression among data from microarray experiments, but it can be used also in short 

reads analysis, as well as edgeR. In the next chapter there will be given an example of 

the use of these two methods, combined to find regulation in some shRNAs samples.    

 

2.4  Conclusions 

While defining the project, ncSOLID was meant to be a new R package in 

Bioconductor. After the development of the tool it seemed more convenient to 

include this software in the already existing oneChannelGUI package, extending its 

functions to the secondary analysis of non-coding RNAs.  

 

 

 



3.  Short hairpin RNAs modeling     

This last chapter deals with the analysis of shRNAs experiments, which were made 

with the purpose of finding some regulated shRNAs that could be used as biomarkers 

during liver regeneration. 

Short hairpin RNAs belong to the class of non-coding RNAs and are concerned in 

section 3.1. Before discussing the analysis of regulation of shRNAs data sets and the 

related results obtained with different statistical softwares, a technical description of 

these tools is given. 

 

3.1  Introduction 

Non-protein-coding RNA molecules with hairpin shape silencing gene expression are 

called short hairpin RNAs (shRNAs). shRNAs can be synthesized in vitro or 

transcribed in vivo to suppress the expression of target genes in cultured cells [59]. 

They are part of the RNA interference system (RNAi), an evolutionally conserved 

gene silencing mechanism present in a variety of eukaryotic species. It has been 

widely used as a novel effective tool for functional genomics studies, displaying a 

great potential in treating human diseases, e.g. cancer treatment, and there has been a 

recent development in the use of RNAi in the prevention and treatment of viral 

infections [60] [61]. A deep analysis of data sets of shRNAs with the aim to detect 

biomarkers for liver regeneration was made and it will be presented later on in this 

thesis. A previous study (2008) was made by Lars Zender et al. [62] to identify tumor 



suppressor genes relevant to human cancer (liver), establishing the feasibility of in  

vivo RNAi screens. A project focused on the deep analysis of data (counts) from 

shRNAs experiments recently began with a paper (2010) by Frank Klawonn, Torsten 

Wüstefeld and Lars Zender [63], where the future perspective is to determine the 

cause of variations between experiments in different conditions, which is the topic 

presented in the next sections: defining the optimal statistics to select significantly 

regulated shRNAs. 

 

3.2  Methods 

“Next-Generation” is the term with which high-throughput sequencing technologies 

raised in the last five years, are indicated. As reported at the beginning of section 2.2, 

these short sequences can be produced in different ways by the three different 

equipments: 454 by Roche, Solexa by Illumina, SOLiD by Applied Biosystems. In 

the next section the Solexa technology is described to understand how shRNAs were 

sequenced and subsequently analyzed from a statistical point of view in section 3.3.  

 

3.2.1 Solexa technology by Illumina 

Solexa sequencing uses four fluorescently labeled nucleotides instead of associating a 

di-base to each color as done in SOLiD. The sample preparation methods used differ 

slightly from that used in the SOLiD system, but the basic goal is the same: 

generating large numbers of unique “polonies” (polymerase generated colonies) that 



can be simultaneously sequenced. These parallel reactions occur on the surface of a 

“flow cell” (a microscope slide) which provides a large surface area for many 

thousands of parallel chemical reactions. 

As in the SOLiD Next-Generation technology (section 2.2.1), Solexa uses sequences 

that in average are 35 bp long, but instead of sequencing by ligation they are 

chemically synthesized. 

 

Sequencing by synthesis  

Solexa’s strategy is the amplification of DNA on an array followed by synthesis by 

incorporation of modified nucleotides linked to colored dyes [64]. The first step to 

prepare the DNA library to be sequenced is to randomly fragment DNA and ligate 

two adapters to the ends of the fragments. 

1. Preparation of DNA sample                       2. Attach DNA to solid surface 

 

 

 

 

 

 



Single-stranded fragments must be then attached randomly to the solid surface of the flow 

cell channels, which are already partially covered by primers that will be used in the 

following phase of the process [65]. 

3. Bridge amplification                                 4. Fragments become double stranded 

 

 

 

 

 

 

 

Add unlabeled nucleotides and enzyme to start solid-phase bridge amplification: the  

enzyme incorporates nucleotides to build double-stranded bridges on the substrate. 

5. Denaturation of double-stranded molecules             6. Amplification  

 

 

 

                                                                                    

 

 



Denaturation implies that single-stranded fragments are now attached to the surface; several 

millions of dense clusters of double-stranded DNA are generated.  

7. Determination of the first base                    8. Determination of the second base 

 

 

 

 

 

 

 

 

 

 

The first sequencing cycle begins by adding four labeled reversible terminators, primers and 

DNA polymerase. After laser excitation, the emitted fluorescence from each cluster is 

captured and the first base identified. The next cycle of sequencing repeats the incorporation 

of four labeled reversible terminators, primers and DNA polymerase. Then the image is 

captured with the laser as before and the second base is recorded [65].The sequencing cycles 

are repeated to determine the sequence of bases in a fragment, one base at a time. The 

results are aligned and compared to a reference and sequencing differences are found 

(TAAG is the upper sequence in the picture).   

 

=  TAAG



3.2.2  Detection methods  

While the first project described in this thesis with alternative splicing events 

detection in microarray data and the second one with the secondary analysis of non-

coding RNAs, this last project gives the impression of representing a combination of 

the previous two parts of this manuscript, dealing with the detection of differential 

expression in RNAs sequences. Hereafter are presented the methods used in the 

analysis of some shRNAs data. Both edgeR [57] and DESeq [66] are based on the 

hypothesis that the reads can be approximated as Negative Binomial distributions 

[67] [68] [69] [70] [71] [58] [66], while Rank Product is a non-parametric method. 

Both edgeR and DESeq authors state that the read counts follow a Multinomial 

distribution [71] [72] which can be approximated by a Poisson model [73] [74] [75]. 

This is because the Multinomial is the multivariate case of a Binomial distribution 

which converges to a Poisson when the sample size is large and the probability of 

success/failure is close to zero.                                                                                       

In a Poisson distribution the unique parameter for the model is the mean        that is 

equal to the variance v. But the authors of edgeR [58] and others [69] [70] [68] agree 

that the assumption of  Poisson distribution for the read counts is too tight because 

the variance of the data is greater than the mean actually. This is called 

“overdispersion problem” [58] [66] and can be solved if the count data are modeled 

as Negative Binomial distributions with                   , where the proportionality 

constant       is estimated from the data and           . 

µ

2σµ <<

2αµµ +=v

α



edgeR 

This is the first and very recent (2010) library created in the R environment for the 

analysis of differential expression of count data produced by Next-Generation 

sequencing technologies; in particular edgeR [58] has the aim of deeply analyzing  

RNA-seq reads. subsequent other libraries are based on edgeR (empirical analysis of 

DGE in R): DESeq [66], described afterwards; baySeq [76] and DEGSeq [72], whose 

performance was first evaluated at the same time of edgeR and DESeq but 

subsequently abandoned because considered less reliable than the other two statistics 

to focus mostly the attention on the three statistics presented in this section. edgeR 

includes a new method of normalization of short reads so that they become 

comparable between different samples of the same or different conditions.  

Some widespread previous scaling techniques are: 

• adjusting counts to reads per kilobase per million mapped (RPKM technique), 

i.e. normalizing for RNA length and for the total read number in the 

measurement [77]; 

• data standardization by dividing each list of counts by the total number of reads 

in the list [78];   

• performing an hyper-geometric test  computing p-values to account for sample 

biases [71];   

• quantile normalization [79] [80], as already used to normalize data resulting 

from microarray experiments [32]. 

The authors of edgeR in the related article on the description of this method find the 

second method, even if intuitive, too simple for many biological applications [57]. 



They assess that the number of reads that should map to a gene depends not only on 

the expression level and length of the gene but also the composition of the RNA 

population that is being sampled [57]. Hence if a large number of genes are highly 

expressed in one condition, fewer tags are available for the remaining genes in that 

sample. This artifact, if not adjusted, distorts the results of the differential expression 

analysis and results in higher false positive rates . This is what they tried to account 

for proposing a new normalization method, able to compare Next-Generation 

Sequencing data across samples, estimating a suitable scaling factor from the raw 

data. They started from two basic hypothesis: 

     1.  A gene with the same expression level in two samples should not be detected 

 as differentially expressed.  

     2. The amount of reads mapping a certain gene depends on the expression features 

 of the whole sample rather than only on the gene expression level. 

Let Ygk  be the observed count for gene g in the sample k, summarized from the raw 

reads ; let       be the true unknown expression level, Lg the length of gene g; Nk the 

total number of reads for library k. The expected values of Ygk can be estimated as: 

                      with                                                                                            (23) 

Sk is the total RNA output of a sample k.  

While Nk  is known, Sk is unknown and can extremely vary from sample to sample 

[57] and cannot be directly estimated. The relative RNA production of two samples k,  
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k´ is                 and can be estimated using a weighted trimmed mean (average after 

removing the upper and lower x% of the data) of the logarithm of the expression 

ratios. The gene log fold changes are defined as follows [57]: 

(24) 

                                             

and the absolute expression levels as: 

(25) 

the proposed normalization is the trimmed mean of Mg and Ag values and is called by 

the authors of edgeR “TMM normalization” (Trimmed Mean of  M values): by       

default the trim for Mg is 30% and for Ag is 5%. 

After trimming, a weighted mean of Mg and Ag is taken, with weights computed as 

the inverse of the approximate asymptotic variances, computed using the delta  

method presented in [81]. The normalization factors for sample k with reference 

sample r, are 

 

                                             (26)               

                                                     

with fold change                                          and weights                                                

with Ygr and Ygk > 0. 

edgeR works only with data sets with replicated experiments.  
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If the replicates are only two the “effective” library size  (the total sum of counts of a 

sample) is determined dividing the sample taken as reference by         and multiplying 

the non reference one by        . 

Then the sage.test algorithm from the R library statmod can be used to compute the 

p-value for Fisher´s exact test for each gene.  

Normalization factors across several samples can be computed selecting one sample 

as reference and computing TMM normalization factor for each non reference sample 

[57] to determine the “effective” library size (total number of counts in each sample) 

of the samples in each condition. Then the statistical analysis is performed following 

the method proposed in [71] using a likelihood ratio test to evaluate the differences in 

expression between libraries: they compute the maximum likelihood estimates under 

the under the null hypothesis that each gene must have the same mean expression in 

different samples. The standard likelihood ratio statistic,  

(27) 

 

where LH0 is the likelihood for the null model and LH1 the likelihood for the 

alternative model. D was computed and p-values for each gene were obtained 

exploiting the fact that, under the null hypothesis, this statistic has an approximated                      

 distribution with one degree of freedom. 
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DESeq  

This method is based on the previously described R package edgeR and similarly 

based on the hypothesis that each single read count can be described by a Negative 

Binomial distribution,  

                                                           with                .                                               (28) 

which unique and unknown parameters are the mean and the variance of the reads 

that must be estimated from the data. This distribution can be also parametrized, as 

suggested in [67] with respect to the probability (p) and the number of failures before 

a success (r) as 

                              (29)                                              

Normally the number of  replicates is low and so there is an evident need for further 

modeling assumptions [66] and the authors of DESeq hypothesize that: 

     1. The mean       of gene i in sample j, is proportional to the library size sj                 

                                                                                                                  (30)                 

 with           gene abundance, )( jρ experimental condition of sample j            

    2. The variance       is constituted by two terms:  

                                                 (31) 

              is the mean and the other term is the raw variance. 

    3. The raw variance is proportional to the gene abundance 
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        (32) 

Then the model must be fitted to the data, estimating: sj                         as follows: 

(33) 

 

                                                                                                                                   (34)                

with          number of replicates of condition      

                                                 (35) 

with  

 

 

where the denominator of    can be imagined as a “pseudo-reference” sample 

obtained computing the geometric mean across samples [66]. Once these parameters 

are estimated, under the null hypothesis that                 i.e. the gene abundance is 

equal in the two conditions A and B, it is possible to test the data for differential 

expression, defining as test statistic the total counts in the two conditions 

                                                                                                                  (36)   

with                             .   

The p-value of a couple of observed count sums is the sum of all the probabilities less 

or equal to p(kiA, kiB), given the total sum kiS , with a, b with values [0, kiSa] 
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p(kiA, kiB)                                                                                                                    (37) 

 

This approach is similar to that adopted in the article [69] that is of the same authors 

of edgeR. p(a,b), assuming that the counts are independent, is the product of the 

single marginal probabilities of a and b. To compute these two probabilities first is 

possible to compute the average of the counts rescaled with sj 

(38) 

and the mean and variance of the data in condition A are respectively (from 

equations(30), (31)) 

(39) 

 

 

Rank Product 

This method [14] has been already mentioned in the previous two chapters (described 

in section 1.2.2) : it was used in the pipe-line to detect alternative splicing events in 

data sets produced with microarray platforms and it can complete the extension of  

the R library oneChannelGUI to analysis of non-coding RNA-seq. Rank Product can 

be used with a great variety of different types of data in input because it is a non-

parametric statistic based on fold change and is being used now in RNA interference 

[82], as well as in metanalysis [83]. Rank Product was used with 100 permutations 

and 50 iterations were made to be sure not to loose any regulated shRNAs. 
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3.3  Results 

Here is presented an analysis of seven shRNAs data sets, all produced using Illumina 

Genome Analyzer technology and kindly provided by Marina Pesic and Ramona 

Rudalska, Ph.D. students of the group of Prof. Lars Zender and Dr. Torsten 

Wüstefeld. 

3.3.1  Short hairpin RNAs experiments 

The data sets produced by R. Rudalska and M. Pesic come from in vitro experiments 

on a set of short hairpin RNAs that targets genes of chronic liver disease. 

Hereafter the number of reads in each samples of each of the seven experiments and 

the number of treatment (T) and control (C) cases is shown:  

- Data sets with replicated experiments  

          R1.    1980 shRNAs:   4 C,  4 T     (from mouse liver cell lines) 

          R2.    1830 shRNAs:   3 C,  3 T     (from mouse liver cell lines) 

          R3.    1911 shRNAs:   3 C,  4 T     (from mouse liver cell lines) 
 

- Data sets without replicated experiments 

          R4.  20440 shRNAs:   1 C,  1 T     (from human liver cell lines) 

          M1.     234 shRNAs:   1 C,  1 T     (from mouse liver) 

          M2.     230 shRNAs:   1 C,  1 T     (from mouse liver) 

          M3.     236 shRNAs:   1 C,  1 T     (from mouse liver) 

Data sets with no replicates were analyzed in a simpler way than the ones with 

replicates. 



3.3.2  Filters and data normalization  

The analysis is illustrated based on the R1 data set, constituted by four samples for 

each condition (treatment and control cases). 

 

Filters   

The first approach was to not consider the rows of the shRNAs data sets containing 

too many zeros, that are troublesome from a computational point of view. The 

following example shows which type of  row was filtered out in first analysis, 

resulting in 1854 shRNAs after the filter, from a starting total number of 1980. 

                   T1  T2  T3  T4    C1  C2  C3  C4 

                    8     0     0    0       0     0    0    0       deleted 
  

                    0     0     0    0       8     0    0    0       deleted 
 

                    8     8     0    0       0     0    0    0       taken 
 

                    0     0     0    0       8     8    0    0       taken 
 

                    8     0     0    0       8     0    0    0       taken 
 

Only those rows presenting, in at least one of the two conditions, at least one  element  

different from zero, were retained. An alternative more stringent filter was, 

                   T1  T2  T3  T4    C1  C2  C3  C4 

                    8     0     0    0       0     0     0    0           deleted  

                    0     0     0    0      18    0     0    0           deleted 



                    8     9     0    0       0     0     0    0           deleted 

                    0     0     0    0      18   19    0    0           deleted 

                    8     0     0    0      18    0     0    0           deleted 

                    8     9     0    0      18   19    0    0           taken 

                    8     9    10   0      18   19    0    0           taken 

                    8     9     0    0      18   19   20   0           taken 

                    8     9    10   0      18   19   20   0           taken 

                    8     9    10  11     18   19   20   0           taken 

                    8     9    10   0      18   19   20  21          taken 

                    8     9    10  11     18   19   20  21          taken 
 

This filter considers only those rows in which, in both conditions, half or more 

elements were different from zero. This resulted in 1709 remaining shRNAs. But 

from a biological point of view there was a loss of too much information. And the last 

and most successful approach was to keep only those shRNAs that had half or more 

element different from zero only in the treatment, because if the control is initially 0 

or very low and the treatment is very high this is interesting from a biological point of 

view and must be further analyzed.  

                   T1  T2  T3  T4    C1  C2  C3  C4 

                    8     0     0    0       0     0     0    0           deleted  

                    0     0     0    0      18    0     0    0           deleted 

                    8     9     0    0       0     0     0    0           taken 
 

                    0     0     0    0      18   19    0    0           deleted 
 

                    8     0     0    0      18    0     0    0           deleted 



 

                    8     9     0    0      18   19    0    0           taken 
 

                    8     9    10   0      18   19    0    0           taken 
 

                    8     9     0    0      18   19   20   0           taken 
 

                    8     9    10   0      18   19   20   0           taken 
 

                    8     9    10  11     18   19   20   0           taken 
 

                    8     9    10   0      18   19   20  21          taken 
 

                    8     9    10  11     18   19   20  21          taken 

 

After this filter 1802 shRNAs remained. If a data set is without replicated 

experiments of the same condition zeros do not mean anything from a statistical point 

of view and all the rows with zeros can be ignored. Another filter was tried, on the p-

values of the data set after the statistical analysis: deletion of all the regulated 

shRNAs in which range(T) intersected range(C), with range = (min, max), like in the 

following example: 

                             T1    T2    T3    T4       C1    C2    C3    C4 

        shRNA.1     100   300  400    110    200   180    20     10      deleted 

        shRNA.2     100    15    50     8          5      10     20      2      deleted 

In the first example 200 and 180 are in the range(T) = (100, 400), while in the second 

one 15 and 8 are in the range(C) = (2, 20) so they seem too noisy to be considered 

reliable. This filter subsequent to the statistical analyses was removed because 

biologically it was too stringent.  



Dealing with zeros 

Instead in the experiments with replicates, even after the (third) preliminary filter 

applied to reduce the size of the data set throwing out unuseful noisy data, there will 

be still some read counts equal to zero in some samples. Hence this raised the need to 

better deal with these zeros, which can cause computational problems.  

The first approach was to create four different types of data sets to be subsequently 

subdued to differential expression analysis: 

− Raw: the raw original data set  

                              T1  T2  T3  T4    C1  C2  C3  C4 

          shRNA.1        8   10    0    0      18   20    0    0   
 

         shRNA.2       8   10    0    0        0    0     0    0 

   

− LC: filtered data set where to all the reads was added a pseudo-count of 1 

(called sometimes Laplace Correction (LC) [84] [85] [86]), as also proposed in 

[63]. This method allows to account for the following problem: fold-change 

(FC) between low values is less statistically significant then the fold-change 

between high values, which are more reliable. For example: FC = 10/2 = 5; FC 

= 11/3 = 3.6, while FC = 100/20 = 5 and FC = 101/21 = 4.8. 

                              T1  T2  T3  T4    C1  C2  C3  C4 

        shRNA.1         9    11   1    1       19   21    1     1    
   

        shRNA.2        9    11   1    1        1     1     1     1 

 



− NA: filtered data set in which 0 was changed into NA (not available elements) 

if the other elements of the shRNA were different from 0 (shRNA.1); 

otherwise zeros were unchanged (shRNA.2). Then the pseudo-count 1 was 

added everywhere. Changing 0 into NA means pointing out that 0 means that 

nothing was detected, because of experimental noise or other reasons. 

                               T1  T2  T3  T4    C1  C2  C3  C4 

         shRNA.1        8   10   NA  NA   18  20  NA  NA 
 

         shRNA.1        9   11   NA  NA   19  21  NA  NA 

  

          shRNA.2       8   10   NA  NA     0    0    0    0    
  

         shRNA.2       9   11   NA  NA     1    1    1    1     

           

− Mean: the filtered data set in which each 0, was substituted with the mean of 

the other non-zero elements of the same condition , if the other elements of the 

shRNA were different from 0 (shRNA.1); otherwise zeros were unchanged 

(shRNA.2). Then the pseudo-count 1 was added.                       

                                T1  T2  T3  T4    C1  C2  C3  C4 

          shRNA.1         8   10   9    9        18   20  19   19         
  

         shRNA.1         9   11   10  10      19   21  20   20 

          

         shRNA.2         8   10     9    9       0     0    0     0    
  

         shRNA.2         9   11   10   10      1     1    1     1         

Then the results obtained analyzing these four data sets with the three statistics in 

section 3.2.2, were compared. 



Initially there was the idea to not consider in the analysis the columns of the data set 

(with replicated experiments) that contained more than 50% of zeros, as suggested by 

Prof. Raffaele Calogero, because considered unreliable, too noisy. But in the case 

considered here, all the samples had more than 50% of non-zero elements. So not 

considering C2, C3 columns that contained 20% of zeros, was tried. But lately this 

approach was abandoned because it was leading to a great loss of information.  

In the case of data sets without any replicated experiment dealing with zero was not a  

problem: seen that the elements equal to zero were a few (10-15) they were removed 

from the data set, instead of adding a pseudo-count of 1.  

 

Normalization 

edgeR and DESeq include a normalization method: edgeR uses TMM normalization, 

taking one sample of a certain condition as reference to compute TMM of the other 

samples; DESeq corrects the library size multiplying it by a scale factor estimated 

from the raw data. While Rank Product has not a normalization method. 

A comparison between the raw data and the rescaled ones with the standard 

normalization (dividing each sample by the related library size, as mentioned in 

section 3.2.2), edgeR and DESeq proposed ones was made. The conclusion was that 

these three types of normalization are equivalent and so data to be submitted to Rank 

Product were previously rescaled with DESeq normalization, the most recent method. 

Actually the first analyses were run comparing RP results obtained on data sets with 

standard and DESeq normalization: the results were the same. 



 

 

 

 

 

 

 

 

 
 

 

 

 

Fig.19 A is the control: sample A1 and A2 are compared with a qq-plot, before and after three types 

of normalization (dividing by sample sum, edgeR and DESeq factors).
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Fig.20 B is the treatment case: sample B1 and B2 are compared with a q-plot, before and after three 

types of normalization. 

 

3.3.3  Regulation detection  

                   Within all the results obtained with DESeq, edgeR and RP only those with log2(FC) ≥ 

1 and p-values  ≤  0.05 or p-adjusted  ≤  0.1 respectively, were retained. The p-values 

were adjusted with p.adjust algorithm of the R library stats, with the method of 

Benjamini Hochberg  (BH) [35], to account for multiple testing problem.                                       



                    For each of the four possible data sets (Raw, LC, NA, Mean) log2(FC) was computed 

(the same log2(FC) of LC was assigned to NA). And only those regulated shRNAs 

which presented a consistent log2(FC) were retained, i.e. only those for which 

(log2FC.LC/log2FC.Mean) > 0 so that the two values had the same sign to point out 

uniquely up (+) or down (-) regulation. 

Data sets with replicates 

                   To each of the three data sets were respectively applied one or more statistics: 

 - Raw: DESeq, edgeR, RP. 

 - LC: DESeq, edgeR, RP. 

     - NA: RP was the only method applied because DESeq and edgeR can only  

   analyze data without NA (for undefined elements), while RP can not  

   consider NA in the analysis.   

 - Mean: DESeq, edgeR, RP. 

                    Then the intersection of the values (p-values, p-values adjusted) found with at least 

two methods (edgeR and DESeq; edgeR and RP; DESeq and RP) was taken.  

                    Hereafter the Venn Diagrams of the results obtained is presented for the data sets R1,   

R2, R3. PVALUES label points out the number of shRNas with p-value  ≤ 0.05, 

while PADJUSTED label points out the number of shRNAs with p-value adjusted 

with BH method that is ≤ 0.1.   
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R2)                     UP                                                        DOWN 

                 ShRNAs with p-value ≤ 0.05 
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R3)                     UP                                                        DOWN 

              ShRNAs with p-value ≤ 0.05 

 

                     ShRNAs with p-value adjusted ≤ 0.1 

                     

If the intersection of the results obtained with at least two methods between LC, NA 

and Mean is considered, the significant values are the following ones: 
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      P-values P-values adjusted 

UP DOWN UP DOWN 

R1 93 106 31 37 

R2 132 77 45 7 

R3 188 183 125 118 
 

Table 7. P-values and p-values adjusted with BH method of the data sets with replicates (R1, R2, 

R3) are shown respectively for the up- and down-regulated shRNAs.   

 

Data sets without replicates 

                    To each of the three data sets were respectively applied: DESeq, edgeR, RP, without 

 any previous transformation of zeros because these were removed. edgeR does not

 work without replicated samples and it resulted unuseful. The union of the results            

 found with DESeq and RP constituted the number of regulated shRNAs, as 

 summarized in the table below: 

 

P-values P-values adjusted 

UP DOWN UP DOWN 

R4 1020 1945 0 79 

M1 15 14 2 1 

M2 12 19 0 1 

M3 11 14 0 0 
 

Table 8. P-values and p-values adjusted with BH method of the data sets with replicates (R4, M1, 

M2, M3, M4) are shown respectively for the up- and down-regulated shRNAs.   



3.4  Conclusions 

The results of this study are shown in the tables of the previous section 3.3.3 and 

looking at them it is evident that Benjamini & Hochberg p-value adjustment cut off 

many data. 

     The pipe-line used to analyze the data without replicates is more simple than the one 

used for the other analysis and also less reliable because of this lack of available 

replication: hence no comparison through samples of the same condition can be 

made.  

NA and Mean modified data sets give the best results and to reduce the number of 

false values the intersection of the common values is considered. NA seems to find 

much more regulated shRNAs than Mean but many of them are false values. 

Furthermore, the shRNAs whose regulation is detected by two or three different types 

of modified data sets instead of only one, are surely more reliable. 

Afterwards part of the results, obtained for the three data sets with replicates (R1, R2, 

R3), is presented. All the presented shRNAs hereafter are up-regulated (if the control 

is lower than the treatment) or down-regulated (if the control is higher than the 

treatment) respectively and present a p-value lower or equal to 0.05, i.e. they are 

statistically significant. ShRNA IDs written in red (up-regulated) and green (down-

regulated) point out that the results have the p-value adjusted with BH that is less or 

equal to the 0.1 threshold, beyond having p-value lower or equal to 0.05. ShRNA IDs 

highlighted in gray were detected simultaneously with LC, NA, Mean methods.  



R1. Up-regulated shRNAs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C1 C2 C3 C4 T1 T2 T3 T4 log2FC
u.R1.shRNA.1 0 0 0 0 1364,03 0 930,82 0 8,44
u.R1.shRNA.2 0 0 0 0 0 0 2015,43 111,80 8,33
u.R1.shRNA.3 0 3,06 0 0,42 126,17 233,79 2573,35 224,81 8,29
u.R1.shRNA.4 0 0 0 0 1930,22 0 0 115,41 8,27
u.R1.shRNA.5 0 0 0 0 973,85 7,34 368,16 633,56 8,23
u.R1.shRNA.6 0 0 7,97 4,63 475,53 1129,10 197,33 3756,87 8,18
u.R1.shRNA.7 0 0 3,98 0 2088,73 0 672,91 99,78 8,08
u.R1.shRNA.8 0 0 0 0,84 1396,37 351,21 185,97 54,10 8,06
u.R1.shRNA.9 0 0 0 0 0 737,01 561,71 0 7,62

u.R1.shRNA.10 0 0 0 0 331,33 165,64 0 502,52 7,24
u.R1.shRNA.11 2,75 0 0 6,31 1951,95 1,05 0 210,38 7,11
u.R1.shRNA.12 0 0 0 0 0 32,50 782,23 0 6,95
u.R1.shRNA.13 0 0 0 0 1,59 793,62 8,04 0 6,93
u.R1.shRNA.14 0 0 11,95 15,15 821,71 0 3174,34 1,20 6,89
u.R1.shRNA.15 0 3,06 0 0 1051,78 24,11 1,42 0 6,80
u.R1.shRNA.16 0 9,18 0 7,16 1256,42 17,82 0 1065,15 6,67
u.R1.shRNA.17 4,81 0 0 0,42 1139,26 0 0,47 0 6,59
u.R1.shRNA.18 0 0 0 0 0 1,05 548,93 2,40 6,39
u.R1.shRNA.19 0 0 0 11,79 1497,63 0 0 30,05 6,38
u.R1.shRNA.20 0 0 0 4,63 11,13 699,26 191,65 0 6,33
u.R1.shRNA.21 0 0 0 7,16 344,59 8,39 118,30 623,94 6,32
u.R1.shRNA.22 0 0 0 0 0 205,48 0,47 299,35 6,26
u.R1.shRNA.23 3,43 6,12 3,98 1,68 28,63 1370,22 194,97 30,05 6,22
u.R1.shRNA.24 0 0 0 2,95 680,16 0 4,26 0 6,17
u.R1.shRNA.25 0 0 0 0 0 453,95 0,95 16,83 6,16
u.R1.shRNA.26 0 0 0 29,04 109,74 12,58 0 2141,12 5,99
u.R1.shRNA.27 0 0 0 16,00 662,67 0 0 770,61 5,99
u.R1.shRNA.28 0 0 0 0 368,97 0 0,47 0 5,81
u.R1.shRNA.29 0 0 0 0 0 354,35 0,47 0 5,76
u.R1.shRNA.30 2,06 0 0 0 21,21 443,46 0 0 5,75
u.R1.shRNA.31 23,35 0 0 25,68 0 2878,83 0,95 0 5,70
u.R1.shRNA.32 0 16,84 0 12,63 0 91,21 1382,74 227,22 5,56
u.R1.shRNA.33 8,93 22,96 0 1,26 0 5,24 1737,65 0 5,46
u.R1.shRNA.34 0 0 0 0 2,65 0 273,52 0 5,40
u.R1.shRNA.35 0 0 0 0 0,53 242,17 0 0 5,21
u.R1.shRNA.36 0 12,24 0 7,58 19,61 31,45 614,24 300,55 5,20
u.R1.shRNA.37 0 22,96 0 0 0 3,15 1055,27 0 5,17
u.R1.shRNA.38 10,99 18,37 0 2,95 6,89 501,12 26,97 800,66 5,10
u.R1.shRNA.39 0 0 7,97 7,16 0,53 692,97 0 43,28 5,09
u.R1.shRNA.40 7,55 0 0 2,53 15,37 0 112,63 403,94 5,00
u.R1.shRNA.41 0 0 0 0 0 105,89 83,29 0 4,86
u.R1.shRNA.42 10,30 0 0 19,36 0 131,05 541,83 348,64 4,82
u.R1.shRNA.43 58,37 0 0 0 0,53 23,06 1166,48 583,07 4,77
u.R1.shRNA.44 0 0 0 115,34 0 0 1412,08 1897,07 4,76
u.R1.shRNA.45 0 19,90 0 0 427,29 30,40 0 253,66 4,75
u.R1.shRNA.46 26,10 42,86 39,85 14,73 20,68 6,29 2426,65 1014,66 4,74
u.R1.shRNA.47 4,12 0 0 0 2,12 0 0 278,91 4,73
u.R1.shRNA.48 0 12,24 0 0 0 460,24 1,89 0 4,62
u.R1.shRNA.49 0 1,53 0 21,05 220,01 2,10 170,36 292,13 4,56
u.R1.shRNA.50 0 0 0 0 5,83 138,39 0,95 0 4,49
u.R1.shRNA.51 0 0 0 0 0 0 0,47 143,06 4,47
u.R1.shRNA.52 0 0 27,89 18,10 21,74 199,19 408,86 522,96 4,46



R1. Down-regulated shRNAs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C1 C2 C3 C4 T1 T2 T3 T4 log2FC
d.R1.shRNA.1 0 1951,51 0 149,43 0 2,10 24,61 0 -6,14
d.R1.shRNA.2 4166,44 0 286,89 0,84 0,53 0 58,68 1,20 -6,13
d.R1.shRNA.3 1,37 0 314,78 3,79 0 0 0,47 1,20 -6,05
d.R1.shRNA.4 0 39,80 769,03 88,40 1,06 9,44 0,47 0 -5,99
d.R1.shRNA.5 0 0 0 1133,57 0 0 0,47 14,43 -5,97
d.R1.shRNA.6 3112,98 0 442,29 39,57 0,53 69,19 0,47 0 -5,62
d.R1.shRNA.7 3874,58 2029,57 573,78 39,15 0 22,02 116,88 0 -5,52
d.R1.shRNA.8 1905,70 0 1494,22 515,64 5,83 4,19 1,42 94,97 -5,16
d.R1.shRNA.9 0 0 306,81 385,99 0 2,10 0 14,43 -5,14
d.R1.shRNA.10 0,69 0 800,90 0 1,59 0 0 20,44 -5,00
d.R1.shRNA.11 0 0 3363,00 0 0 18,87 0,95 82,95 -4,99
d.R1.shRNA.12 1499,15 134,69 2860,94 1514,09 0 187,66 17,04 0 -4,85
d.R1.shRNA.13 0 203,57 23,91 1120,10 0 38,79 0 4,81 -4,85
d.R1.shRNA.14 0 0 0 564,05 3,18 2,10 13,72 0 -4,68
d.R1.shRNA.15 0 47,45 0 737,47 0 26,21 3,31 0 -4,59
d.R1.shRNA.16 0 0 87,66 169,64 0,53 0 0,47 8,42 -4,38
d.R1.shRNA.17 41,89 0 0 2464,98 2,12 51,37 61,04 4,81 -4,36
d.R1.shRNA.18 439,51 4,59 0 4,21 11,13 3,15 5,21 0 -4,32
d.R1.shRNA.19 0 939,79 0 0 36,05 10,48 0 0 -4,25
d.R1.shRNA.20 26718,22 4,59 0 571,20 1077,76 0 193,55 207,98 -4,20
d.R1.shRNA.21 0 739,28 0 1,26 25,98 0 0 13,22 -4,14
d.R1.shRNA.22 0 0 0 844,81 0 6,29 0,47 39,67 -4,10
d.R1.shRNA.23 2133,01 0 1442,42 308,12 0,53 152,01 21,77 55,30 -4,06
d.R1.shRNA.24 1916,00 16851,85 167,35 244,98 3,71 679,35 0,95 462,85 -4,06
d.R1.shRNA.25 3558,68 130,10 0 460,50 164,87 0 66,72 21,64 -4,02
d.R1.shRNA.26 0 35,20 0 32,83 0,53 0 0 1,20 -3,90
d.R1.shRNA.27 5576,31 315,30 0 78,71 2,65 47,18 226,67 123,83 -3,89
d.R1.shRNA.28 0 691,83 3,98 160,80 27,57 30,40 0 0 -3,82
d.R1.shRNA.29 0 1270,39 31,88 150,69 0 1,05 0,95 100,98 -3,78
d.R1.shRNA.30 7830,19 7,65 5140,13 719,79 431,00 528,38 16,09 26,45 -3,77
d.R1.shRNA.31 3490,69 261,73 3,98 130,49 0 28,31 107,42 152,68 -3,74
d.R1.shRNA.32 257,53 7374,41 0 345,16 0 364,83 7,10 228,42 -3,73
d.R1.shRNA.33 111,94 0 7,97 444,50 0 23,06 4,26 18,03 -3,55
d.R1.shRNA.34 0 737,75 18799,31 100,60 56,19 678,30 2,37 949,74 -3,54
d.R1.shRNA.35 3,43 0 21664,24 657,07 531,72 6,29 0 1395,75 -3,53
d.R1.shRNA.36 0 5969,32 0 598,14 83,76 484,35 0 0 -3,52
d.R1.shRNA.37 34652,11 1,53 729,18 17,26 746,43 944,58 1479,75 36,07 -3,46
d.R1.shRNA.38 1,37 1790,80 147,43 0 1,06 174,03 4,73 1,20 -3,40
d.R1.shRNA.39 98,20 1763,25 135,48 0,42 0 189,76 1,42 0 -3,37
d.R1.shRNA.40 2703,00 0 7833,71 54,72 196,15 95,40 1,42 738,15 -3,36
d.R1.shRNA.41 0 45790,81 4654,01 560,26 203,04 2786,58 823,87 1226,24 -3,34
d.R1.shRNA.42 0 953,56 852,70 242,04 3,71 6,29 65,78 128,64 -3,31
d.R1.shRNA.43 0 55,10 2219,42 1198,39 162,75 0 88,49 98,58 -3,30
d.R1.shRNA.44 136,66 454,59 0 285,39 54,60 32,50 0 0 -3,29
d.R1.shRNA.45 0 1809,16 0 0,42 0 138,39 0 44,48 -3,29
d.R1.shRNA.46 22,66 1152,54 4952,85 3023,13 755,44 28,31 77,13 82,95 -3,27
d.R1.shRNA.47 1315,79 322,96 8662,51 436,09 954,77 27,26 0,47 143,06 -3,25
d.R1.shRNA.48 28,84 1317,84 1625,71 55,14 0,53 0 300,02 15,63 -3,25
d.R1.shRNA.49 19688,77 194,39 9168,55 2841,71 652,06 1611,35 481,73 663,61 -3,22
d.R1.shRNA.50 2225,03 1,53 1390,62 753,05 189,79 6,29 265,47 6,01 -3,22
d.R1.shRNA.51 23,35 4845,86 3,98 72,40 27,04 264,19 197,80 40,87 -3,22
d.R1.shRNA.52 9940,53 0 3426,75 252,56 36,58 351,21 644,99 453,23 -3,19



R2. Up-regulated shRNAs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C1 C2 C3 T1 T2 T3 log2FC
u.R2.shRNA.1 0,89 1,12 1,05 17,45 3860,88 0 9,48
u.R2.shRNA.2 0 2,24 0 857,55 570,42 59,50 8,34
u.R2.shRNA.3 0 0 0 560,90 126,20 0 8,20
u.R2.shRNA.4 0 0 0,35 304,13 136,30 119,00 7,70
u.R2.shRNA.5 0 5,61 0 1353,64 257,45 7,68 7,67
u.R2.shRNA.6 3,56 0 0 4,99 1171,13 0 7,64
u.R2.shRNA.7 0 0 0 0 447,59 1,92 7,59
u.R2.shRNA.8 0 0 0 4,99 429,92 1,92 7,55
u.R2.shRNA.9 0 1,12 0 191,95 412,25 13,44 7,48
u.R2.shRNA.10 0 2,24 1,05 855,06 0,84 5,76 7,26
u.R2.shRNA.11 0 0 0 266,74 1,68 1,92 6,87
u.R2.shRNA.12 0,89 4,49 0,35 797,72 0 1,92 6,64
u.R2.shRNA.13 0 2,24 0 371,44 18,51 19,19 6,49
u.R2.shRNA.14 0 0 0,70 0 231,37 3,84 6,30
u.R2.shRNA.15 0,89 1,12 3,50 573,36 15,14 0 6,24
u.R2.shRNA.16 0 0 0,70 176,99 35,34 5,76 6,19
u.R2.shRNA.17 5,33 1,12 0,70 413,82 266,70 0 6,17
u.R2.shRNA.18 0 0 1,40 104,70 148,07 1,92 6,11
u.R2.shRNA.19 0 0 0 2,49 27,76 124,76 6,08
u.R2.shRNA.20 0 1,12 0 4,99 215,38 0 6,02
u.R2.shRNA.21 0 0 0,70 94,73 92,55 1,92 5,99
u.R2.shRNA.22 0 0 5,60 0 353,36 143,95 5,98
u.R2.shRNA.23 0 0 0 0 120,31 15,36 5,90
u.R2.shRNA.24 2,67 2,24 6,29 57,34 682,32 13,44 5,80
u.R2.shRNA.25 0 0 0 2,49 120,31 0 5,76
u.R2.shRNA.26 0 3,37 0 294,16 9,25 0 5,75
u.R2.shRNA.27 0 0 0,35 127,14 0 9,60 5,71
u.R2.shRNA.28 0 2,24 12,59 406,34 399,63 72,94 5,68
u.R2.shRNA.29 0 1,12 0 34,90 132,93 0 5,63
u.R2.shRNA.30 0 0 0 0 0,84 105,57 5,56
u.R2.shRNA.31 0 0 0 0 98,44 3,84 5,51
u.R2.shRNA.32 0 6,73 6,29 643,16 5,05 36,47 5,49
u.R2.shRNA.33 0 0 0 77,28 12,62 0 5,33
u.R2.shRNA.34 0 0 0,35 57,34 0,84 38,39 5,23
u.R2.shRNA.35 0 0 5,60 0 266,70 23,03 5,21
u.R2.shRNA.36 0 0 3,85 82,27 133,77 7,68 5,20
u.R2.shRNA.37 0 0 0 0 15,99 63,34 5,16
u.R2.shRNA.38 3,56 0 0 0 183,41 19,19 5,13
u.R2.shRNA.39 0 3,37 0 184,47 3,37 0 5,07
u.R2.shRNA.40 0 2,24 0 59,83 89,18 0 5,07
u.R2.shRNA.41 0 8,98 0 368,95 0,84 3,84 5,06
u.R2.shRNA.42 0 8,98 0 368,95 0,84 3,84 5,06
u.R2.shRNA.43 0 0 0 0 61,42 11,52 5,05
u.R2.shRNA.44 7,11 12,35 0,35 393,88 322,23 3,84 5,03
u.R2.shRNA.45 2,67 0 19,23 625,71 20,19 80,61 4,91
u.R2.shRNA.46 0,89 12,35 0,70 458,69 15,14 0 4,88
u.R2.shRNA.47 2,67 0 0 19,94 116,95 1,92 4,84
u.R2.shRNA.48 0 0 0 0 40,38 21,11 4,82
u.R2.shRNA.49 0 0 0 57,34 0 1,92 4,77
u.R2.shRNA.50 0 0 0 2,49 55,53 0 4,74
u.R2.shRNA.51 0 5,61 2,45 229,35 0,84 38,39 4,72
u.R2.shRNA.52 0 0 0 0 1,68 53,74 4,68



R2. Down-regulated shRNAs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C1 C2 C3 T1 T2 T3 log2FC
d.R2.shRNA.1 61,35 1671,35 12,24 2,49 0 1,92 -7,50
d.R2.shRNA.2 1148,75 2246,05 123,10 7,48 3,37 9,60 -7,10
d.R2.shRNA.3 951,37 282,86 86,73 2,49 0 1,92 -7,10
d.R2.shRNA.4 563,71 974,30 129,04 0 5,05 1,92 -7,09
d.R2.shRNA.5 413,44 2840,95 0 4,99 10,94 3,84 -7,02
d.R2.shRNA.6 288,08 1094,40 0,35 0 0,84 5,76 -6,87
d.R2.shRNA.7 22,23 16699,99 18,53 52,35 34,49 67,18 -6,72
d.R2.shRNA.8 59,57 1359,30 0 7,48 0 1,92 -6,60
d.R2.shRNA.9 1417,27 920,42 396,22 2,49 21,87 3,84 -6,35
d.R2.shRNA.10 521,03 6120,79 170,66 0 79,93 3,84 -6,26
d.R2.shRNA.11 0 1515,32 0 12,46 2,52 0 -6,23
d.R2.shRNA.12 5092,03 9224,39 670,74 164,53 27,76 32,63 -6,03
d.R2.shRNA.13 106,70 411,94 0 0 0,84 1,92 -6,02
d.R2.shRNA.14 254,29 671,23 2,10 0 11,78 1,92 -5,62
d.R2.shRNA.15 157,38 1260,52 61,20 17,45 0 7,68 -5,61
d.R2.shRNA.16 1044,72 2537,89 236,40 24,93 2,52 47,98 -5,57
d.R2.shRNA.17 3054,15 9375,93 366,84 107,19 79,09 80,61 -5,56
d.R2.shRNA.18 223,17 6206,09 25,18 0 56,37 76,78 -5,54
d.R2.shRNA.19 3243,53 2040,64 221,36 114,67 3,37 0 -5,48
d.R2.shRNA.20 781,54 3347,18 46,16 0 27,76 61,42 -5,47
d.R2.shRNA.21 2160,58 4345,05 144,78 14,96 99,28 34,55 -5,43
d.R2.shRNA.22 500,58 3048,61 0 17,45 0 65,26 -5,34
d.R2.shRNA.23 305,86 3305,65 161,21 27,42 18,51 49,90 -5,22
d.R2.shRNA.24 146,71 4688,52 229,41 64,81 33,65 32,63 -5,22
d.R2.shRNA.25 3721,88 1091,03 209,82 32,41 74,88 30,71 -5,13
d.R2.shRNA.26 0 4464,03 0,35 99,72 0 24,95 -5,10
d.R2.shRNA.27 317,42 1269,50 46,16 4,99 4,21 34,55 -5,06
d.R2.shRNA.28 16,00 1419,91 57,00 34,90 5,89 1,92 -4,96
d.R2.shRNA.29 1138,08 1229,10 246,89 0 38,70 42,23 -4,92
d.R2.shRNA.30 445,45 1708,39 87,78 4,99 2,52 61,42 -4,92
d.R2.shRNA.31 110,25 106,63 14,34 0 0,84 1,92 -4,87
d.R2.shRNA.32 1664,44 569,09 197,23 54,84 0,84 23,03 -4,86
d.R2.shRNA.33 304,08 239,08 85,33 2,49 6,73 7,68 -4,83
d.R2.shRNA.34 4023,30 13193,42 371,74 9,97 440,86 174,66 -4,80
d.R2.shRNA.35 145,82 3113,71 92,67 77,28 4,21 36,47 -4,77
d.R2.shRNA.36 814,44 2796,05 152,12 122,15 0 13,44 -4,74
d.R2.shRNA.37 1143,42 1146,03 176,95 32,41 36,18 24,95 -4,64
d.R2.shRNA.38 1737,35 11975,55 438,88 314,10 49,64 214,97 -4,60
d.R2.shRNA.39 1186,98 2030,53 54,90 24,93 23,56 88,29 -4,53
d.R2.shRNA.40 2329,51 2614,21 108,76 74,79 37,02 103,65 -4,52
d.R2.shRNA.41 1579,09 4827,71 110,86 0 250,72 28,79 -4,52
d.R2.shRNA.42 220,50 197,55 16,79 0 6,73 7,68 -4,47
d.R2.shRNA.43 522,81 1256,04 54,20 57,34 18,51 3,84 -4,43
d.R2.shRNA.44 1244,78 1708,39 177,30 137,11 4,21 0 -4,42
d.R2.shRNA.45 546,81 1,12 62,25 7,48 15,99 0 -4,41
d.R2.shRNA.46 548,59 1302,06 39,52 0 62,26 23,03 -4,39
d.R2.shRNA.47 1312,35 3100,24 222,76 107,19 0,84 109,40 -4,38
d.R2.shRNA.48 3284,43 4653,73 102,81 181,98 173,31 30,71 -4,36
d.R2.shRNA.49 2255,71 1249,30 333,97 12,46 135,45 34,55 -4,35
d.R2.shRNA.50 3570,73 12633,31 1341,13 4,99 10,10 859,88 -4,32
d.R2.shRNA.51 885,57 3413,41 141,98 172,01 0 46,07 -4,31
d.R2.shRNA.52 4008,18 8674,39 137,09 27,42 519,10 119,00 -4,26



R3. Up-regulated shRNAs 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

C1 C2 C3 T1 T2 T3 T4 log2FC
u.R3.shRNA.1 0,00 0,00 0,00 0,00 23467,85 25494,06 0,00 13,47
u.R3.shRNA.2 0,00 0,00 0,00 0,96 17170,01 8841,16 0,00 12,56
u.R3.shRNA.3 0,00 0,00 0,00 43,99 5613,10 4028,81 0,00 11,14
u.R3.shRNA.4 0,00 0,00 0,00 0,00 4995,95 3651,11 0,95 10,97
u.R3.shRNA.5 0,00 0,00 0,00 3,83 438,52 1056,08 5052,00 10,57
u.R3.shRNA.6 0,00 0,00 0,00 20,08 5915,64 4,44 544,70 10,56
u.R3.shRNA.7 0,00 0,00 0,00 2416,78 0,00 2904,59 12,32 10,28
u.R3.shRNA.8 0,00 0,00 0,00 297,44 1094,30 3288,22 23,68 10,10
u.R3.shRNA.9 3,92 0,00 0,00 321,35 1347,76 5,92 8576,94 10,07

u.R3.shRNA.10 0,00 0,00 0,00 350,99 0,00 0,00 4000,49 9,98
u.R3.shRNA.11 0,00 0,00 1,17 69,82 383,00 1528,58 3790,18 9,94
u.R3.shRNA.12 0,00 0,00 0,00 0,00 4127,75 0,00 72,94 9,93
u.R3.shRNA.13 0,00 0,00 0,00 0,00 580,14 700,60 2190,18 9,66
u.R3.shRNA.14 0,00 0,00 0,00 1917,55 1351,78 1,48 99,47 9,61
u.R3.shRNA.15 0,00 0,00 0,00 2005,54 1307,52 1,48 0,00 9,59
u.R3.shRNA.16 0,00 0,00 0,00 0,96 2,41 3246,75 5,68 9,57
u.R3.shRNA.17 0,00 0,00 4,68 7403,37 6,44 54,80 0,00 9,47
u.R3.shRNA.18 0,00 0,00 0,00 2411,05 377,37 39,99 0,95 9,36
u.R3.shRNA.19 0,00 0,00 3,51 4248,26 0,80 0,00 1431,38 9,31
u.R3.shRNA.20 0,00 0,00 0,00 187,45 0,00 5,92 2374,90 9,22
u.R3.shRNA.21 0,00 0,00 0,00 0,00 2120,20 0,00 406,40 9,20
u.R3.shRNA.22 0,00 16,51 2,34 127,20 6976,95 8140,56 1392,54 9,14
u.R3.shRNA.23 0,00 0,00 0,00 0,00 2410,67 4,44 0,00 9,13
u.R3.shRNA.24 0,00 2,25 3,51 2043,79 1918,24 1764,08 985,20 9,13
u.R3.shRNA.25 1,31 3,00 0,00 1589,51 3644,98 14,81 0,00 9,03
u.R3.shRNA.26 0,00 0,00 0,00 41,12 439,33 453,24 1221,08 8,97
u.R3.shRNA.27 0,00 0,00 0,00 167,37 1973,76 0,00 0,00 8,96
u.R3.shRNA.28 0,00 7,51 0,00 0,00 1809,61 2,96 5035,90 8,90
u.R3.shRNA.29 0,00 0,00 0,00 0,00 1206,95 622,10 178,09 8,87
u.R3.shRNA.30 0,00 0,00 0,00 658,95 1248,79 48,88 50,21 8,87
u.R3.shRNA.31 0,00 4,50 0,00 0,96 1915,02 1164,21 1592,43 8,83
u.R3.shRNA.32 1,31 0,00 0,00 0,00 613,13 1541,91 444,29 8,75
u.R3.shRNA.33 0,00 0,00 0,00 882,74 0,00 956,84 0,00 8,74
u.R3.shRNA.34 0,00 0,00 0,00 0,00 1810,42 2,96 0,00 8,72
u.R3.shRNA.35 0,00 0,00 2,34 2,87 2977,94 1,48 0,00 8,65
u.R3.shRNA.36 0,00 0,75 0,00 43,99 0,00 4,44 2068,92 8,64
u.R3.shRNA.37 10,46 0,00 2,34 241,01 5555,17 2283,98 397,87 8,63
u.R3.shRNA.38 1,31 0,00 0,00 0,00 0,00 2208,44 178,09 8,63
u.R3.shRNA.39 0,00 0,00 2,34 1134,27 1789,50 0,00 0,00 8,62
u.R3.shRNA.40 0,00 0,00 0,00 0,96 0,00 0,00 1688,10 8,62
u.R3.shRNA.41 0,00 0,00 0,00 1616,29 0,00 4,44 2,84 8,56
u.R3.shRNA.42 0,00 0,00 0,00 1129,49 31,38 305,12 154,41 8,56
u.R3.shRNA.43 2,61 0,00 0,00 1920,42 0,80 881,30 0,00 8,49
u.R3.shRNA.44 0,00 27,77 0,00 1256,69 929,35 17,77 11425,50 8,37
u.R3.shRNA.45 0,00 0,00 0,00 384,47 453,01 552,48 1,89 8,34
u.R3.shRNA.46 2,61 0,00 3,51 5,74 1380,75 1692,99 760,69 8,27
u.R3.shRNA.47 0,00 2,25 0,00 858,83 0,00 648,76 656,49 8,21
u.R3.shRNA.48 3,92 4,50 2,34 28,69 571,29 730,22 3919,97 8,14
u.R3.shRNA.49 3,92 4,50 2,34 28,69 571,29 730,22 3919,97 8,14
u.R3.shRNA.50 0,00 0,00 0,00 268,74 15,29 909,44 0,00 8,12
u.R3.shRNA.51 0,00 0,00 1,17 496,36 613,13 493,23 0,00 8,10
u.R3.shRNA.52 0,00 0,00 0,00 0,00 0,00 528,78 598,70 8,04



R3. Down-regulated shRNAs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C1 C2 C3 T1 T2 T3 T4 log2FC
d.R3.shRNA.1 4896,19 1107,84 0 0 1,61 5,92 0 -9,42
d.R3.shRNA.2 2650,09 135,85 0 0,96 0 1,48 0 -9,13
d.R3.shRNA.3 1,31 3,75 2279,03 2,87 2,41 0 0 -8,33
d.R3.shRNA.4 10073,46 1727,80 3328,45 50,69 0 16,29 8,53 -7,98
d.R3.shRNA.5 1835,58 600,45 1,17 0 0 7,41 1,89 -7,91
d.R3.shRNA.6 7887,50 4263,22 380,23 0 0,80 0 67,26 -7,85
d.R3.shRNA.7 26,15 0 1395,73 1,91 0 2,96 0 -7,71
d.R3.shRNA.8 2426,52 0 0 3,83 0 0 9,47 -7,53
d.R3.shRNA.9 2677,54 2,25 0 14,35 0,80 0 0 -7,53

d.R3.shRNA.10 1337,46 3934,47 2459,19 3,83 9,66 39,99 0 -7,48
d.R3.shRNA.11 0 174,88 2511,84 7,65 0 8,89 0 -7,43
d.R3.shRNA.12 2672,31 0 51,48 0 0 10,37 6,63 -7,42
d.R3.shRNA.13 4004,54 2811,62 98,27 35,39 0 14,81 2,84 -7,33
d.R3.shRNA.14 0 0 760,46 0 2,41 0 0,95 -7,08
d.R3.shRNA.15 753,06 0 10,53 0,96 0 0 2,84 -7,00
d.R3.shRNA.16 0 44,28 1634,39 0 0 11,85 1,89 -6,97
d.R3.shRNA.17 504,65 0 0 0,96 0 0 0,95 -6,80
d.R3.shRNA.18 0 0 17526,73 0 8,85 0 202,72 -6,76
d.R3.shRNA.19 1,31 623,72 538,17 0 1,61 8,89 0 -6,73
d.R3.shRNA.20 0 0,75 1735,01 0,96 19,31 0 0 -6,57
d.R3.shRNA.21 1,31 0 549,87 1,91 1,61 1,48 0 -6,33
d.R3.shRNA.22 0 655,24 10138,62 0 0,80 189,59 0 -6,21
d.R3.shRNA.23 465,43 2371,79 1121,96 15,30 3,22 47,40 5,68 -6,12
d.R3.shRNA.24 3,92 3,75 25600,43 562,35 0 0 0,95 -5,91
d.R3.shRNA.25 1519,19 1504,89 1,17 14,35 0 48,88 0,95 -5,88
d.R3.shRNA.26 0 1020,77 792,04 4,78 0 32,59 0 -5,86
d.R3.shRNA.27 4303,94 109,58 797,89 97,55 22,53 0 0 -5,81
d.R3.shRNA.28 768,75 3,00 1614,50 53,56 0,80 0 0 -5,77
d.R3.shRNA.29 31,38 1123,60 60,84 2,87 0 23,70 0,95 -5,68
d.R3.shRNA.30 1115,21 3014,27 0 0 99,77 2,96 0,95 -5,67
d.R3.shRNA.31 2,61 1001,26 0 0,96 2,41 20,74 0 -5,57
d.R3.shRNA.32 1,31 0 6074,28 117,64 18,51 29,62 2,84 -5,55
d.R3.shRNA.33 3613,63 294,22 2,34 0 57,93 0 58,73 -5,43
d.R3.shRNA.34 5866,27 3761,84 18,72 91,81 39,43 179,22 0,95 -5,35
d.R3.shRNA.35 0 117,09 1443,69 45,91 0 5,92 0,95 -5,19
d.R3.shRNA.36 1261,63 0 0 13,39 0 28,14 0,95 -5,18
d.R3.shRNA.37 1842,12 86,32 861,07 73,64 0 0 28,42 -5,13
d.R3.shRNA.38 19851,45 14146,68 1132,49 849,27 175,41 299,20 13,26 -5,13
d.R3.shRNA.39 2580,79 0 0 92,77 2,41 1,48 0 -5,09
d.R3.shRNA.40 1460,36 0 0 46,86 6,44 0 0 -5,09
d.R3.shRNA.41 1893,10 412,06 2,34 35,39 24,14 0 28,42 -5,06
d.R3.shRNA.42 7680,93 6016,54 0 82,25 10,46 448,80 5,68 -5,05
d.R3.shRNA.43 4296,09 12,76 1977,18 61,21 42,65 148,12 0 -5,03
d.R3.shRNA.44 0 0 1016,67 28,69 10,46 0 0 -4,97
d.R3.shRNA.45 1,31 1236,93 10665,09 234,31 245,41 0 26,52 -4,96
d.R3.shRNA.46 8996,17 10881,71 1704,59 68,86 4,02 1014,61 1,89 -4,72
d.R3.shRNA.47 2182,04 68,30 527,64 2,87 20,12 114,05 0,95 -4,71
d.R3.shRNA.48 1936,25 382,79 0 6,69 4,02 102,20 2,84 -4,69
d.R3.shRNA.49 0 683,77 4886,80 0 3,22 281,42 0 -4,69
d.R3.shRNA.50 320,31 21,02 90,08 0 0,80 11,85 5,68 -4,69
d.R3.shRNA.51 0 48,04 5185,13 73,64 0 0 195,15 -4,68
d.R3.shRNA.52 1,31 114,84 6697,85 333,78 0,80 2,96 38,84 -4,58



 

Acknowledgments 

I desire first of all to thank Prof. Raffaele Calogero with whom I began a 

collaboration at San Luigi Hospital of Orbassano (Torino) in the end of 2007 and 

then he became my supervisor when I started the Ph.D. in Complex Systems in Post-

Genomic Biology in January 2008. I want to thank also Prof. Guido Forni, Prof. 

Federica Cavallo and Irene Merighi who welcame me and shared their offices with 

me at San Luigi Hospital and at the Molecular Biotechnology Centre of  Torino, 

where I worked while doing the Ph.D. in Italy. I desire to thank Dr. Francesca 

Cordero, with whom I collaborated during my Ph.D.                                                                            

I want to thank Prof. Frank Klawonn who hosted and supervised me the last year of 

Ph.D. since March 2010, when I moved at the Helmholtz Zentrum für 

Infektionsforschung - Helmholtz Centre for Infection Research in Braunschweig 

(Germany) for an internship of  nine months.  

Another acknowledgment goes to Dr. Lothar Jänsch and his Cellular Proteomics 

group that welcame me at the Helmholtz Centre as new member of the group; 

Thorsten Johl and Christoph Gernet who shared with me their office; Zofia 

Magnowska who shared with me these last months of Ph.D. during which both of us 

had to redact our thesis.  

I thank Dr. Torsten Wüstefeld and Prof. Lars Zender, leader of the group of Chronic 

Infections and Cancer at Helmholtz Centre, and their collaborators Ramona Rudalska 



and Marina Pesic, who kindly provided me the data that I analyzed and presented in 

the last chapter of this work.   

I thank my family and all the friends that have always supported me during all my 

education and in the three years of Ph.D. I desire to thank in particular my husband 

Riccardo, who have made possible to begin our new life as a married couple, living 

together in Germany since March 2010 and who supported me while writing this 

manuscript.   

 

 

 

 

 

 

 

 



References 

[1]  M. Sammeth, S. Foissac, R. Guigó, A general definition and nomenclature     

       for alternative splicing events. PLoS Comput Biol. 2008,  4 (8): e1000147.  

[2]  D. Abdueva, M.R. Wing, B. Schaub, T.J. Triche, Experimental Comparison      

       and Evaluation of  the Affymetrix Exon and U133Plus2 GeneChip Arrays.  

       PLoS ONE 2007, 2 (9): e913.  

[3]  R.C. Gentleman, V.J. Carey, D.M. Bates, B. Bolstad, M. Dettling, S. Dudoit,  

       B. Ellis, L. Gautier, Yongchao Ge, J. Gentry, K. Hornik, et al. Bioconductor: 

       open software development for computational biology and bioinformatics. 

       Genome Biology 2004, 5: R80. 

[4]  R. Sanges, F. Cordero, R.A. Calogero, oneChannelGUI: a graphical interface   

      to Bioconductor tools, designed for life scientists who are not familiar with

  

      R language. Bioinformatics 2007, 23: 3406-3408. 

[5]  G. K. Smyth, Linear Models and Empirical Bayes Methods for Assessing   

       Differential Expression in Microarray Experiments. Stat. Appl. Genet. Mol.  

       Biol. 2004, 3. 

[6]  I. Lönnstedt, T. P. Speed, Replicated microarray data. Statistica Sinica 2002,  

       12: 31-46. 

[7]  Alternative Transcript Analysis Methods for Exon Arrays. Affymetrix  

      GeneChip® Exon Array Whitepaper Collection 2005. 



[8]  Cheng Li, Wing Hung Wong, Model-based analysis of oligonucleotide      

       arrays: Expression index computation and outlier detection. Proc Natl  

       Acad Sci USA 2001, 98 (1): 31-36.  

[9]  M.J. Okoniewski, J.C. Miller, Comprehensive Analysis of Affymetrix Exon    

       Arrays Using BioConductor. PLoS Comput Biol 2008, 4 (2): e6.  

[10]  R.A. Irizarry, B.M. Bolstad, F. Collin, L.M. Cope, B. Hobbs, T.P. Speed,   

       Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res  

       2003, 31: e15.  

[11]  Guide to Probe Logarithmic Intensity Error (PLIER) Estimation. 

          Affymetrix Technical Note (2004). 

[12]  T.M. Therneau, K.V. Ballman, What Does PLIER Really Do? Cancer Inform.

  

         2008, 6: 423-431.  

[13]  C. Della Beffa, F. Cordero, R.A. Calogero, Dissecting an alternative splicing         

         analysis workflow for GeneChip® Exon 1.0 ST Affymetrix arrays. BMC  

         Genomics 2008, 28 (9): 571.  

[14]  F. Hong, R. Breitling, C.W. McEntee, B.S. Wittner, J.L. Nemhauser, J. Chory,

  

         RankProd: a bioconductor package for detecting differentially expressed 

         genes in meta-analysis. Bioinformatics 2006, 22 (22): 2825-2827. 

[15]  R. Breitling, P. Armengaud, A. Amtmann, P. Herzyk, Rank Products: A 

         simple, yet powerful, new method to detect differentially regulated genes   



         in replicated microarray experiments. FEBS Lett. 2004, 573 (1-3): 83-92. 

[16]  R. Tibshirani, T. Hastie, Outlier sums for differential gene expression  

         analysis. Biostatistics 2007, 8 (1): 2-8. 

[17]  Baolin Wu, Cancer outlier differential gene expression detection.   

         Biostatistics 2007, 8 (3): 566-575. 

[18]  Xing Yi, P. Stoilov, K. Kapur, H. Areum, Jiang Hui, Shen Shihao,D.L. Black,

  

         Hung Wong Wing, MADS: A new and improved method for analysis of 

        differential alternative splicing by exon-tiling microarrays. RNA 2008, 14: 

        1470-1479. 

[19]  E. Purdom, K.M. Simpson, M.D. Robinson, J.G. Conboy, A.V. Lapuk, T.P.  

         Speed, FIRMA: a method for detection of alternative splicing from exon 

         array data. Bioinformatics 2008, 24 (15): 1707-1714.  

[20]  M.A. Anton, D. Gorostiaga, E. Guruceaga, V. Segura, P. Carmona-Saez, A. 

        Pascual-Montano, P. Pio, L.M. Montuenga, A. Rubio, SPACE: an   

        algorithm to predict and quantify alternatively spliced isoforms using  

        microarrays. Genome Biology 2008, 9: R46.  

[21]  S.H. Shah, J.A. Pallas, Identifying differential exon splicing using linear  

         models and correlation coefficients. BMC Bioinformatics 2009, 10: 26. 

[22]  P.J. Gardina, T.A. Clark, B. Shimada, M.K. Staples, Q. Yang, J. Veitch, A.  

         Schweitzer, T. Awad, C. Sugnet, S. Dee, et al., Alternative splicing and  



         differential gene expression in colon cancer detected by a whole genome 

         exon array. BMC Genomics 2006, 7: 325. 

[23]  M.J. Okoniewski, Y. Hey, S.D. Pepper, C.J. Miller, High correspondence 

         between Affymetrix exon and standard expression arrays. Biotechniques 

         2007, 42 (2): 181-185. 

[24]  S.E. Choe, M. Boutros, A.M. Michelson, G.M. Church, M.S. Halfon, Preferred

  

         analysis methods for Affymetrix GeneChips revealed by a wholly defined 

         control dataset. Genome Biol 2005, 6 (2): R16. 

[25]  P. Flicek, B.L. Aken, K. Beal, B. Ballester, M. Caccamo, Y. Chen, L. Clarke, 

        G. Coates, F. Cunningham, T. Cutts, et al., Ensembl 2008. Nucleic Acids Res  

         2008, D707-714. 

[26]  F. Bretz, J. Landgrebe, E. Brunner, Multiplicity issues in microarray  

         experiments. Methods Inf Med 2005, 44 (3): 431-437. 

[27]  L. Lusa, E.L. Korn, L.M. McShane, A class comparison method with   

         filtering-enhanced variable selection for high-dimensional data sets. Stat  

         Med 2008, 27 (28): 5834-5849. 

[28]  S.C. Lenzken, S. Vivarelli, F. Zolezzi, F. Cordero, C. Della Beffa, R.A.  

         Calogero, S. Barabino, Genome-Wide Search for Splicing Defects Associated   

         with Amyotrophic Lateral Sclerosis (ALS). International Conference on   

         Complex, Intelligent and Software Intensive Systems; CISIS 2009, 795-799. 

[29]  S. Boillée, C. Vande Velde, D.W. Cleveland, ALS: a disease of motor neurons 



         and their nonneuronal neighbors. Neuron 2006,  52: 39-59. 
 

[30]  M. Pantelidou, S.E. Zographos, C.W. Lederer, T. Kyriakides, M.W. Pfaffl, N.  

         Santama, Differential expression of molecular motors in the motor cortex of    

         sporadic ALS. Neurobiol Dis. 2007, 26: 577-589. 

[31]  J. Robertson, M.M. Doroudchi, M.D. Nguyen, H.D. Durham, M.J. Strong, G.    

         Shaw, J.P. Julien, W.E. Mushynski, A neurotoxic peripherin splice variant  

         in a mouse model of ALS. J Cell Biol. 2003, 160: 939-949. 

[32]  B.M. Bolstad, R.A. Irizarry, M. Astrand, T.P. Speed, A comparison of  

         normalization methods for high density oligonucleotide array data based  

         on variance and bias. Bioinformatics 2003, 19: 185-193. 

[33]  A. Maracchioni, A. Totaro, D.F. Angelini, A. Di Penta, G. Bernardi, M.T. Carrì, 

         T. Achsel, Mitochondrial damage modulates alternative splicing in  

         neuronal cells: implications for neurodegeneration. J Neurochem 2007, 100:  

         142-153. 

[34]  P. Bonizzoni, R. Rizzi, G. Pesole, ASPIC: a novel method to predict the exon  

         intron structure of a gene that is optimally compatible to a set of transcript  

         sequences. BMC Bioinformatics 2005, 6: 244. 

[35]  Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: a practical  

         and powerful approach to multiple testing. J. R. Statist. Soc. B 1995, 57: 

         289-300. 

[36]  G. Parmigiani, E.S. Garrett-Mayer, R. Anbazhagan, E. Gabrielson, A  

         crossstudy comparison of gene expression studies for the molecular  



         classification of lung cancer. Clin Cancer Res. 2004,  10: 2922-2927. 

[37]  C. Mitchelmore, S. Büchmann-Møller, L. Rask, M.J. West, J.C. Troncoso, 

         N.A. Jensen, NDRG2: a novel Alzheimer's disease associated protein. 

         Neurobiol Dis. 2004, 16: 48-58. 

[38]  T. Okuda, K. Kokame, T. Miyata, Differential expression patterns of NDRG  

         family proteins in the central nervous system. J Histochem Cytochem. 2008,    

         56: 175-182. 

[39]  B. Nait-Oumesmar, N. Picard-Riéra, C. Kerninon, A. Baron-Van Evercooren, 

         The role of SVZ-derived neural precursors in demyelinating diseases:  

         from animal models to multiple sclerosis. J Neurol Sci. 2008, 265: 26-31. 

[40]  S. Donald, T. Humby, I. Fyfe, A. Segonds-Pichon, S.A. Walker, S.R. Andrews, 

         W.J. Coadwell, P. Emson, L.S. Wilkinson, H.C. Welch, P-Rex2 regulates  

         Purkinje cell dendrite morphology and motor coordination. Proc Natl  

         Acad Sci U S A. 2008, 105: 4483-4488. 

[41]  H. van Bakel, C. Nislow, B.J. Blencowe, T.R. Hughes. Most “dark” matter      

         transcripts are associated with known genes. PLoS Biol 2010, 8 (5): 

         e1000371.  

[42]  F. Sanger, A.R. Coulson. A rapid method for determining sequences in DNA  

       by primed synthesis with DNA polymerase.  J. Mol. Biol. 1975, 94 (3): 441-     448. 

[43]  J. Shendure, H. Ji, Next-generation DNA sequencing. Nature Biotechnology 

         2008, 26 (10). 



[44]  A.E. Men, P. Wilson, K. Siemering, S. Forrest, Sanger DNA Sequencing, 

         Next-Generation Genome Sequencing: Towards Personalized Medicine (2008). 

[45]  Roche 454 Sequencing. System Features for GS FLX Titanium Series. (2008) 

         http://www.454.com/products-solutions/systemfeatures.asp 

[46]  Feature Report: Next-generation sequencing: Synergy with Microarrays,  

         University Health Network Microarray Centre (2009). 

[47]  O. Harismendy, P.C. Ng, R.L. Strausberg, XiaoyunWang, T.B. Stockwell, K.Y. 

         Beeson, N.J. Schork, S.S. Murray, E.J. Topol, S. Levy, K.A. Frazer, Evaluation  

         of next generation sequencing platforms for population targeted  

         sequencing studies. Genome Biology 2009, 10:R32.  

[48]  M. Margulies, M. Egholm, W.E. Altman, S. Attiya, J.S. Bader, L.A. Bemben, J.  

         Berka, M.S. Braverman, Y.J. Chen, Z. Chen, S.B. Dewell, et al., Genome  

         sequencing in microfabricated high-density picolitre  reactors. Nature  

         2005, 437 (7057): 376-380. 

[49]  S. Bennett, Solexa. Ltd. Pharmacogenomics 2004, 5: 433-438. 

[50]  J. Shendure, G.J. Porreca, N.B. Reppas, Xiaoxia Lin, J.P. McCutcheon, A.M.  

         Rosenbaum, M.D. Wang, Kun Zhang, R.D. Mitra, G.M. Church, Accurate  

         Multiplex Polony Sequencing of an Evolved Bacterial Genome. Science  

         2005, 309 (5741): 1728-1732. 

[51]  Di-Base Sequencing and the Advantages of Color-Space Analysis in the SOLiD 

         System. Application Note. 

[52]  B. Ondov, A. Varadarajan, K.D. Passalacqua, N.H. Bergman, Efficient       



         mapping of Applied Biosystems SOLiD sequence data to a reference   

         genome for functional genomic applications. Bioinformatics 2008, 24 (23): 

         2776-2777. 

[53]  S.M. Rumble, P. Lacroute, A.V. Dalca, M. Fiume, A. Sidow, SHRiMP:    

         Accurate Mapping of Short Color-space Reads. PLoS Comput Biol 2009, 

         5 (5): e1000386. 

[54]  M. Hackenberg, M.Sturm, D. Langenberger, J.M. Falcon-Perez, A.M. Aransay, 

      miRanalyzer: a microRNA detection and analysis tool for next-generation 

     sequencing experiments. Nucl. Acids Res. 2009, 37(2): W68-W76.  

[55]  A.K. Emde, M. Grunert, D. Weese, K. Reinert, S.R. Sperling, MicroRazerS: 

     Rapid alignment of small RNA reads. Bioinformatics 2010, 26(1): 123-124.  

[56]  Wei-Chi Wang, Feng-Mao Lin, Wen-Chi Chang, Kuan-Yu Lin, Hsien-Da  

     Huang, Na-Sheng Lin, miRExpress: Analyzing high-throughput sequencing 

     data for profiling microRNA expression. BMC Bioinformatics 2009, 10: 328. 

[57]  M.D. Robinson, A. Oshlack, A scaling normalization method for differential 

     expression analysis of RNA-seq data. Genome Biology 2010, 11:R25. 

[58]  M.D. Robinson, D.J. McCarthy, G.K. Smyth, edgeR: a Bioconductor package 

     for differential expression analysis of digital gene expression data.    

         Bioinformatics 2010, 26 (1): 139-140.  

[59]  P.J. Paddison, A.A. Caudy, E. Bernstein, G.J. Hannon, D.S. Conklin, Short 

     hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian 

      cells. Genes Dev. 2002, 16: 948-958. 

[60]  Yan Ma, Chu-Yan Chan, Ming-Liang He, RNA interference and antiviral  

         therapy. World J Gastroenterol 2007, 13 (39): 5169-5179. 



[61]  S. Q. Harper, P.D. Staber, X. He, S.L. Eliason, I.H. Martins, Q. Mao, L. Yang, 

  

         R.M. Kotin, H.L. Paulson, B.L. Davidson, RNA interference improves motor      

         and neuropathological abnormalities in a Huntington’s disease mouse  

         model. PNAS 2005, 102 (16): 5820-5825. 

[62]  L. Zender, W. Xue, J. Zuber, C.P. Semighini, A. Krasnitz, Beicong Ma, P.     

         Zender, et al., An Oncogenomics-Based In Vivo  RNAi Screen Identifies  

         Tumor Suppressors in Liver Cancer. Cell 2008, 135: 852-864. 

[63]  F. Klawonn, T. Wüstefeld, L. Zender, Statistical Modelling for Data from

 Experiments with Short Hairpin RNAs.  Advances in Intelligent Data 

 Analysis IX- 9th International Symposium. Lecture Notes in Computer Science 

 2010, 6065: 79-90. 

[64]  N. Hall, Advanced sequencing technologies and their wider impact in    

         microbiology. The Journal of Experimental Biology 2007, 209: 1518-1525.  

[65]  Illumina Sequencing Technology report.       

[66]  S. Anders, W. Huber, Differential expression analysis for sequence count   

         data. Available from Nature Precedings (2010). 

[67]  A.C. Cameron, P.K. Trivedi, Book: Regression Analysis of Count Data.   

 Regression Analysis of Count Data (1998) Econometric Society Monograph  

 No.30, Cambridge University Press.  

[68]  Jun Lu, J.K. Tomfohr, T.B. Kepler, Identifying differential expression in 

 multiple SAGE libraries: an overdispersed log-linear model approach.

 BMC Bioinformatics 2005, 6: 165.  

[69]  M.D. Robinson, G.K. Smyth, Small-sample estimation of negative binomial 

 dispersion, with applications to SAGE data. Biostatistics 2008, 9 (2): 321-

 332. 



[70]  M.D. Robinson, G.K. Smyth, Moderated statistical tests for assessing  

         differences in tag abundance. Bioinformatics 2007, 23 (21): 2881-2887.  

[71]  J.C. Marioni, C.E. Mason, S.M. Mane, M. Stephens, Y. Gilad, RNA-seq: An   

        assessment of technical reproducibility and comparison with gene expres 

        sion arrays. Genome Res 2008, 18 (9): 1509–1517. 

[72]  Likun Wang, Zhixing Feng, Xi Wang, Xiaowo Wang, Xuegong Zhang,    

         DEGseq: an R package for identifying differentially expressed genes from 

     RNA-seq data. Bioinformatics 2010, 26 (1): 136-138.  

[73]  J. Panaretos, E. Xekalaki, On Generalized Binomial and Multinomial       Distributions and Their Relation to Generalized Poisson Distributions.

     38: 223-231. 

[74]  B. Roos, On the Rate of Multivariate Poisson Convergence. Journal of        Multivariate Analysis

[75]  B. Roos, Metric multivariate Poisson approximation of the generalized 

         multinomial distribution. Teor. Veroyatnost. i Primenen. 1998, 43: 404-413. 

[76]  T. J. Hardcastle,  K.A. Kelly, baySeq: Empirical Bayesian methods for        identifying differential expression in sequence count data. 

        Bioinformatics 2010, 11: 422. 

[77]  A. Mortazavi, B.A. Williams, K. McCue1, L. Schaeffer, B. Wold, Mapping 

 and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods  

 2008, 5: 621-628. 

[78]  M. Sultan, M.H. Schulz, H. Richard, A. Magen, A. Klingenhoff, M. Scherf, M.            

       Seifert, T. Borondina, et al., A global view of gene activity and alternative 

 splicing by deep sequencing of the human transcriptome.  Science 2008, 

 321 (5891): 956-960. 

[79]  J.H. Bullard, E.A. Purdom, K.D. Hansen, S. Dudoit, Evaluation of Statistical        

         Methods for Normalization and Differential Expression in mRNA-Seq 

         Experiments. U.C. Berkeley Division of Biostatistics Working Paper Series 



         2009, Working Paper 247. 

[80]  N. Cloonan, A.R. R. Forrest, G. Kolle, B.B.A. Gardiner, G.J. Faulkner, M.K. 

 Brown, D.F. Taylor, et al., Stem cell transcriptome profiling via massive-

 scale mRNA sequencing. Nature Methods 2008, 5 (7): 613-619. 

[81]  G. Casella, R.L. Berger, Statistical Inference. Duxbury Press 2002. 

[82]  J.A. Koziol, Comments on the rank product method for analyzing   

         replicated experiments. FEBS Letters 2010, 584: 941-944. 

[83]  F. Hong, R. Breitling, A comparison of meta-analysis methods for 

         detecting differentially expressed genes in microarray experiments.     

         Bioinformatics 2008, 24 (3): 374-382. 

[84]  E. Hüllermeier, S. Vanderlooy Why fuzzy decision trees are good rankers. 

       IEEE Transactions on Fuzzy Systems archive 2009, 17 (6): 1233-1244.   

[85]  A. Juan , H. Ney, Reversing and Smoothing the Multinomial Naive Bayes 

     Text Classifer. In Proceedings of the 2nd Int. Workshop on Pattern 

         Recognition in Information Systems, 2002.  

[86]  S.M. Kielbasa, D. Gonze, H. Herzel, Measuring similarities between 

          transcription factor binding sites. BMC Bioinformatics 2005, 6: 237. 


