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Abstract

Breast cancer accounts for approximately 30% of all cancers diagnosed in

women and about 16% of cancer deaths, due to metastatic progression. The

treatment consists of tumour excision, possibly associated to radiation ther-

apy and/or adjuvant chemotherapy. The latter strongly impairs the quality

of life, and should be given only to patients likely to develop a relapse after

surgery. However, current clinical and pathological parameters fail to cor-

rectly predict relapse in a significant fraction of the cases and chemotherapy

is given to many patients who would not take advantage from it. Over the

last few years, DNA microarrays have been employed to measure expression

of thousands of genes in cancer samples from patients with different outcome,

to construct genomic classifiers predicting disease outcome. Such empyrical

approach suffered from overfitting, which led to suboptimal results in valida-

tion experiments. To overcome this problem, we limited the initial number of

analyzed genes to those found regulated in experimental models of oncogenic

transformation in-vitro: (i) induction of invasive-growth in mouse embryo

liver cells by Hepatocyte Growth Factor; (ii) a microRNA circuit discovered

to affect invasive growth; (iii) induction of anchorage-independent growth

in human mammary cells by over-expression of the Gab2 gene. In these

models, we identified sets of regulated genes and then constructed in-silico

models of their Expression in breast cancer by extensive meta-analysis of

published microarray datasets. All these in-silico models were challenged on

several independent breast cancer microarray datasets, to classify patients

for metastatic recurrence. These data show that genomic analysis of in-vitro

models of cancer progression leads to the definition of signatures recapitulat-

ing and predicting metastatic progression of breast cancer.



Chapter 1

Introduction

Cancer (medical term: malignant neoplasm) is a class of diseases in which a

group of cells display uncontrolled growth (division beyond the normal lim-

its), invasion (intrusion on and destruction of adjacent tissues), and some-

times metastasis (spread to other locations in the body via lymph or blood).

These three malignant properties of cancers differentiate them from benign

tumors, which are self-limited and do not invade or metastasize.

Cancer may affect people at all ages, even fetuses, but the risk for most

varieties increases with age [22] and causes about 13% of all deaths [144].

According to the American Cancer Society, 7.6 million people died from

cancer in the world during 2007 [2].

Conventional therapy decision making in cancer therapy is based on his-

tological and few molecular parameters according to which treatment is de-

cided. These guidelines highlight a rudimentary understanding of the molec-

ular origins of cancer and the different intracellular signalling pathways that

are perturbed in the various types of cancer. In the past decades several

genetic alterations beyond carcinogenesis have been identified, and now it

is evident that cancer develops as a result of multiple genetic alterations

which may differ from one patient to another. Therefore individuals with the

same type of cancer often have dissimilar genetic defects in their tumours.

This finding explains why patients who seem to have similar cancers respond
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differently to anticancer agents. This heterogeneity is the main obstacle to

obstacle to provide treatments effective on all cancers[131].

1.1 Cancer onset and progression as outcomes

of multiple dysregulation events

Cancer onset is the process by which normal cells are transformed into cancer

cells. Control of cell homeostasis and proliferation is physiologically main-

tained by cells according to signals derived from the environment and from

the cell itself. Cancer progression is an evolutionary process in which cells

loose constrain in cellular physiological processes. Hanahan and Weinberg in

their epochal turning-point review in 2000 formalized of archetypal cellular

traits altered during cancer onset and progression.

� Self-Sufficiency in Growth Signals - Normal cells require mitogenic

growth signals (GS) before they can move from a quiescent state into

an active proliferative state. These signals are transmitted into the cell

by transmembrane receptors that bind distinctive classes of signaling

molecules: diffusible growth factors, extracellular matrix components,

and cell-to-cell adhesion/interaction molecules. While normal cell can

not proliferate in the absence of such signals, many of the oncogenes in

the cancer catalog act by recovering normal growth signaling.

� Insensitivity to Antigrowth Signals - Within a normal tissue, mul-

tiple antiproliferative signals operate to maintain cellular quiescence

and tissue homeostasis; these signals include both soluble growth in-

hibitors and immobilized inhibitors embedded in the extracellular ma-

trix and on the surfaces of nearby cells. These growth-inhibitory sig-

nals, like their positively acting counterparts, are received by trans-

membrane cell surface receptors coupled to intracellular signaling cir-

cuits.
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� Evading Apoptosis - The ability of tumor cell populations to expand

in number is determined not only by the rate of cell proliferation but

also by the rate of cell attrition. Programmed cell death-apoptosis-

represents a major source of this attrition. The evidence is mounting,

principally from studies in mouse models and cultured cells, as well as

from descriptive analyses of biopsied stages in human carcinogenesis,

that acquired resistance toward apoptosis is a hallmark of most and

perhaps all types of cancer.

� Limitless Replicative Potential - Three acquired capabilities-growth

signal autonomy, insensitivity to antigrowth signals, and resistance to

apoptosis-all lead to an uncoupling of a cell’s growth program from

signals in its environment. In principle, the resulting deregulated pro-

liferation program should suffice to enable the generation of the vast

cell populations that constitute macroscopic tumors. However, research

performed over the past 30 years indicates that this acquired disruption

of cell-to-cell signaling, on its own, does not ensure expansive tumor

growth. Many and perhaps all types of mammalian cells carry an in-

trinsic, cell-autonomous program that limits their multiplication. This

program appears to operate independently of the cell-to-cell signaling

pathways described above. It too must be disrupted in order for a

clone of cells to expand to a size that constitutes a macroscopic, life-

threatening tumor.

� Sustained Angiogenesis - The oxygen and nutrients supplied by the

vasculature are crucial for cell function and survival, obligating virtu-

ally all cells in a tissue to reside within 100 µm of a capillary blood

vessel. During organogenesis, this closeness is ensured by coordinated

growth of vessels and parenchyma. Once a tissue is formed, the growth

of new blood vessels-the process of angiogenesis-is transitory and care-

fully regulated. Because of this dependence on nearby capillaries, it

would seem plausible that proliferating cells within issue would have
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an intrinsic ability to encourage blood vessel growth. But the evidence

is otherwise. The cells within aberrant proliferative lesions initially lack

angiogenic ability, curtailing their capability for expansion. In order to

progress to a larger size, incipient neoplasias must develop angiogenic

ability[48].

� Tissue Invasion and Metastasis - Sooner or later during the devel-

opment of most types of human cancer, primary tumor masses spawn

pioneer cells that move out, invade adjacent tissues, and thence travel

to distant sites where they may succeed in founding new colonies. These

distant settlements of tumor cells-metastases-are the cause of 90% of

human cancer deaths [115]. The capability for invasion and metastasis

enables cancer cells to escape the primary tumor mass and colonize new

terrain in the body where, at least initially, nutrients and space are not

limiting.

Cells may have different option to acquire the above mentioned abilities; for

instance, within a given cancer type, mutation of particular target genes

such as RAS or p53 may be found in only a subset of otherwise histologically

identical tumors. Furthermore, a specific genetic event may, on its own, con-

tribute only partially to the acquisition of a single capability, while in others,

this event may aid in the simultaneous acquisition of several distinct capa-

bilities. Nonetheless, that independently of how the steps in these genetic

pathways are arranged, the biological endpoints that are ultimately reach

the hallmark capabilities of cancer will prove to be shared in common by all

types of tumors.

1.2 Breast Cancer

Breast cancer is a prototypic example of clinical and biological heterogeneity

of cancer derived from the same tissue of origin. Indeed, the term refers to

a wide spectrum of diseases, with a large range of clinical outcomes. Fur-

thermore, it is the most frequently diagnosed cancer in women in Western
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Figure 1.1: Model for cancer progression from Hanahan&Weinberg. Albeit with different mechanism

most cancer acquire the same functionalities

countries and accounting for approximately 30% of all cancers diagnosed and

about 16% of all cancer deaths [45]. For this reason it is a major matter of in-

terest for clinical investigations aimed at the dissection of biology underneath

the disease to provide better treatments.

Breast cancer has been traditionally classified by histological type[18, 106,

109].

Whilst most of the concept regarding the morphologically defined clinical-
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pathological parameters remains valid, immuno-histochemestry and molecu-

lar genetics have changed breast cancer classification perspective[18, 71, 106,

109]; nowadays breast cancers are described along four different classification

schemes, or groups, each based on different criteria and serving a different

purpose:

� Pathology - A pathologist will categorize each tumor based on its

histological (microscopic anatomy) appearance and other criteria. The

most common pathologic types of breast cancer are invasive ductal

carcinoma, malignant cancer in the breast’s ducts, and invasive lobular

carcinoma, malignant cancer in the breast’s lobules.

� Grade of tumor - The histological grade of a tumor is determined

by a pathologist under a microscope. A well-differentiated (low grade)

tumor resembles normal tissue. A poorly differentiated (high grade) tu-

mor is composed of disorganized cells and, therefore, does not look like

normal tissue. Moderately differentiated (intermediate grade) tumors

are somewhere in between.

� Protein & gene expression status - Currently, all breast cancers

should be tested for expression, or detectable effect, of the estrogen

receptor (ER), progesterone receptor (PR) and HER2/neu proteins.

These tests are usually done by immuno-histochemistry and are pre-

sented in a pathologist’s report. The profile of expression of a given

tumor helps predict its prognosis, or outlook, and helps an oncologist

choose the most appropriate treatment.

� Stage of a tumor - The currently accepted staging scheme for breast

cancer is the TNM classification.

Prognostic Indicators

Large meta-analyses have shown that recurrence is likely in only 20-30%

of young women with early-stage (lymph-node-negative) breast cancer who
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should undergo only surgery and localized radiation treatment; nevertheless,

in the United States, 85-95% of women with this type of cancer receive adju-

vant chemotherapy. Thus, 55-75% of women with early-stage breast cancer

in the United States undergo a toxic therapy from which they will not benefit

but will experience the side effects.

To predict disease outcome, various clinical and pathological parameters

are considered, such as age, menopausal status, tumour size, lymphovascular

invasion, histological grade, Estrogen receptor (ER) and ERBB2 receptor.

There are five tumor classification values (Tis, T1, T2, T3 or T4) which de-

pend on the presence or absence of invasive cancer, the dimensions of the

invasive cancer, and the presence or absence of invasion outside of the breast

(e.g. to the skin of the breast, to the muscle or to the rib cage underneath).

Combination of these parameters are employed in different prognostic indica-

tor such as the Nottingham Prognostic Index (NPI) and Adjuvant!Online, or

included in algorithms used for the development of guidelines for treatment

decision-making, such as those proposed by the St. Gallen consensus expert

panel [124, 125, 86, 103].

Unfortunatelly, these prognostic indicators fail to predict individual pa-

tient outcomes as patients with the same clinical-pathological parameters

may have different outcome.

As a consequence, in current clinical practice, the majority of patients

with early breast cancer receive some form of systemic adjuvant therapy

(chemotherapy and/or endocrine therapy), which may have important side

effects and which puts considerable burden on health care costs. Thereby it is

evident that current prognostic indicators inferred from clinical-pathological

parameters fail to recapitulate the complexity of breast cancer disease;

Consequently it is top priority goal to gain new insight in the biology of

breast cancer to develop tools usefull in medical decision making. Thanks to

the full sequencing of human genome and the arise of OMICs era, new holistic

technologies were developed in order to monitor large-scale molecular-level

measurements to have an high resolution picture of the molecular machinery
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in cancer progression.
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1.3 OMICS

The explosion of high-throughput technologies available for generating large-

scale molecular-level measurements in human populations has led to an in-

creased interest in the discovery and validation of molecular new biomarkers

in medical research. Uses of biomarkers in medical decision making is quite

varied and includes such key features as surrogate endpoints, proxies for ex-

posure [114], early detection of disease [43], and identification of predictive

and prognostic factors in disease management [59].

A biomarker is formally defined as ”a biological characteristic that is ob-

jectively measured and evaluated as an indicator of normal biologic processes,

pathogenic processes, or pharmacologic responses to a therapeutic interven-

tion” [14]. In translating this definition into the context of ”omics”data (e.g.,

transcriptomic, proteomic, genomic) it is difficult to identify what is meant by

a ”biological characteristic”Often when omics data are evaluated for features

associated with the medical condition of interest multiple molecular features

emerge. Combined, these features may have biomarker potential and thus

the biological characteristic of interest is in fact a set of features. This sub-

tle change from considering a single molecular biomarker to considering a

biomarker profile has motivated discussion on their proper reporting [88] and

governmental regulation of clinical use [44]. Ultimately, a biomarker profile

should undergo the same scrutiny required of single molecular markers.

In the following we explore current trends in biomarker research in the

context of omics data. Examples will focus primarily on cancer, given our

expertise, though we acknowledge that omics-based biomarker research is

utilized in other areas[79].

1.3.1 DNA microarray and tumor gene expression pro-

files.

A DNA microarray is a high-throughput technology consisting of an arrayed

series of thousands of microscopic spots of DNA oligonucleotides, called fea-
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tures, each containing picomoles of a specific DNA sequence. This can be

a short section of a gene or other DNA element that are used as probes

to hybridize a cDNA or cRNA sample (called target) under high-stringency

conditions. Probe-target hybridization is usually detected and quantified by

fluorescence-based detection of fluorophore-labeled targets to determine rel-

ative abundance of nucleic acid sequences in the target[17].

DNA microarray are typically used in molecular biology and in medicine

to monitor levels of thousands of genes simultaneously and study the effects

of certain treatments, diseases, and developmental stages on gene expres-

sion. For example, microarray-based gene expression profiling can be used to

identify genes whose expression is changed in response to pathogens or other

organisms by comparing gene expression in infected to that in uninfected

cells or tissues[122].

The initial enthusiasm for the application of microarray technology was

tempered by the publication of several studies reporting contradictory results

on the analysis of the same RNA samples hybridized on different microarray

platforms[87]. Scepticism arose regarding the reliability and the reproducibil-

ity of this technique. In reality, many of these apparently divergent results re-

flect the complex nature of the data generated by high-throughput technolo-

gies and the analytical methods used, without necessarily meaning that these

techniques are unreliable or inferior. Indeed, most of the discrepancies were

attributed to inconsistent sequence fidelity and annotation, low specificity of

the spotted cDNA microarrays, lack of probe specificity for different isoforms,

or differences in the hybridization conditions, fluorescence measurement, nor-

malization strategies and analytical algorithms applied[7, 12, 82, 57, 127]

1.3.2 Genomic signatures for breast cancer

DNA microarray-based technology has provided researchers an ideal oppor-

tunity to begin taking steps towards performing comprehensive molecular

and genetic profiling of breast cancer. The simultaneous study of thousands

of genes, rather than focusing on just a few with traditional methods, made
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the microarray technology into a powerful, holistic analytical tool. Basic

research and clinical investigation rapidly took advantage of the great poten-

tial of this technology, either to gain new insights into cell biology and for

developing a biologically sounding and more clinically useful classification.

Indeed, form genomic analysis it emerged a new category of biomarker the

so called ”Genomic signature”. ”Genomic signature” are typically composed

of specific combination of genes which acquire significance when analyzed

together. A first example of genomic classifier was proposed by van’t Veer et

al. in 2002[132], laster followed by several other classifiers

70 gene signature

In their first work van’t Veer et colleague collected 78 lynophonode negative

(N −) breast cancer patients with no adjuvant treatment and younger than 55

years of age, at the Netherlands Cancer Institute in Amsterdam and identified

a 70-gene prognostic signature using the Agilent Rosetta platform[132]. This

signature was then validated on a larger set of 295 young N − and N+) breast

cancer patients from the same institution[133], and it is now FDA approved

for clinical practices as a clinical kit ”MammaPrint”.

76 gene signature

Later on in 2005, a similar experiment design was applied by Wang et col-

league [141], in collaboration with Veridex LLC (San Diego, USA) exploit-

ing Affymetrix technology. They reported a 76-gene expression signature

with discriminative power comparable to that of the Amsterdam signature

in predicting the development of distant metastases in untreated patients of

all age groups with node-negative breast cancer. The two main differences

between the MammaPrint and the Rotterdam studies were the microarray

platform and the study design applied for the development of the classifiers.

Specifically, the Rotterdam group used Affymetrix technology and took into

consideration two separate subgroups based on ER-status in order to build

their predictor, with ER-status being determined by immuno-histochemistry.
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Just like for the MammaPrint, they were able to validate this signature in

180 node-negative untreated patients derived from multiple institutions.

Genomic Grade Index

Another example of genomic classifier is the Genomic Grade Index, designed

following hypothesis-driven approach was the study reported by Sotirou et

col [121]. They focused on histological grade, a well-established pathological

parameter rooted in the cell biology of breast cancer. Indeed, clinicians face

a huge problem with respect to patients who have intermediate-grade tumors

(grade 2), as these tumors, which represent 30% to 60% of cases, are the major

source of inter-observer discrepancy and can display intermediate phenotype

and survival, making treatment decisions for these patients a great challenge,

with subsequent under- or over- treatment. To solve this ambiguity it was

developed a Gene expression Grade Index (GGI) score based on 97 genes.

Interestingly, the GGI was able to reclassify patients with histological grade

2 tumors into two groups with distinct clinical outcomes, similar to those

with histological grade 1 and 3 tumors, respectively.

Basal-Like Signature

Sorlie et. al using an unsupervised approach, identified five clinically rele-

vant subtypes of breast tumors[123], which have been further validated in

independent data sets. Of these, the two main subtypes are associated with

the most significant difference in clinical outcome: Patients with luminal A

type tumors are facing a relatively good prognosis, whereas patients with

basal-like tumors experience a much shorter overall-and disease-free survival

period. Sorlie et al defined a prognositic classifier of 459 cDNA that distin-

guishes specifically these two groups.
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1.4 In-vitro model for cancer progression

Most of the classifiers above mentioned, with the notable exception of GGI,

are constructed according to a ”top-down” experimental design which gener-

ates gene expression patterns associated with clinical outcome, without any

a priori biological assumptions. This strategy is prone to over-fitting of the

results, and the performance of the classifiers are sub-optimally validated on

independent datasets. Conversely we exploited in house developed in-vitro

model for cancer progression to construct classifiers, following a ”bottom-up”

strategy, in which genes previously associated with a specific phenotype, are

then associated with cancer clinical outcome.

We developed 3 models.

� HGF-driven invasive growth

� microRNA-24 circuit regulating Invasive growth

� Gab2-driven ancorage independence

1.4.1 Invasive Growth: a complex biological program

orchestrated by HGF

Invasive growth is a tightly orchestrated genetic program instructing the cells

to dissociate from their neighbors, migrate through the extracellular matrix,

colonize new sites, proliferate and differentiate[51], typically in in progenitor

cells Developmental processes during which this program takes place include

epithelial morphogenesis and angiogenesis. After embryonic development

invasive growth is activated during acute injury repair, where it regulates

inflammatory responses and wound healing[25].

When aberrantly activated invasive growth is involved in cellular mech-

anisms that cause local invasion and metastasis, having a central role in

tumour progression[25].

This process has been well documented on epithelial cells and for this

reason the first stages of invasive growth program are also defined epitelial-
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mesenchimal transition (EMT). EMT includes release of junctions defining

the tissue monolayer, change of polarity, amoeboid motility in extracellular

matrix causing epithelial cells to acquire invasive mesenchymal phenotype

and gene expression patterns. EMT and consequently invasive growth pro-

gram are induced both physiologically and pathologically by several extra-

cellular activators as cytokines and soluble growth factors[26]; among them,

hepatocyte growth factor (HGF) and its receptor MET represents the pro-

totype ligand-receptor couple and are the major players of a family that

also includes MSP, RON, Semaphorins and Plexins[25]. Hepatocite growth

factor (HGF), also known as Scatter Factor (SF), is a pleyotropic cytokine

belonging to the plasminogen family. Secreted as inactive precursor it is

activated locally upon proteolytic cleavage by the urokinase-type Plasmino-

gen Activator[147]. SF was identified for its ability to induce scatter in

epithelial cells[126]; while, independently, it was identified as a potent in

vitro growth stimulator for primary hepatocites[94]. HGF elicits the in-

vasive growth response binding its specific tyrosine kinase transmembrane

receptor Met. Met receptor was firstly identified as the protein product of

TPR-MET, a transforming gene derived from a chromosomal rearrangement

in an osteosarcoma cell line after chemical carcinogen treatment[27]. After

this first link with cancer the aberrant alteration of catalytic activity of Met

has been demonstrated in several human tumours tissues [36, 37, 38, 39]

and in mouse models[73, 84]. Finally Met gene was classified as a proto-

oncogene [110] that when aberrantly activated contributes not only with the

onset but also with the maintenance of malignancy leading to metastasis

formation[72]. The invasive growth response to HGF requires days for ful-

filment and involves transcriptional regulation of key effectors. Indeed, the

Met tyrosine kinase receptor concomitantly regulates multiple signal trans-

duction pathways controlling the cell transcriptional status[89]. Met activity

impinges on the activation of several transducers such as the cytosolic tyro-

sine kinase SRC, the lipid kinase phosphatidynolinositol 3-kinase (PI3K) the

GRB2 adaptor protein [100], the STAT3 transcription factor[15], SHC[97]

15



and GAB1[142]. These adaptors are responsible of Met’s specific biological

Figure 1.2: HGF/Met Pathway

activities resulting as a whole in the invasive growth behaviour that in normal

conditions tightly depends on HGF availability. Many of these transducers

play also important roles in the transduction of signals mediated by other

couple growth factors-tyrosine kinase receptor (RTK) couples that trigger or

not toward invasive growth program activation depending on tissue specific

backgrounds. For this reason, despite of the growing knowledge about Met’s

transducers we continue to lack the comprehensive view of invasive growth

program background needed to sustain the receptor induced response deter-

mining the final effects specific of each cell type. This insight can be achieved

through widespread -omic studies and high-throughput functional genomic

approaches.
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Identification by expression profiling of HGF-regulated genes in-

volved in Invasive Growth

The complexity of invasive growth program needs to be accuratelly described

in by monitoring simultaneously multiple genes with high-throughput tech-

nology such as microarray platforms. As described before, HGF can or-

chestrate through Met activation in in vitro the whole spectrum of invasive

growth-related processes including cell motility and scattering, proliferation,

branching morphogenesis in collagen gels, matrix invasion and survival in

other tissues [89].

To disect the genetic program involved in the invassive growth, MLP-

29 were treated for 1, 6 and 24 hours with HGF and EGF, a ligand for

EGFR, another strong RTK involved in cancer progression; the RNA was

extracted and analyzed on two independent gene expression technologies.

This experiment led to the identification the invasive growth signature shown

in figure.

The signature results enriched in genes specifically regulating cell growth

and cell adhesion which are the main biological functions lying behind in-

vasive growth. To better characterize the transcriptional modules induced

by the two growth factors it was also performed a K-means clustering using

cosine correlation. This analysis highlighted the high overlap of transcrip-

tional responses of HGF and EGF which, although driving different pheno-

type in this cell-line, impinge on the same transcriptional targets. Clustering

evidences also minor temporal or quantitative shifts between the induced re-

sponses in almost every sub-groups, but these differences are insufficient to

explain how MET activation leads to the full invasive growth program stim-

ulation. Despite this overlap, the study of genes having higher differential

expression between HGF and untreated control has permitted the discov-

ery of genes essential to produce the complete invasive growth program as

Ostepontin and Arhgap12[51, 89].

Furthermore the translation of of expression of the 1132-gene signature

in published microarray datasets of hepatocellular several human cancer
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Figure 1.3: K-means clustering and functional analysis of HGF- and EGF-regulated genes. Genes

are grouped into 15 clusters, ordered by the timing of the response (early, delayed, late) and its sign

(induction, suppression), as indicated. Positive log2ratio between stimulation and control is shown in

red, negative ratio in green, as indicated by the calibration bar.

[13, 132] found the invasive growth signature being correlated to cancer ag-

gressiveness. The invasive growth signature was then explored in breast

cancer and after mapping on NKI dataset obtained by merging two works

from the Netherlands Cancer Institute (NKI)[132, 133].

To assess the signature ability in discriminate patients with poor and

good prognosis, it was applied the NMC[143]. The optimal number of 27

discriminating genes was then defined by assessing the NMC performance

using increasing number of genes taken from the ranked list.

Functional analysis of the 27-gene Invasive Growth signature (IG-27) was

carried out by extensive database and literature screening, and highlighted a

striking enrichment for two functional clusters (Fig1.4): (i) 7 genes upregu-

lated in poor prognosis samples are involved in positive regulation of cell pro-

18



liferation; (ii) 6 genes downregulated in poor prognosis samples are involved

in the control of ”inbound cell communication”, a super-cluster including

functions like ”processing of extracellular ligands”, ”signal transduction”, and

”regulation of transcription”. The picture emerging is that poor prognosis is

associated to a higher rate of cell proliferation and a ”desensitization” of the

cancer cells to exogenous stimuli.
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Figure 1.4: The invasive growth signature predicts breast cancer metastasis. Specific functional

groups in the IG-27 signature are diversely correlated with breast cancer prognosis. Genes belonging to

the various functional clusters are counted as positive if their expression is positively correlated with

metastatic relapse, or negative if they are downregulated in poor prognosis samples. Functional modules

gene clustering. Samples (columns) are ordered from left to right according to increasing ”Metastasis risk

Index”, calculated from the Invasive Growth signature by subtracting the Pearson correlation with the

average good prognosis sample from the correlation with the average poor prognosis samples. The first

horizontal bar, ”ER”, reflects the estrogen receptor status: light blue = positive, purple = negative. The

second bar, ”M<5Y”, indicates the presence (red) or absence (green) of metastatic relapse within 5 years.

Below the three annotation bars, the genes (rows) are clustered according to their overexpression (red) or

downregulation (green) in the various samples.
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1.4.2 microRNA: a further level of gene expression

regulation

microRNA’s translation and their mechanism of action

miRNAs are small ncRNA transcripts initially produced from RNA poly-

merase II .They form a stem-loop structure and undergo processing by a

protein complex containing the RNase III enzyme, Drosha and the double-

stranded RNA binding protein Pasha in the nucleus. After initial cleavage,

pre-microRNAs are exported into the cytoplasm by exportin-5, and sub-

sequently cleaved by RNase III endonuclease Dicer. This mature microR-

NAs of approximately 22 nt of length are incorporated into microRNAISC

(microRNA-induced silencing complex).Here, they act as negative regulators

of gene expression through:

� mRNA degradation - microRNA find perfect complementary se-

quences in target mRNAs

� translational inhibition - microRNA find perfect match for nucleotides

from 2 to 7 of the mature microRNA region, also known as seed se-

quence, and imperfect complementary for the remaining part of target

mRNAs 3’ UTR (untranslated region) [99]

As represented in 1.4.2, up to now mechanism of inhibition of translation,

defective elongation, inhibition of initiation dependent on eIF4E, accelerated

deadenilation and decay through normal degradation pathways were pro-

posed and proved to explain microRNAs mechanisms of action [99]. The dis-

covery of P-bodies, cell areas not defined by a membrane in which microRNA-

mRNA complexes are seized and/or degradated had further complicated the

puzzle of knowledge about microRNA’s mechanisms of silencing.

MicroRNAs and the control of gene networks

Role of microRNAs in the regulation of biological programs miRNAs are

small non coding RNAs of 20-22 nucleotides, typically excised from 60-110
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Figure 1.5: Main mechanisms of microRNAs activity

nucleotide fold-back RNA precursor structures. Bioinformatics data indicate

that at least one third of known genes is a putative target of microRNAs

[83] this means that each microRNA can control hundreds of gene targets,

underscoring the potential influence of microRNAs on almost every genetic

pathway. Many microRNAs are conserved in sequence between distantly

related organisms suggesting for them the participation in essential biologi-

cal functions [21]. Several groups actually have uncovered for them roles in

the coordination of crucial biological processes including development, dif-

ferentiation, apoptosis and proliferation [8, 58]. Recent evidences showed

that microRNA mutations or mis-expression correlate with specific human
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cancers raising the hypothesis that microRNAs can function as tumour sup-

pressors and oncogenes [42]. Moreover it was demonstrated that microRNAs

expression is a useful tool, having efficiencies higher than mRNAs, to classify

cancers in groups with different characteristics such as cell type and aetiology

and to define subclasses within a given tumor type [75, 65, 136]. Explaining

their physiological role Cohen et al [24] proposed that microRNAs expression

is essential to establish the identity of a new forming tissue. He proposed

for them a role of genetic buffers acting on newly formed tissues by and/or

translational inhibition of mRNAs that are foreign to that tissue although

having residual leaky expression. Supporting these statements experiments

on Drosophila scutellar bristles show that the action of microRNAs relies on

large set of mRNAs that are related by their expression signature in time

and space rather than on limited set of genes drastically down regulated.

1.4.3 Ancorage Independence Growth

Cell adhesion plays an important role in the regulation of cellular growth

by giving consensus signals leading to cell proliferation [3]. Proliferation of

mammalian cells is tightly regulated by multiple environmental influences,

primarily adhesion to the extracellular matrix, cell-cell adhesion and solu-

ble factors (i.e. polypeptide growth factors or inhibitors, mitogenic lipids,

inflammatory cytokines and hormones). Among these environmental cues,

soluble growth factors and integrin mediated adhesion are crucial [62] , as

loss of adhesion generally results in complete G1 phase cell cycle arrest [5].

For susceptible cell types, loss of adhesion leads to anoikis [47], which might

be regarded as the extreme case in which cell numbers decrease rather than

remain stable. Both integrins and growth factor receptors use multiple cy-

toplasmic signaling pathways to regulate G1 phase cyclins and associated

kinases that determine cell cycle progression [5, 92], strongly emphasizing

the point that growth factors and the ECM are partners in cell cycle control,

with each providing essential signals that allow for proper induction of the

G1 cdks (cyclin-dependent kinases) and phosphorylation of their substrates.
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Cyclin D1 is the primary D type cyclin for several anchorage- dependent cell

types, and recent studies indicate that the ECM and mitogens are jointly

required to induce cyclin D1 expression [102]: both stimuli are required for

its mRNA expression and for its translation. In addition, the induction of

cyclin A is strongly dependent on signals from the ECM, and several lines of

evidence indicate that a large part of this effect is a consequence of adhesion-

dependent pRb/p107 phosphorylation.

On the contrary, in suspended cells, mitogens are unable to induce the

expression of cyclin D1 and subsequent formation of cyclins-cdk complexes

which correlates with increased expression of cell cycle inhibitors (p21 and

p27) contributing to cell cycle arrest. Indeed, it seems that the coordinated

control of the G1 cyclin-cdks by growth factors and the ECM underlies the

well-established anchorage requirement for the proliferation of untransformed

cells, since formation and spread of tumors, is closely associated with de-

creased dependence on ECM for growth and survival [113]

We therefore carried out a functional screening to identify and charac-

terize new genes conferring anchorage independence to human normal and

neoplastic breast cells. MCF10A human mammary cells were transduced

with a retroviral cDNA expression library and selected by growth in suspen-

sion. Microarray analysis targeted on library-derived transcripts, according

to the recently developed ”XenoArray” procedure [85], revealed strong and

reproducible enrichment, after selection, of cDNAs encoding the scaffolding

adaptor Gab2. The ability of Gab2 to promote anchorage independence was

further characterized by gain-/loss-of-function and expression profiling ex-

periments.
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Chapter 2

Aim of the work

The aim of this work is to exploit gene expression profiling of cell-based mod-

els to define genomic signatures reliably predicting metastatic progression of

breast cancer. In particular, transcriptome changes in in-vitro experimental

models of regulated cell motility/invasiveness and anchorage independence

are explored to generate lists of genes (”signatures”) whose expression has

prognostic value when analyzed in human breast cancer microarray datasets.

In turn, successful translation of a model-derived signature into a clinically

significant cancer classifier confirms the appropriateness of the chosen model.

The experimental approaches chosen to find lists of genes whose expression

is related to in vitro-modelled key steps of cancer onset and progression are

here briefly outlined.(1) Genes transcriptionally regulated during induction

of epithelial invasive growth by Hepatocyte Growth Factor (HGF), via the

MET tyrosine kinase receptor, in MLP-29 mouse embryo liver cells. These

genes are mapped onto breast cancer datasets and prioritized to generate

a classifier predicting metastatic relapse. To construct such classifier, the

Nearest Mean Classifier algorithm is implemented to calculate a Metastasis

Score, proportional to the probability of metastatic relapse. The classifier

is subsequently validated by calculating the Metastasis Score in independent

datasets obtained in different microarray platforms.

(2) Identification of groups of genes that are both transcriptionally regulated
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by HGF and targets of specific microRNAs, to highlight regulatory circuits

involving miRNAs in invasive growth and cancer. This required the design of

an algorithm (SeaMT, signature enrichment analysis for microRNA target)

for the computational identification of microRNAs potentially regulating sets

of genes transcriptionally co-regulated by HGF. After collecting the list of

putative miRNA-binding sequences for each gene in the genome, a statistical

analysis is performed to assess whether some subgroups of HGF-regulated

genes are significantly enriched in binding sites for specific miRNAs. Such

miRNAs are then functionally characterized, and the set of their putative tar-

get genes is further analyzed to build a classifier for breast cancer progression

as in point (1).
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(3) Functional screening for genes promoting anchorage-independent growth

of MCF-10A human normal breast cells. The functional screening was based

on the ”XenoArray” technology, and highlighted Gab2, a scaffolding protein

involved in signal transduction. Functional characterization of Gab2 provided

evidence of its role in anchorage-independent growth. A Gab-2 signature, ob-

tained by comparing Gab2-overexpressing, anchorage-independend MCF10A

cells from control cells is obtained and is further analyzed to build a classifier

for breast cancer progression as in point (1).
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Finally, given the positive results obtained with all the three models, a

standardized in-silico pipeline is delivered, allowing conversion of any list

of genes of interest into a genomic classifier for human breast cancer, and

assessment of the statistical significance of its classifying performance.

28



Chapter 3

Results

3.1 The HGF-driven invasive growth signa-

ture predicts metastatic relapse of breast

cancer.

As previously described, genomic analysis of the invasive growth program in

MLP-29 cells highlighted a signature composed of genes involved in several

functions related to cancer progression. Transposition of the invasive growth

signature on the NKI microarray dataset of 311 human breast cancers led

to the definition of a minimum set of 27 genes that maximally differentiates

patients displaying metastatic progression within five years from long-term

disease-free patients.

To to construct a classifier for the 27 invasive growth genes, we assessed

their performance on an independent dataset of 198 samples obtained on a

different microarray platform (Affymetrix) and previously used to validate a

76-gene prognostic signature of breast cancer (the ”Veridex Index”) by the

TRANSBIG consortium (TRANSBIG-198)[35].

We performed a leave-one-out analysis of NMC[143] in which each sample

was assigned a MS based on its differential correlation with the good- and

poor-prognosis centroids calculated in the other samples. We then defined

29



Invasive growth classifier optimization
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Figure 3.1: Invasive growth classifier tuning in Transbig dataset: We constructed the metasamples

for NMC in a set of 198 patients. In the Transbig dataset we calculated the median expression in good

and poor prognosis. Metastasis score is calculated with Nearest mean classifier as a prognostic index,

correlated with metastatic risk. We performed survival analysis with different threshold, and identified

best solution at -0.15. Finally it is reported the kaplan- meier analysis on the Transbig breast cancer

dataset according to IG-signature classification, patients classified as good prognosis, green line, poor

prognosis ,red line, by the invasive growth signature.

the optimal MS threshold for good- and poor prognosis class assignment by

running a log rank chi square analysis for increasing threshold values (Fig3.1)

Maximum significance was observed at the MS value of -0.15, thereby chosen

as the class threshold (Fig3.1) Kaplan-Meier analysis showed that the IG-27

signature classifies patients with high accuracy using this threshold, despite
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the platform change (p <10−5, log-rank chi square = 18.95244, a specificity

of 0.1382114 and a sensibility of 0.5856354). When samples were subdivided

Figure 3.2: IG stratification on clinical parameters

by their prognostic class according to standard clinical/pathological param-

eters, as defined by the Adjuvant!Online (AOL) score[116], they could still

reliably further subdivided in good- and poor-prognosis subgroup by IG-27.

(Fig3.2). Multivariate Cox regression analysis showed that the IG-27 sig-

Table 3.1: TRANSBIG Multivariate analysis Invasive Growth vs Veridex

p coef lower .95 upper .95

Invasive Growth 0.00 1.16 1.42 7.17

AOL 0.24 0.64 0.65 5.48

Veridex Index 0.03 1.33 1.15 12.51

nature largely outperforms the AOL score, and remains strongly significant

and independent from the Veridex Index in predicting metastatic progres-

31



sion Table??. These results prompted us to further validation of the invasive

growth-based classifier across additional Affymetrix dataset, using the NMC

constructed on the TRANSBIG-198 dataset.3.1 The IG27 classifier achieved

good performance in all the human cancer datasets tested. (Fig3.3)
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Figure 3.3: Invasive growth classifier validation in several dataset

To validate the signaute on a third microarray platform we carried out

gene expression profiling using Illumina Human-8v1 expression Beadchips on

76 breast cancer frozen samples with long-term followup (ILM-76 dataset).

Notably, all these samples are classified as poor prognosis by the AOL score

3.1.
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Figure 3.4: table with clinical parameter of ILM-76 dataset

The IG-27 classifier was mapped via MAQC on the ILM-76 dataset to-

gether with four published genomic prognostic classifiers: the 76-gene ”Veridex

index” [141], the 70-gene signature developed by van’t Veer and colleagues

[132], the ”Genomic Grade Index” [121] and the ”Basal-like” signature [123].
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Figure 3.5: Validation

With the exception of IG-27, which maintained the -0.15 MS threshold

set in the TRANSBIG-198 dataset, all the other classifiers had the thresh-

old tuned to obtain maximal performances. Kaplan-Meier analysis (Fig3.5)

showed that all the signatures maintained some ability to discriminate good-

and poor prognosis samples, with the strongest significance obtained by the

IG-27 classifier and the lowest by the Veridex Index. Interestingly, in mul-

tivariate cox regression, IG-27 was the only classifier remaining significant

(Table 3.2). These data show that, being based on a biological model, the

prognostic classifying performances of the IG-27 signature are less depen-

dent on the microarray platform adopted, compared to empirically obtained

genomic classifiers.
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Table 3.2: ILM-76 Multivariate analysis of all genomic classifiers

p coef lower .95 upper .95

GGI 0.81 -0.10 0.39 2.06

InvasiveGrowth 0.04 1.05 1.06 7.65

VeridexIndex 0.67 0.34 0.30 6.51

MamPrint 0.53 0.35 0.47 4.34

BasalLike 0.17 0.52 0.80 3.54

3.2 Identification of microRNAs involved in

the invasive growth program

microRNAs (miRNAs) are cell regulators that act modulating half-life and/or

translation of multiple target transcripts, adding a further level of complex-

ity in the flow that leads from genes to proteins. In the context of invasive

growth, one or more miRNAs could be key regulators capable of modulat-

ing the HGF-driven transcriptome, thereby sustaining or counteracting full

activation of the program.

To search for such miRNAs, we conceived a computational approach

based on the identification of miRNAs whose target genes are transcrip-

tionally modulated during activation of the invasive growth program. As a

source of genes involved in invasive growth, we chose gene expression data

obtained from MLP-29 cells stimulated in vitro with HGF in a time-course

experiment. miRNAs that bind a large fraction of genes regulated in this

model are the best candidates for subsequent characterization.

To maximally benefit from the progress in genome annotation, the MLP-

29 invasive growth microarray dataset was updated to a recent release of

unigene. Reanalysis of the data led to the definition of a 2124-gene signa-

ture after cross-validation between platforms. Transcriptional waves of gene

expression were resolved by gene clustering using the FLAME fuzzy clus-

tering algorithm, developed in our lab[49]. Also this re-analysis highlighted
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Figure 3.6: HGF EGF time-course profile remapping

small but consistent kinetic/quantitative differences in the transcriptional

responses to HGF and EGF (Fig3.6).
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3.2.1 SeaMT: Signature Enrichement Analysis for mi-

croRNA targets

Despite the important role recognized for miRNA’s there wasn’t a bioinfor-

matic tool indicating miRNAs whose targets sites are enriched in gene lists

emerging from expression analysis. We developed SeaMT (signature enrich-

ment analysis for miRNA targets) using the hypergeometric function as core

element to elaborate enrichment analysis. According to the work flow repre-

sented in (Fig3.7) the software proceeds in four steps:

� Loading Loading step initially creates the environment necessary for

the software to work, this is achieved recalling Heatplus and biomaRt

libraries form R [104, 52] package and the database Miranda, which

contains human and mouse miRNAs targets genes lists, from SeaMT.

Subsequently the following the external inputs are imported: (1)the

matrixes containing expression values (2)hte list of the selected gene

subset(signature) and the background gene list from which the sig-

nature has been uncovered. Finally, connecting to biomaRt’s web site

orthologous genes lists are generated and loaded for external input data.

� Statistical analysis After collecting the list of miRNAs targeting the

background, for each miRNA hypergeometric parameters are defined

as follow (Fig3.7)

a)number of miRNA targets in the signature

b)number of genes in the signature

c)number of miRNA targets in the background

d)number of genes in the background

Having as input the parameters of the two side matrix represented in

(Fig3.7) the hypergeometric function gives as output a p-value which

mathematically estimates the probability of non existent association

between differential expression and miRNA’s target membership, which

is the hypothesis of our test. If p-value is under Bonferroni cut off the

hypothesis is rejected meaning it is very difficult to find randomly in
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Figure 3.7: Main steps of the SeaMT algorithm work-flow

the universe the enrichment of target genes individuated among the
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selected ones.

� Plotting For the results plotting representation we use a bidimen-

sional space having on the x-axis the miRNAs having targets in the

background and on the y-axis their p-values of target gene enriched

in the signature. Thresholds of significance are displayed as horizon-

tal lines to facilitate the individuation of miRNAs whose targets are

enriched in the list of interesting genes.

� Implementation

SeaMT is based on a database of putative miRNA targets which is biased

by high levels of false positives. To overcome this limit we implemented four

functions:

1) Orthologues validation function: maps on an orthologous genome sig-

nature and background looking for conserved miRNA’s enrichments. This

function constitutes a first ”biological validation” as we suppose that miR-

NAs involved in basic cell function regulation are conserved between species

and the same is expected for their targets.

2) Randomization function: calculates target’s occurrences on randomly cho-

sen sub-groups permitting to eliminate miRNA’s emerging by chance from

the analysis.

3) Cluster analysis function: if the signature expression set contains cluster

information SeaMT automatically performs the analysis on single clusters.

As suggested by Thomson[128] miRNAs regulate groups of genes with sim-

ilar tendencies more than genes drastically down-regulated, and clustering

provides this information.

4) Threshold function: subdivides the signature according to threshold of

differential expression defined by the users permitting to analyze the data in

a more supervised manner than cluster.

Finally according to these implementations also plotting functions were

modified to distinguish with colour codes miRNAs having or not an orthol-
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ogous and to be able to plot analyzed genes expression values.

Bioinformatic analysis on invasive growth signature

Subsequently, the HGF-regulated transcripts had to be scanned for the pres-

ence of miRNA target sequences, using a miRNA-target database (Miranda

algorithm, from mirGen portal [90]). After collecting the list of putative

miRNA-binding sequences for each gene in the genome, a statistical analysis

had to be performed to assess whether some subgroups of HGF-regulated

genes were significantly enriched in binding sites for specific miRNAs. To

this aim, an algorithm based on hypergeometric analysis was developed, and

implemented into an R-based software.

Definition of hypergeometric groups

To exclude biases due to tissue-specific gene expression, the background gene

list was restricted to the pool of genes expressed in MLP-29. For hyperge-

ometric analysis, we considered the entire 2124-gene invasive growth signa-

ture, and also subsets of co-regulated genes defined by FLAME clustering[49].

We also analysed subsets of genes differentially expressed at individual time

points above a positive or negative log2ratio threshold of 0.25. These lists

were submitted to SeaMT analysis, the results of which are outlined below.

Candidates choice

To further consolidate these results, SeaMT was re-run with miRNA tar-

get lists generated by an indipendent database, PITA [?]. Only miR2-24

and miR-296 remained significant in both the human and murine genomic

background.

It can be concluded that a significantly high fraction of the genes tran-

scriptionally up-regulated at 24 hours by HGF is potentially targeted by

miR-24 and miR-296, highlighting these two miRNAs as potential players in

the invasive growth program.
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No miRNA were found to have more targets then expected in the 2124

gene list. Conversely, analysis of expression clusters highlighted a strong

enrichment in specific miRNA targets for the cluster containing genes up-

regulated at 24 hours. These results are depicted in (Fig3.8), and show that

miR-24, miR-296 and miR-484, target genes are enriched above a Bonferroni-

corrected significance threshold, in both the human and murine genomic

background. These results were confirmed when lists of genes regulated at

individual time points where submitted to the analysis: only the list of genes

upregulated at 24 hours displayed strong enrichment for target genes of var-

ious miRNAs, including again miR-24, miR-296, and miR-484. (Fig3.9).

For downregulated genes 3.2.1 we did not find significant microRNAs,

apart from miR-377 which just reaches Bonferroni cut-off and was not con-

firmed by orthologous validation.

Candidates choice

To further consolidate these results, SeaMT was re-run with miRNA tar-

get lists generated by an indipendent database, PITA [?]. Only miR2-24

and miR-296 remained significant in both the human and murine genomic

background.

It can be concluded that a significantly high fraction of the genes tran-

scriptionally up-regulated at 24 hours by HGF is potentially targeted by

miR-24 and miR-296, highlighting these two miRNAs as potential players in

the invasive growth program.

3.2.2 Functional validation of candidate microRNAs

Real-time PCR analysis of miRNAs expression

Having chosen the candidates, before starting biological analysis, we tested

their expression in MLP-29 cells trough real time PCR on a time-course for 1-

6-24 hours with HGF (Fig3.10A) miR-296 was not detected in all time-points

tested. After having validated the primer functionality in RNAs extracted
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Figure 3.8: SeaMT on several gene expression clusters in MLP-29 cells upon

HGF stimulation.
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Figure 3.9: SeaMT analysis performed on genes regulated by HGF at different time-points, only gene

upregulated at 24h are enriched in miRNA targets

from cells known to express miR-296 (data not shown) we concluded that it

is not expressed expressed by HGF, as reported in (Fig3.10A). in the cell line

nor regulated by HGF as reported in the next image. miR-24 indeed seemed

to be induced by HGF stimulation at 1 hour. To confirm miR-24 regulation
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by HGF we decided to perform a biological triplicate of HGF stimulation

time-course. The result shown (Fig3.10B) confirms the induction of miR-

24 expression after HGF stimulation. Basal expression and expression at

the first time-point are highly consistent and reproducible while 6 hours and

24 hours time-points behaved quite differently exhibiting signals increase or

maintenance at 6h hours and different levels of decrease at 24 hours.

Figure 3.10: miRs Differentialy dynamis

miR-24 and miR-296 gain of function

After verifying that miR-296 was not expressed and miR-24 was induced

by HGF we tried to deregulate the MLP-29 response to the growth factor

by performing gain-of-function experiments with the two miRNAs. To this

aim we produced two viral vectors expressing the respective pre-miRNAs.

MLP-29 cells were infected with serial dilutions of viral production obtained

from 293T cells. After selection we observed an MOI respectively of 2,67

for empty vector, 3,95 for miR-24 and for 2,25 miR-296. According to this

result we used a viral dilution of 1:100 for the experimental infections. After

7 days of blasticidin selection, colonies were expanded, RNAs were extracted

and tested respectively for miR-24 and miR-296 expression with quantitative

real-rime PCR, obtaining the following Log2-signals: (miR-24 CTRL = 11.4,

Transduced = 14.05, miR-296 CTRL = 0, Transduced = 12.13)
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Biological assays on miRNAs-overexpressing cells

Scatter assay

To evaluate the effects of miRNAs overexpression, scatter assay was per-

formed fixing the cells at 24 hour from stimulation with serial dilutions of

HGF ranging from 40 U/mL to 0,5 U/mL. The scatter assay (Fig3.11) showed

that both miR-24- and miR-296 sensitize MLP-29 cells to low doses of HGF,

without having any effect on unstimulated cells. In particular, while con-

trol cells do not scatter when stimulated with HGF at concentrations under

5U/mL, both miRNA-expressing cells are responsive to concentrations up

to ten-fold lower. The scatter assay involves a complex set of biological

processes, including changes in cell shape, cell-cell and cell-matrix adhesion,

migration, survival and proliferation. To have a better insight in miRNA’s

deregulation effects we investigated basic cellular processes behind it, like

proliferation and migration, with specific assays.

Proliferation assay

To evaluate basal proliferation of miRNA transfected cells a MTT assay was

performed every 24h for 4 days. MTT is a vital staining turning from yellow

to violet when tetrazolium salt is catabolized from the cell. This enables the

estimation of cell numbers with a 490 lambda absorbance reading. (Fig3.12)

shows the relative growth data obtained for control cells and miRNAs ex-

pressing ones. miR-24 over-expressing cells displayed growth trends similar

to the control while miR-296 ones exhibited a marked tendency to proliferate

more than controls. Wound healing To test the effects of miR-24 and miR-296

on motility we performed a wound on confluent cell monolayers stimulated

with different concentrations of HGF and cultured in low serum to minimize

the proliferation effect on wound closure.

In (Fig3.12) shown the percentages of wound closure obtained after 12

hours from wounding. Both miRNAs seem to have effects on motility in

concomitance with with HGF stimulation. The trend induced by miRNAs

over-expression is similar, although the maximum difference from the controls

seems to be at the lower ligand concentration for miR-24, and high for miR-
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Figure 3.11: miRs overexpression sensitize MLP-29 to HGF scattering

296. T-test statistic are however significant for both miR-24 and miR-296

upon HGF stimulations of 40 U/mL, the respective p.values were 0,0241

and 0,01. Both miRNAs expressing cells do not exhibit a well characterized

trend if compared with the control when HGF stimulation is performed at

16 U/mL.

Functional annotation of common HGF/miR-24 target genes

The experimental results obtained led to an apparent paradox, as they show

that to promote invasive growth, HGF upregulates both miR-24 and its tar-

get genes, which in turn are expected to be negatively modulated by the

miRNA. To find a possible explanation for this paradox, a careful analysis of
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Figure 3.12: miRs overexpression sensitize MLP-29 to HGF scattering

genes targeted by miR-24 was performed, and among them we found CSK

(C-terminal SRC kinase) and Talin, whose downmodulation by the miRNA

could explain the experimental results described above. (Fig3.13)

Csk is an endogenous inhibitor of tyrosine kinases of the Src-family, whose

main components are c-Src, Fyn, Yes, Lck, Lyn, Hck, Fgr, Blk[117]. Interest-

ingly, it is known that, upon HGF stimulation, c-Src is activated by the Met

receptor and contributes to promote motility [100, 118]. Therefore, Csk tran-

scriptional upregulation by HGF may be part of a negative feedback loop,

whereby its downmodulation by miR-24 may enhance the response to low

doses of HGF and ”buffer” the negative loop. To have a better insight of the
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Figure 3.13: miRs overexpression sensitize MLP-29 to HGF scattering

possible miRNA ”buffering” activity we investigated the expression levels of

mRNAs encoding c-Src and its activator Shp2[119]. While c-Src was upregu-

lated at 1h from HGF stimulation, Shp2 was found to be down regulated at

24h, consistently with the negative feedback loop involving Csk upregulation.

Talin is a protein involved in focal adhesion formation; it acts as a bridge

between integrins and actin having also a central role at the leading edge of

migration [119]. The requirement of Talin for leading edge formation could

explain its transcriptional up-regulation by HGF at 24 hours, when filipodia

and lamellipodia are clearly visible on scattered cells. Conversely, miR-24

induction by HGF at 1-6 hours may lead to transient Talin down-modulation,

which could permit the initial disassembly of focal adhesion and epithelial

shape disruption necessary for the beginning of the migratory response.
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3.2.3 Construction of the Genomic classifier in breast

cancer.

From functional validation it emerged that miR-24 could be involved in the

regulation of the invasive growth program in MLP-29, while the results ob-

tained on mir-296 are biased by the fact that miR-296 it is not expressed

in our in vitro model. Albeit interesting, the strong phenotype observed for

miR-296 could be due to the introduction of a non-physiological perturbation

in the system. Thus we focused on the characterization of the miR-24 pro-

gram in human breast cancer. In frame with the procedure previously defined
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Figure 3.14: NKI Training set: miR-24 training in the full NKI cohort of patients.

for the invasive growth signature we mapped all the genes predicted for being

target of miR-24 by Miranda, according to mirGen database to NKI human
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breast cancer dataset and constructed the NMC in the NKI dataset (Fig3.13)

we report the construction of the genomic classifier and its performance in

the NKI datasets. In the NKI breast cancer dataset dataset it was possible

to define a threshold to discriminates patients with good performance in the

prediction of good prognosis group: the classifier that finally leads to log-

rank p-value chi square < 4.412692−12, with a precision of 0.01075269, and a

sensitivity of 0.4220183.

Validation of the miR-24 genomic classifier.

To validate the significance of the miR24 classfier, we verified if it maintains

significance also in other breast cancer gene expression data.

The miR-24 classifier was mapped according to MAQC cross-mapping

table to breast cancer datasets [141, 35, 93], and confirmed its discriminating

power. Indeed, in all the datasets miR-24 classifier was able to discriminate

good and poor prognosis. Furthermore in the ILM-76 dataset the classifier

after a retuning of the MS threshold yelded a subgroup of aggressive cancer,

however the classifier could not match the performance of other genomic

classifier in multivariate analysis (data not shown). The reason for this result

could be attributed to the fact that, differently from what we did for IG-27,

we did not prioritized genes maximally discriminating patients outcome, and

to the fact that microRNA target predictors are affected by a relatively high

rate of false positive[78].

3.3 Gab2-driven AIG

After successfully constructing genomic classifiers for breast cancer starting

from an in vitro model for cancer progression based on mouse live cells, we

aimed to create a model more directly fitting the development of breast can-

cer. In this view the ability to grow in the absence of anchorage to the

extracellular matrix represents a key oncogenic property of cancer cells. To

screen for genes conferring anchorage independence, we exploited XenoArray
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Figure 3.15: miR-24 classifier validation

analysis, a recently developed strategy combining expression library trans-

duction with DNA microarray analysis in MCF10A normal human breast

cells.

3.3.1 Setup of a gain-of-function screening for anchor-

age independence in MCF10A cells.

For the functional screening, MCF10A cells were transduced with a commer-

cial mouse testis retroviral expression library (Stratagene) or with GFP as

a control. To increase the screening robustness, infections were performed

in duplicate (A and B), using an estimated multiplicity of infection of 1, to

avoid multiple integrations in the same cell. This led to the generation of
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four populations of cells: (i) GFP-transduced A, (ii) GFP-transduced B, (iii)

library-transduced A, and (iii) library-transduced B. To detect and quan-

tify library-derived transcripts we performed XenoArray analysis [85], by

extracting total RNA from the four cell populations and hybridizing the re-

sulting cRNAs on murine expression arrays, to allow specific detection of

library-derived transcripts of murine origin. The scatter plot in (Fig3.16)

shows the expression measurements obtained in GFP-transduced A cells (x-

axis) versus the measurements obtained in library-transduced A cells. Both

library-transduced populations clearly showed a consistent number of de-

tectable murine transcripts (945 and 1125 probes in infection A and B, re-

spectively, with a detection p-value <0.01).
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Figure 3.16: XenoArray analysis on MCF10A cells and acquisition of anchorage independence by

library-transduced selected cells. (A) Dot plot comparing the signal intensity for GFP-transduced and

library-transduced cells corresponding to infection A. (B) MTT growth assay on polyhema-selected pop-

ulations after 48h and 72h in adhesion or suspension, as indicated. Cell growth is expressed as a ratio

between library-transduced and GFP-transduced cells, after normalization to the amount of viable plated

cells at day 0. The data represent the mean and standard error of triplicate values. (C) Soft agar assay

on GFP- and library-transduced cells, unselected or selected on polyhema, as indicated. Phase-contrast

images were captured by a BD Pathway microscopic station (BD biosciences) after 3 weeks in agar. (D)

Quantification of colony formation as the fraction of colonies bigger than the 95th percentile of colony

size of the control cells (GFP-transduced non-selected), as described in Materials and Methods. The data

represent the mean and standard error of triplicate values.

Conversely, very few probes (around 100) cross-hybridized to endogenous

transcripts and were detected also in GFP-transduced cells. Based on our
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previous observations on XenoArray analysis sensitivity [85], we estimated

that a selection-driven 20-fold enrichment of even a rare transcript, bringing

it from 8 to 160 parts per million, should be enough to render it clearly de-

tectable by XenoArray analysis. We exploited the anchorage-dependence of

MCF10A cells for a selective screening based on culturing GFP- or library-

transduced cells on polyhema-coated plates. The four transduced popula-

tions were each split in two sub-lines: one was grown in adherence, the other

underwent six cycles of selection, each cycle consisting of 48h of culture on

polyhema followed by 24h of recovery on regular plates. Cells recovered from

GFP- and library-transduced cells after selection were named, respectively,

”GFP-SEL”and ”LIB-SEL”, and assayed for their ability to grow in the pres-

ence or absence of anchorage. LIB-SEL, but not GFP-SEL cells displayed

significantly higher growth rate than unselected cells, in both adherence and

suspension (Fig3.16B). Moreover, as shown in (Fig3.16C-D), only LIB-SEL

cells could form large colonies in soft agar, an in vitro hallmark of cell trans-

formation. These findings confirmed a ”library effect” not explainable with

insertional mutagenesis but likely deriving from the expression of advanta-

geous exogenous transcripts.

Identification by ”XenoArray” analysis of cDNAs conferring an-

chorage independence to MCF10A cells.

To identify library-derived transcripts likely to promote anchorage-independent

growth, we conducted XenoArray analysis on library-transduced cells, before

and after selection (Fig3.17A-B). We observed a significant number of probes

giving a higher signal in selected cells, indicating that cells expressing the re-

spective transcripts were enriched by the selection. To identify the genes

that were reproducibly enriched in both selections we calculated, for each

transcript, the log2ratio between its signal before and after selection. Inter-

estingly, the Gab2 transcript showed a strong enrichment in both selections

(average enrichment = 14-fold). The enrichment was observed with 3 differ-

ent probes, each designed in a different region of the Gab2 transcript. Other

55



genes, including Ntrk3 and Cyp11a1, displayed a stronger enrichment in se-

lection A (respectively, 41- and 49-fold in selection A, and 2- and 1.3-fold

in selection B). Quantitative Real-Time PCR analysis with mouse-specific

primers confirmed that Gab2 was the most enriched transcript, followed by

Ntrk3 and Cyp11a1 (Fig3.17C). Therefore, we focused on this gene and val-

idated its enrichment also at the protein level (Fig3.17D), thereby showing

that the exogenous cDNA enriched after the selection actually encodes the

full-length Gab2 protein. To verify whether exogenous Gab2 is essential for

anchorage-independent growth of the LIB-SEL population, we downregulated

it by RNA interference. Murine Gab2-shRNA transduction strongly reduced

the growth advantage of LIB-SEL cells, both in adhesion and in suspension.

Most importantly, these cells lost the ability to grow in soft agar, highlighting

a potentially remarkable role for Gab2 in anchorage-independent growth of

human mammary epithelial cells (data not shown).
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Figure 3.17: Identification of enriched cDNAs in anchorage-independent, library-transduced

MCF10A cells. (A-B) XenoArray analysis on library-transduced MCF10A cells before (x-axis) and after

(y-axis) selection, performed on first infection (A) and second infection (B). The gray circles highlight

enriched transcripts. (C) Real-time PCR validation of enriched transcripts in both selections. The y-axis

represents the relative increase in abundance of the transcripts in selected cells compared to unselected

cells. (D) Western blot analysis on GFP- and library-transduced cells before and after selection to detect

Gab2 protein enrichment.
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3.3.2 Validation and characterization of Gab2-driven

anchorage-independence.

Gab proteins, including mammalian Gab1, Gab2 and Gab3, comprise a grow-

ing family of scaffolding/docking molecules involved in multiple signaling

pathways mediated by receptor tyrosine kinases (RTKs) and non-RTK recep-

tors. As such, they function as assembly platforms that typically associate

to the plasma membrane and bring together the various signaling proteins

necessary to elicit a defined response to receptor activation.

To directly assess whether Gab2 may promote anchorage-independent

growth, we transduced MCF10A cells with the human Gab2 coding sequence,

cloned in a retroviral vector (gift of R. Daly;[138]). The levels of exogenous

Gab2 were comparable to those observed in the LIB-SEL population.
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Figure 3.18: Gab2 overexpression promotes anchorage-independent growth of MCF10A cells. (A)

MTT growth assay on control and Gab2-expressing MCF10A cells in adhesion or suspension, in the

presence of complete medium or of starving medium (no EGF and 2% serum) for 48h and 72h, as

indicated. Cell vitality was normalized to the amount of viable plated cells at time 0, and then expressed

as a ratio between mock and Gab2-expressing cells. The data represent the mean and standard error of

triplicates. (B) Quantification of colony formation according to the 95th percentile of the colony size of

control cells (Mock), as described in Materials and Methods. (C) Flow cytometry analysis of apoptosis

induction for Mock and Gab2-expressing MCF10A. Cell death was measured after 48h either in adhesion

or suspension, by assessing the number of hypodiploid nuclei with the DNAcon3 kit. The percent of

apoptotic cells is reported on the y-axis.
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As shown in (Fig3.18A), adherent GAB2-overexpressing cells showed a

significant increase in proliferation (2.6-fold and 2.9-fold, respectively at 48h

and 72h), which was further enhanced in the absence of anchorage (3,1-fold

and 3,2-fold, respectively at 48h and 72h). Notably, Gab2-driven growth

advantage was almost totally lost when cells were kept in starving medium

(no EGF, and serum lowered to 2%), indicating that Gab2 promotes pro-

liferation independently from cell anchorage to the ECM, but dependently

from the presence of EGF and/or serum. Accordingly, GAB2-overexpressing

cells formed significantly larger and more abundant colonies in soft agar,

compared to wild-type cells (Fig3.18B). This result is of particular signifi-

cance because these cells were transduced with GAB2 but not selected in

any way for growing in suspension. To evaluate whether Gab2 promotes an-

chorage independence by promoting survival of detached cells, we estimated

the fraction of dead cells after 48h of suspension culture, by cytofluorimet-

ric measurement of the propidium iodide (PI) signal, which detects plasma

membrane integrity (Fig3.18C). Surprisingly, after 48h of polyhema plating,

we detected a comparable extent of cell death between wild-type (85,21%)

and Gab2-expressing cells (83,23%). These data indicate that Gab2 is not

involved in the protection of MCF10A cells from anoikis, but rather allows

their proliferation even in the absence of the consensus coming from adhesion

to the ECM. As a further control, Gab2 downregulation by RNA interference

abrogated growth in suspension of MCF10A cells transduced with exogenous

Gab2. (not shown)

3.3.3 Gab2-driven anchorage independence requires Src

and involves Stat3.

Scaffolding proteins have been shown to play a pivotal role in transducing

signals from activated RTKs. Biochemical analyses and yeast two-hybrid

screens have identified several signaling molecules that can bind to Gab2

upon receptor activation, including the tyrosine phosphatase Shp2, leading

to activation of Erk and Jnk [16], the p85 subunit of PI3K, leading to Akt
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activation [81], and Src family kinases [98].

Therefore, to dissect the signaling pathways downstream Gab2 that could

mediate anchorage-independent growth, we examined the effects on cell vi-

tality of a panel of small molecule inhibitors targeting the above mentioned

signaling kinases (Fig3.19a).

The PIK3 inhibitor was the most effective, but with no differential be-

tween anchorage-dependent and independent growth, or between control and

Gab2-expressing cells, showing a general requirement of this pathway for

survival of MCF10A cells. The Mek inhibitor was slightly more effective

on Gab2-expressing cells in suspension, but still inhibited growth quite well

in WT cells. On the contrary, the Jnk inhibitor displayed modest effects

in all conditions. Finally , the Src inhibitor displayed the highest speci-

ficity towards Gab2-expressing cells in suspension, while the growth inhibi-

tion observed on adherent cells indicated that Src is required for anchorage-

dependent growth, regardless of the GAB2 status. A more detailed analysis

of the effects of Src inhibition is shown in (Fig3.19B). According to these

data, Gab2-driven anchorage independence requires Src, which typically is

activated by integrins when cells are adherent and becomes inactivated upon

detachment (17).

Consistently, western blot analysis on cell lysates from control and Gab2

expressing cells kept in adhesion or suspension confirmed Gab2-driven ac-

tivation of Src and of one of its downstream targets, Stat3 (Fig3.19C). In

adhesion, Gab2-expressing cells displayed a stronger basal phosphorylation

of Src. Active Src levels were reduced in cells kept in suspension, but while in

control cells Src activation was completely abolished at 48h, Gab2-expressing

cells maintained some phosphorylation. Previous studies have demonstrated

a biochemical and functional link between Src and Gab2 in driving EGF-

dependent and independent proliferation.

However, this is the first evidence reporting a key role of Gab2 in pro-

moting anchorage-independent growth via Src. Analysis of Stat3 activation

highlighted a similar but more pronounced effect of Gab2 expression, indicat-
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Figure 3.19: Evaluation of the contribution of different signaling pathways to Gab2-mediated en-

hancement of cell growth. (A) Mock and GAB2-overexpressing (GAB2) MCF10A cells were incubated in

adhesion (ADH) or suspension (SUSP) in the presence or absence of MEK inhibitor (PD98059, 40ÎijM),

PI3K inhibitor (LY294002, 50ÎijM), Src inhibitor (PP2, 10ÎijM), or JNK inhibitor (SP600125, 10ÎijM).

Cell vitality was assessed with the MTT assay after 24h from the treatment and the drug effect was ex-

pressed as percent growth inhibition (with respect to untreated cells). The data represent the mean and

standard error of triplicate values from two independent experiments. (B) Detailed MTT analysis of the

effects of Src inhibition by PP2 on cell growth in various conditions. Cell growth is expressed as percent

of Mock adherent cells. (C) Western blot analysis on Mock and Gab2-expressing cells in adhesion or

after 24h and 48h in suspension. Antibodies directed against the activated form of Src (phosphorylated at

tyrosine 416) and Stat3 (phosphorylated at tyrosine 705), or total Src or Stat3 were used.
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ing the capacity of Gab2 to sustain the activation of Stat3 also in the absence

of a substratum consensus. Since many studies provided evidence for Stat3

involvement in Src-mediated oncogenesis [138] and anchorage-independent

growth [120], this data suggest that Gab2 could signal through Src and Stat3

to accomplish anchorage-independent growth.

3.3.4 Endogenous Gab2 is essential for anchorage-independent

growth of normal and neoplastic cells.

The data shown so far demonstrate that constitutive, exogenous expression

of Gab2 promotes anchorage-independent growth. To verify if this effect is

mirrored by physiologically controlled Gab2 expression, we silenced by RNAi

the endogenous Gab2 in MCF10A and in human cancer cells.

In MCF10A cells, Gab2 silencing markedly reduced their growth both in

adhesion and in suspension (Fig3.20A) MDA-MB-231 breast cancer cells and

MDA-MB-435 melanoma cells responded to Gab2 silencing with a modest

reduction of proliferation (Fig3.20B), indicating a minor role of Gab2 in the

presence of attachment. Strikingly however, the ability of these cells to form

colonies in soft agar was almost completely abrogated by Gab2 silencing

(Fig3.20C).

This result reflects a prominent role of Gab2 in anchorage-independent

growth and possibly in the transformed phenotype of human cancer cells.

In accordance with our previous western blot data, Gab2 loss determined a

significant and concomitant decrease in Src and Stat3 activation (Fig3.20D).

Interestingly, the most evident reduction of Src-Stat3 phosphorylation was

observed for MDA-MB 231 cells, which endogenously express the highest

levels of Gab2 and most strongly reduce their soft agar growth upon Gab2

silencing.

Altogether, these data confirmed the Gab2-Src-Stat3 axis as a key pro-

moter of anchorage-independent growth of neoplastic cells.
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Figure 3.20: Knock-down of endogenous Gab2 impairs MCF10A growth and anchorage-independent

growth of human neoplastic cells. (A) MTT growth assay on wild-type MCF10A cells transduced with a

scramble vector (CTRL) or a Gab2-shRNA in adhesion or suspension for 48h. Cell vitality was normal-

ized to the amount of viable plated cells at time 0 and visualized independently for both cells. The data

represent the mean and standard error of triplicate values. (B) MTT growth assay on MDA-MB-231 and

MDA-MB-435 cells transduced with scramble vector (CTRL) or Gab2-shRNA in adhesion or suspension

for 48h. Cell vitality was normalized to the amount of viable plated cells at time 0 and visualized indepen-

dently for both cells. The data represent the mean and standard error of triplicate values. (C) Soft agar

growth of cells expressing Gab2 shRNA or scramble vector (CTRL). Phase-contrast images were captured

by a BD Pathway microscopic station (BD biosciences) after 3 weeks in agar. (D) Western blot analysis

of Src and Stat3 activation in control and GAB2 shRNA-transduced cells, as indicated.
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3.3.5 A Gab2 transcriptional signature correlates with

outside-inside signaling

Functional characterization Gab2 confirmed its role in promoting MCF10A

growth in suspension when overexpressed. Interestingly, endogenous Gab2

downregulation in neoplastic cells abrogated their growth in soft agar, while

only minimally affecting their adherent growth. These results support Gab2

as a pivotal player in the signal transduction involved in anchorage indepen-

dent growth in mammary epithelial cells.

Therefore, to gain further insights on Gab2-driven anchorage-independence,

we performed gene expression on MCF10A cells transduced with Gab2 and

selected by growth in the absence of anchorage in respect to GFP transduced

MCF10A after selection. This analysis highlighted 221 probes, corresponding

to 205 independent genes: the ”GAB2-signature”. The signature revealed a

significant enrichment (p < 2.5 x 10−5) in genes related to cell proliferation.

Among these genes we found several cyclins and cell cycle regulators es-

sential for G1/S and G2/M phase transitions of cell cycle. Also gene in-

volved in intracellular signaling were found to be enriched, and leucocyte

trans-endothelial migration

Interestingly, the GAB2-signature was also significantly enriched (p <

0.0023) in genes whose expression distinguishes Dasatinib-sensitive and re-

sistant breast cancer cell lines [63]. Dasatinib is a small molecule inhibitor of

Src-family kinases employed for the treatment of leukemias, currently being

assessed in multiple clinical trials on various solid tumors, including breast

cancer and melanoma.
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3.3.6 Construction of a Gab2 signature based classifier

for breast cancer prognosis

To extend the value of the in vitro model of Gab2-driven anchorage inde-

pendence, we verified if the ”Gab2-signature” could be associated to human

breast cancer aggressiveness. To this aim, the signature was mapped on a

311-sample breast cancer dataset generated at the Netherlands Cancer Insti-

tute on 2-color oligonucleotide microarrays (NKI dataset) and published in

two works [132, 133].

After proper filtering, 150 array’s probes were mapped to the Gab2-

signature. Interestingly, the signature resulted to be strongly enriched in

genes discriminating breast cancer patients with or without metastatic re-

currence within five years from the initial diagnosis (p < 10−5; see Supple-

mentary Methods).

On the basis of these results, using the nearest-mean classifier approach

[143], we built a classifier in the NKI dataset, which provides a ”Metasta-

sis Score” discriminating patients with good and poor prognosis. Functional

data mining revealed two specific gene functional modules differentially asso-

ciated with breast cancer prognosis in this dataset: (i) a sizeable proliferation

module positively correlated to metastatic progression, and (ii) an interesting

module composed of negative regulators of cell-matrix interaction, migration

and invasion, expressed at higher levels in good prognosis samples.

To minimize the rate of false negatives (patients classified as ”good prog-

nosis” that instead developed metastasis within 5 years), we set the threshold

for the ”good prognosis” class at a Metastasis Score equal or lower than -0.15,

(Fig3.21), with very significant p-value, (p < 3.959715−06, log-rank chi square

= 21.28425) and good specificity and sensbility for the good prognosis group

0.06349206 and 0.5412844.
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Figure 3.21: Gab2 classifier tuning in Neatherland Cancer Institute dataset: We constructed the

Gab2 classifier in a set of 311 patients. Here we calculated the median expression in good and poor

prognosis. Metastasis score is calculated with Nearest mean classifier as a prognostic index, correlated

with metastatic risk. We tried different threshold, and identified best thresholding at -0.15 MS. Finally

it is reported the kaplan-meier analysis on the NKI breast cancer dataset according to gab2-signature

classification [patients classified as good prognosis (green line) o poor prognosis (red line) by the GAB2-

signature.]
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Figure 3.22: The GAB2-signature predicts breast cancer metastatic relapse. (A) Heatmap showing the

expression of the two main gene functional modules in the NKI-311 breast cancer dataset. The samples

(columns) are ordered by decreasing GAB2-signature metastasis score (GAB2 MTS Score), which is

graphically reported in the second row. The first row shows the occurrence of metastatic relapse within

five year. The arrow at the bottom indicates the -0.15 threshold of metastasis score discriminating good

and poor prognosis samples, also highlighted by a white vertical line crossing the heatmap. Green and red

dots on the right highlight the genes annotated to the two functional modules, respectively downregulated

and upregulated in poor prognosis samples. (B) Kaplan-Meier analysis on a dataset of 198 breast cancer

samples classified as good prognosis (green line) or poor prognosis (red line) by the GAB2-signature. (C,

D) Kaplan-Meier analysis on the same 198-samples dataset subdivided in two prognostic subgroups (C =

poor prognosis, D = good prognosis) by the Adjuvant!Online clinical score. Each subgroup is then further

subdivided by the GAB2-signature in good prognosis (green line) or poor prognosis (red line) samples.
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Validation of the Gab2 genomic classifier in independent breast

cancer datasets.

It is possible that the good performance obtained in the training set would

would reflect of systematic overfitting of the models, in the datasets. It is

good practice in class prediction analysis to validate the results in indepen-

dent datasets, as proposed by many statistical works [105]. Thus we acquired

several Affymetrix breast cancer datasets from literature [35, 141, 93] and an

in house built dataset, where we applied our genomic classifier to check the

robustness of the performance. Finally we ensured the clinical relevance of

our genomic classifier in respect to other published genomic classifiers.

The Gab2 classifier was mapped according to MAQC cross-mapping table

to breast cancer dataset previously mentioned and proved of being capable to

classify patients with high accuracy using the same threshold of Metastasis

Score, despite the platform change (p < 10−5). When samples were subdi-

vided by their prognostic class according to standard clinical/pathological

parameters, as defined by the Adjuvant!Online score [116], they could still

be reliably further subdivided in good- and poor-prognosis subgroups by the

GAB2-signature. Accordingly, when compared in univariate and pairwise

multivariate analysis, the GAB2-signature largely outperformed the Adju-

vant!Online score in predicting metastatic progression. Univariate and mul-

tivariate statistics were also calculated, on the same 198-sample dataset,

for the Gab2 signature and three other published genomic prognostic classi-

fiers: the 76-gene ”Veridex index” [141], the 70-gene ”MammaPrint”[132], for

which the 198-sample classification is provided by the Transbig Consortium

[35] and the ”Genomic Grade Index”, calculated according to the published

methodology [121]. Also these analyses showed that the GAB2-signature pro-

vides strong and independent prognostic information. Clinical significance of

the Gab2 signature was further confirmed on an additionals breast cancer

datasets assessing its predictive value[93, 141]. (Fig3.23)
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Table 3.3: TRANSBIG Paired multivariate analysis Gab2 vs Genomic Grade

Index
p coef lower .95 upper .95

Gab2 0.02 2.61 1.62 115.46

Ggi 0.15 0.69 0.79 5.06

Table 3.4: TRANSBIG Paired multivariate analysis Gab2 vs Veridex

p coef lower .95 upper .95

Gab2 0.00 2.87 2.39 130.47

veridex 0.08 1.06 0.89 9.48

Table 3.5: TRANSBIG Paired multivariate analysis Gab2 vs Mammaprint

p coef lower .95 upper .95

Gab2 0.05 2.07 0.97 64.44

MamPrint 0.05 2.07 0.97 64.65

Table 3.6: TRANSBIG Global multivariate analysis for all signature

p coef lower .95 upper .95

Gab2 0.14 1.66 0.57 49.00

MamPrint 0.09 1.90 0.77 57.89

veridex 0.09 1.01 0.84 9.00

Ggi 0.61 0.25 0.49 3.33

To obtain an optimal performance in the ILM-76 samples, we needed to

change the MS threshold to classify patients. There are may explanation for

this results, it could be due to the change of platform standard, thereby a

strategy similar to the one adopted for the invasive growth signature could

lead to a better performance. Otherwise it could be a specific feature of

the Gab2 classifier index that is able to specifically recognize a specific group
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Figure 3.23: Breast cancer datasets: Gab2 classifier performance on a large cohort of patients

good prognosis patients, while this dataset is characterized by high frequency

of aggressive disease.

Nevertheless in all the published dataset the Gab2-classifier proved to be

a strong predictor with the high precision in the definition of good prognosis

group, thereby userfull ”biomarker” in therapy decision making application.

3.4 NeoAdjuvant Reponse Prediction

In the previous part of the workwe could construct genomic prognostic clas-

sifiers for breast cancer metastatization, useful for therapy decision mak-

ing, defining a group of good prognosis patients, in most of the cases with
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good precision, and a group of poor prognosis patients, with good sensibility.

These genomic ”biomarker” along with published genomic classifiers, provide

a rationale to spare adjuvant therapy to breast cancer patients and reduce

overtreatment. Nevertheless, we still do not know which patients will respond
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Figure 3.24: neo-adjuvant prediction of the in vitro model classifier. ROC curves from both the

invasive growth and the Gab2 signature show that the classifiers are able to discriminate RC patients

from pCR. Application of the genomic prognositic classifiers permits the identification of a group of

patients with low metastatic risk and low probability to respond to neo-adjuvant therapy

to the standard treatment.

Recently Hess et colleagues [60] released a study in which they carried out

gene expression profiling of 133 fine-needle aspiration specimens taken before

neo-adjuvant treatment, in particular paclitaxel and fluorouracil-doxorubicin-
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cyclophosphamide (T/FAC), After completion of the treatment, at surgery,

they checked whether the patient responded or not to the therapy, and sub-

divided the response in two categories: pCR(34 patients), pathological com-

plete response, for the patients that do not show any in-situ tumor at the

end of the neo-adjuvant treatment and RC(99 patients), for patients with

residual cancer. Thus we checked our prognostic classifiers are also associ-

ated with response to neo-adjuvant therapy (Fig3.25). Notably the patients

with low MS, thereby the patients predicted to be good prognosis, with lit-

tle metastatic recurrence probability curiously are also the patients that do

not respond to neo-adjuvant therapy. Conversely pCR patients are mostly

classified as poor prognosis. Indeed using the Gab2 classifier, we if we apply

the Gab2 classifier we found that only 6 of the 60 patients classified as good

prognosis responded to the therapy, while we could classify only 6 patients

as good prognosis with the invasive growth signature and none responded

the neo-adjuvant treatment. This result is controversial: it is quite obvious

that response to neo-adjuvant therapy is an hallmark of good prognosis, how-

ever few patients with good prognosis will respond to neo-adjuvant therapy,

it shound be noticed that as previously mentioned, our genomic classfiers

are enriched for genes associated with celle proliferation, a key function for

cancer onset and necessary feature for chemotherapy response.

Therefore we can suppose that the MS derived from our models are guided

by a strong module of cell proliferation, which finally lead to a useful prognos-

tic index to spare chemotherapy to patients, because it identifies two groups

of patients: one characterized by low proliferation with low metastatic risk

and therefore low opportunity to respond chemotherapy treatment, the other

with high metastatic risk and higher probability to respond to neo-adjuvant

therapy.
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Chapter 4

Discussion

In the present study we characterized by gene expression profiling various

in vitro model and assess involvement related to human cancer progression,

leading to the construction genomic classifiers potentially useful in clinical

therapy decision making for breast cancer.

The invasive growth signature, was defined in vitro on mouse liver stem /

progenitor cells, was composed of genes whose expression is correlated to ag-

gressiveness and metastatic relapse of various types of human cancer, thereby

crossing species (mouse vs human) and tissue (liver vs breast, lung and

prostate). Moreover, the signature yielded a robust classifier for metastatic

relapse of human breast cancer and correctly classifying breast cancer sam-

ples also in a microarray platform different from the one used for training

the classifier. The minimal overlap observed between the invasive growth

signature and the other published signatures analyzed is not surprising, as

poor overlap is typical also when the signatures are obtained with strategies

much more similar to each other[141, 132]. In our case, such a divergence it is

likely to reflect not only the differences in the strategies, but also the under-

lying biological significance. In this view, the functional readout of the IG-27

signature is of particular interest, as it highlights metastasis-prone tumours

having a higher proliferation rate combined with a sort of ”desensitization” to

exogenous stimuli, be they extracellular ligands, steroid hormones or cell-cell
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and cell-matrix contacts. This peculiar functional status is likely to derive

from strong constitutive oncogenic stimulation, promoting both proliferation

and negative feedbacks on inbound signals as recently highlighted by Amit

and colleagues[?], and possibly suggests a therapeutic rationale impinging on

both cell proliferation and cell signaling.

The second task of this work has to identify and functionally characterize

miRNAs potentially modulating the HGF-driven invasive growth program in

epithelial cells. To this aim, we conceived an innovative approach to prioritize

candidate miRNAs, based on the analysis of expression profiles performed on

MLP-29 cells activating invasive growth in response to HGF stimulation. It

is commonly accepted that many miRNA target genes display a common reg-

ulation at the transcript level and in some cases they also exhibit common

transcript decrease in response to miRNA expression. We reasoned that at

least part of the transcript level changes in response to HGF could be further

modulated by HGF-driven miRNA regulation. If this was the case, specific

groups of HGF-regulated genes should contain abundant target sequences

for specific miRNAs. To detect miRNAs potentially modulating HGF-target

genes and thus the invasive growth response, we developed an algorithm

calculating the abundance of miRNA-target sequences in the whole set of ex-

plored genes and estimating statistical enrichment of such sequences in small

gene subgroups, namely, clusters of HGF-responsive genes. This enrichment

analysis revealed that target sequences for miR-24 and miR-296 are partic-

ularly abundant in genes induced at 24 hours from HGF stimulation. The

obtained enrichment leads to an interesting point as it is demonstrated that

miRNA regulation typically drives transcriptional inhibition, not induction,

we could partially explain this result if we consider that miRNAs are not

the only regulators in the pathway driving from genes to proteins. Maybe in

this case their transcriptional regulatory effect is covered by those triggered

by HGF that result to be globally stronger. Real-time PCR analysis showed

that only miR-24 was expressed in the cell line and more interestingly that

its expression was regulated by met activation. Regarding possible robe for
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miR-296 role in invasive growth, although such anyway is suggested by the

functional experiments and this miRNA could be physiologically expressed

in other cell lines. To test the role of our candidates on HGF-induced in-

vasive growth activation we overexpressed them in MLP-29 cell line and we

performed a scatter assay. Both miR-24 and miR-296 produced a higher

sensitivity to HGF in scattering induction. To further dissect this informa-

tion we tested separately proliferation and invasion capabilities produced by

miRNAs deregulation. miR-24 revealed to be an inducer of cell motility in

an HGF-dependent manner having only minimal proliferative effects, while

miR-296 exhibited on both remarkable inducing effects. This is probably

due to the fact that miR-296 is not expressed in MLP-29, therefore its ex-

ogenous expression gives stronger effects. Experimental results led to the

necessity of further analysis of miRNA targets as they highlighted a possible

circuit of coordinated up-regulation of one miRNA and of its targets that is

somehow puzzling if we thought to miRNAs as simple cooperator in mRNA

down-regulation. Experimental validations on miR-17 upon c-myc induction

although demonstrated the existence of these kind of circuit[34, 101]. Loops

like the one supposed in this study found a biological role in the preven-

tion of noise-driven cell program activation and can be classified as feed-back

miRNAs circuitry according to the criteria individuated by Tsang in a study

about miRNA driven networks [129]. The careful analysis of miR-24 targets

identified Csk and Talin as interesting candidates to explain this paradoxi-

cal concomitant induction of a gene and a miRNA repressing it, leading to

hypothesize the circuit displayed in (Fig4.1). At 1-6 hours (Fig4.1A), both

miR-24 and c-Src are induced by HGF. This led to a strong Src activation

via a direct biochemical pathway, downstream Met, and an indirect pathway

involving down-modulation of its inhibitor Csk by miR-24. This activation

is tightly time-dependent, since at later times (Fig4.1B) miR-24 returns to

basal level and its target Csk is upregulated at the transcript level. A fur-

ther enhancement of the negative feedback loop impinging on Src is produced

through the transcriptional down-modulation by HGF of one of its main ac-
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tivators, Shp2.
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Figure 4.1: Invasive growth feed back loop involving miR-24 and its target Csk

As represented in the next picture, c-Src induction at 1 hour altogether

with the concomitant Talin down-modulation driven by miR-24 could lead

to a transient increase of cell fibres formation, taking advantage also on focal

adhesion relative decrease, to establishing the dynamic background needed

to produce invasive phenotype at 24 hours.

At this time miR-24 decrease altogether with transcriptional induction of

Talin and c-Src inhibitor produces the inversion of the equilibrium between
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the pathways leading to focal adhesion and stress fibres formation. The new

equilibrium settled by HGF at later time-points could help in the establish-

ment of invasive phenotype which becomes clearly visible on MLP-29 after

24 hours of HGF treatment. Therefore the thigthy time regulated miRNA

expression could be essential to modulate transcriptional level in order to

permit the initial higher motility propension needed to produce epithelial

disruption and then to establish the mesenchimal transition driven by HGF.

This study validated SeaMT software results and demonstrated miR-24

and miR-296 involvement in invasive growth regulation through the increase

of HGF sensitivity and the induction of higher proliferation and motility

abilities. Finally the effects uncovered in experimental assays had to the

definition of a possible miRNA-driven circuitry needing to be tested in further

experiments, altogether demonstrating the role of miRNA as cell specific

modulators of RTK response.

Future developments will certainly involve the targets validation through

c-Src inhibition and western blots of Talin, p-c-Src and Csk during the HGF

stimulation time-course.

We would also like to test the role of our miRNAs in other cell mod-

els expressing met receptor and possibly displaying basal expression levels

of miR-296 and not of miR-24, to extend the validation of our results and

compare the effects of these miRNAs starting from similar physiological ex-

pression levels. From the bioinformatics point of view we already start to

look for the enrichment of miR-24 and miR-296 targets on other gene ex-

pression profiling and to look for their expression level on tumoral expression

profilings.

In supporting to these results miR-24, targets were also found to be en-

riched in subsets related with poor prognosis. Together with the enrichment

of invasive growth this results suggest that the miR-24 could be involved in

the regulation of physio-patological program involved in cancer onset and

progression. The classifier constructed on these genes was found to partition

breast cancer, albeit not better than available classifiers. In agreement with
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the construction of the invasive growth classifier it would be possible that pri-

oritization of the genes most discriminating human cancer pathologies would

improve the performance of the genomic classifier. This could be achieved

either with the prioritization of the genes inside the cancer dataset, or by

the interpolation of predicted target for miR-24 from different prediction

algorithms.

After successfully constructing genomic classifiers for breast cancer start-

ing from in vitro models quite far from the human disease, we focused on

a closer in vitro cell model, MCF10A, to construct a model for anchorage

independece; to ensure successful metastatic dissemination, malignant cells

must acquire the ability to grow in the absence of their environment of origin.

In fact, the capacity of cells to survive and proliferate in vitro in the absence

of integrin-mediated adhesion strongly correlates with tumorigenesis in vivo

and may enable tumor cells to metastasize and grow at inappropriate sites

in the body[32].

We hereby describe a key role in vitro anchorage-independent growth of

Gab2, a multiadaptor protein devoid of enzymatic activity. Gab2 is a mem-

ber of the Grb2-associated binding protein (GAB) gene family [55]. They

are so called ”scaffolding” or ”docking” proteins because of the presence of

multiple functional motifs mediating interactions with many other signal-

ing molecules [96]. GAB proteins are involved in signaling events triggered

by a variety of stimuli, including GFs, cytokines, G-coupled receptors and

T- and B-lymphocyte antigens, ultimately regulating cell growth and differ-

entiation [16, 74]. In particular, Gab2 was found to mediate transformation

driven by oncogenes impinging on the PI3k/Akt and Ras/Erk pathways [111].

Among the Gab2 direct interactors are proteins with key roles in human can-

cer when mutated, such as PI3K and the tyrosine phosphatase Ptpn11 (also

known as Shp2). Recent work suggested that the oncogenic properties of

Shp2 mutant proteins require signal enhancement by Gab2 [148]. Interest-

ingly, Gab2 maps to a chromosomal region (11q13) amplified in 10-15% of

breast cancers and its overexpression was confirmed in several breast cancer
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cell lines [31]. The role of Gab2 in mammary tumor metastasis was also ex-

plored and confirmed in mouse models [77]. We now show that in vitro Gab2

strongly promotes anchorage-independent growth of MCF10A normal breast

cells. This information extends the previously described growth-promoting

activity of Gab2 in the same cells when adherent [?]. We also found that

Gab2-driven anchorage independence is not due to a protection from cell

death upon detachment. This finding was unexpected, given the fact that

Gab2 potentiates the PI3k/Akt and Ras/Erk pathways, but it is in line

with previous reports indicating that Gab2 does not prevent apoptosis of

luminal cells during morphogenesis of MCF10A cells [10]. Moreover, our

experiments using small molecule inhibitors showed that the PI3k/Akt and

Ras/Erk pathways are required for MCF10A survival and proliferation in-

dependently of the adhesion status and of Gab2 expression. A much more

specific role was found to be played by Src, whose inhibition had no effect on

wild-type cells in suspension, but strongly impaired their adherent growth,

confirming that Src conveys the proliferative consensus provided by integrin

engagement [98]. However, Gab2-expressing cells required Src activity also in

suspension, providing a strong rationale for Src involvement in Gab2-driven

anchorage-independence. The biochemical link between Gab2 and Src can

be provided by Shp2, previously described to directly bind Gab2 [81] and to

activate Src[149]. It is of particular interest that Gab2-sustained growth in

suspension was impaired when cells were cultured in the absence of EGF,

indicating that Gab2 can only overcome the lack of adhesive consensus in

the presence of an upstream signal from GFs. Recently, Gab2 was found to

promote GF independence, but in cooperation with oncogenic Src [9]. There-

fore, Gab2 can rescue cells from the need of two concomitant proliferative

stimuli - activated GF receptors and activated Src when at least one of the

two is present at sufficiently high levels. It should be noted that the dual

consensus system involving GF receptors and integrins/Src is not the result

of two parallel and totally independent pathways. Rather, several points of

reciprocal influence and cross-talk have been described [46], and Gab2 can be
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a key rheostat and integrator, allowing for a ”spillover” of the signal across

the two pathways.

In this view, proliferation of non-adherent MCF10A cells could be pro-

moted by a GF-driven direct activation of the Erk and Akt pathways and

indirect, Gab2-mediated activation of Src and of its downstream signaling

molecules, in particular Stat3. Indeed, Stat3 has been already involved in

Src and Jak1-driven proliferation of human breast carcinoma cells[50] and

in anchorage-independent growth of cancer cells [150]. Moreover, Gab2 was

found to contain a functional Stat3 binding motif promoting its recruitment

and activation [95]. Our biochemical data confirmed the contribution of Src

and Stat3 to Gab2-mediated anchorage-independent growth. Gab2 expres-

sion increased Src and Stat3 phosphorylation both basally and after pro-

longed suspension culture. Moreover, Gab2 downregulation by RNAi led to

reduction of Src and Stat3 activation not only in MCF10A cells constitutively

expressing exogenous Gab2, but also in neoplastic cells loosing anchorage in-

dependence as a consequence of endogenous Gab2 silencing. In line with

this, our gene expression analysis showed that a significant fraction of the

genes whose expression is regulated by Gab2 are also differentially expressed

in breast cancer cells resistant or sensitive to Dasatinib, a Src-family kinase

inhibitor. Overall, these findings configure a central role of Gab2 in anchor-

age independence, and could provide a rationale for developing a predictor

of response to Dasatinib or other Src-family inhibitors in breast cancer based

on the levels of Gab2 and/or of its target genes.

It is noteworthy that the role of Gab2 in anchorage-independent growth

emerged within the context of a high-throughput selective functional screen-

ing, in which this gene competed with several thousand others. Apart from

GAB2, the analysis revealed a reproducible enrichment also for a well-known

transforming gene, NTRK3, previously found to play a key role in anoikis

resistance [53], and for a cytochrome P450 superfamily member, CYP11A1,

whose polymorphisms are associated with breast cancer risk [139]. Therefore,

these two genes could represent internal controls of the screening and further
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confirm its effectiveness.

Finally, it is of particular significance that the in vitro-defined Gab2 tran-

scriptional signature yielded a robust classifier for metastatic relapse of hu-

man breast cancer. Of the two key functional modules found in the signature,

the proliferation module, positively correlated with metastasis, adds further

informative genes to the already described core of proliferation genes associ-

ated to breast cancer progression [146]. More novel is the module of genes

negatively correlated with metastasis. For six genes of the module, existing

information allows drafting a unifying view, comprising extracellular, trans-

membrane and intracellular components that negatively affect cell-matrix

interaction, migration and invasion: (i) two extracellular proteins that, re-

spectively, inhibit matrix-degrading proteases and remove fucose from ECM

glycans, thereby impairing ECM binding and invasion by cancer cells [140];

(ii) the gene, encoding an integral membrane protease whose expression by

stromal cells is negatively correlated with metastatic progression [4]; (iii) that

encodes a 4-spanning integral membrane protein widely expressed at apical

junctions of epithelial cells, increasing transepithelial electrical resistance and

decreasing migration[108]; (iv) negative regulators of key signaling systems

promoting, respectively, cell migration and cancer progression: Rho-family

GTPases and tyrosine kinase receptors like EGFR and FGFR. These two

functional modules, within the context of the GAB2-signature, altogether

generate a prognostic classifier predicting metastatic progression with high

accuracy, independently from existing genomic signatures and outperforming

the clinical-pathological prognostic parameters currently integrated into the

Adjuvant!online web tool to provide indication for adjuvant chemotherapy

[116]. These results pave the way to further validation of the GAB2-signature

on large breast cancer cohorts to confirm its potential clinical usefulness.
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4.1 Perspective and conclusions

we successfully constructed genomic signature from our in vitro models that

yielded robust classifiers for metastatic relapse of human breast cancer and

correctly classifying breast cancer samples also in a microarray platform dif-

ferent from the one used for training the classifier. These classifiers are of

particular interest considering that they are not only able to discriminate

breast cancer progression, but they could also predict the response to neo-

adjuvant therapy. This aspect is extremely useful in the context of therapy

decision making being able to identify a large subgroup of patients to which

chemotherapy should be spared, having low metastatic risk and low proba-

bility to respond to neo-adjuvant treatment.

Actually these results validated also the in-vitro models, and our ”bottom-

up” workflow to construct genomic classifiers driven by a cellular model. In

fact it is notable that starting from a restricted number of gene we could

achieve classifying performance competing with and in some cases overcoming

the published genomic classifiers, FDA approved, designed with ”top-down”

approaches.

Exploiting the experience developed in the process, we are standardiz-

ing our pipeline in which gene lists derived from in vitro biological models

related to cancer progression enter an automated workflow (implemented in

R-bioconductor) exploiting several published datasets to construct and vali-

date classifiers predicting metastatic relapse. Significant relationship between

the signature and breast cancer prognosis is established by confronting the

performance of the signature-derived classifier with a distribution of random

performances obtained in a Montecarlo simulation carried out on random

gene lists of the same size of the signature. Here we propose a prototype in

which we assess the performance of a Gab2 classifier, constructed on several

dataset and finally validated on the Transbig validation dataset. On the ba-

sis of this simulation we can confirm the validity of the classifier, and set a

reference for comparison of the classifier performance.

All these classifiers need extensive validation of their performance in a
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larger cohorts of patients, for their prognostic significance and for their abil-

ity to predict response to chemotherapy, in particular we want to verify

if we have a specific predictor for paclitaxel and fluorouracil-doxorubicin-

cyclophosphamide (T/FAC), or if our signature yield a wider spectrum of sen-

sibility. Essentially it would be interesting to characterize the patients sub-

groups and find correlation between genomic signature and clinical-pathological

parameters that may address the activity of RTK activity driven by invasive

growth or by Gab2 activation. In this frame it is a major goal to construct

genomic classifier for specific subgroups of clinical relevance, such as ER-

patients. Finally we may be interested in investigating for the rebuilt of clas-

sifiers for specific breast cancer subsets. The final aim of the work should

be providing a tool for clinical routine, therefore we are planing to validate

the performance of the classifiers in microfluidic cards, a technology which is

much more portable in clinic in respect to microarray technology.

A broader perspective would be to extend our investigation to other level

of gene regulation. Albeit we designed a bioinformatics tool to identify mi-

croRNAs involved in the regulation of gene expression, in this study we

mainly focused on construction of genomic classifier on the basis of gene

expression. Actually only a small fraction of -OMIC technologies have been

explored and there are more than few evidences, [135, 131, 21] that integra-

tion of several feature in cell biology, such as protein translation, microRNA

expression, could provide best insight in complexity of pathological transfor-

mation of normal cell during cancer onset and progression.
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Chapter 5

Material and Methods

5.1 ILM-76 dataset

RNA extraction and processing Total RNA was extracted using the Trizol

Plus purification Kit (Invitrogen, cat.no.12183555), according to the man-

ufacturer’s protocol. RNA quantification and quality assessment was per-

formed on a Bioanalyzer 2100 (Agilent). Synthesis of cDNA and biotinylated

cRNA was performed using the Illumina TotalPrep RNA Amplification Kit

(Ambion Cat. n. IL1791), according to the manufacturer’s protocol. Qual-

ity assessment and quantification of cRNAs were performed on Bioanalyzer

2100. Hybridization of cRNAs (1500 nanograms) was carried out using Il-

lumina Beadarrays (Human Ref8 V1). Array washing was performed using

Illumina High-stringency wash buffer for 10 min at 55, and followed by stain-

ing and scanning according to standard Illumina protocols. Probe intensity

data were obtained using the Illumina BeadStudio software, and further pro-

cessed with R-Bioconductor, and lumi package[104, 52] and Excel software.

5.2 Dunnett’s T-test

To identify genes differentially expressed in multiple timepoints we employed

the Dunnett’s T-test [40], an inferential parametric test designed to compare
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the mean of each of several experimental groups with the mean of a control

group. A simple description of the properties of the Dunnett’s T-test can be

found at http://davidmlane.com/hyperstat/B112114.html The test evaluates

the hypothesis, in our case the change of log2expression values, by means of

an estimation of the mean square error within groups, corrected by the har-

monic mean of the sample numbers. The test was performed on log2scaled

values, with m = 1. In the standard DunnettâĂŹs test m is absent and the

t threshold for significance can be derived from the Dunnett’s t tables, avail-

able for example at http://davidmlane.com/hyperstat/table Dunnett.html.

In our case, with m different from zero, we had to estimate the correct t

value by running the test iteratively on groups from permutations of experi-

ments, thereby estimating the False Discovery Rate (FDR;. Indeed, our FDR

analysis showed that the Dunnett’s test with m different from zero is more

powerful, and much more reliable than classical T-test. To prioritize differ-

entially regulated genes, we choose t = 2, with an estimated alpha (FDR)

of <0.05 according to the median distribution of 5000 randomly permutated

datasets.

5.3 RNA extraction and processing for mi-

croarray analysis of Gab2 unselected and

selected cells

RNA from GFP transduced cells, GAB2 transduced cells before and after

the anchorage independent-growth selection was extracted using the TRI-

zol reagent (Invitrogen), according to the manufacturer’s protocol, and then

further purified using the RNeasy Mini kit from Qiagen. The quantification

and quality analysis of RNA was performed on a Bioanalyzer 2100 (Agilent).

Synthesis of cDNA and biotinylated cRNA was performed using the Illumina

TotalPrep RNA Amplification Kit (Ambion Cat. n. Probe.Illumina1791),

according to the manufacturer’s protocol. Quality assessment and quan-
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tification of cRNAs were performed on Bioanalyzer 2100. Hybridization of

cRNAs (20 micrograms) was carried out using Illumina Human 48k gene

chips (Human Ref8 <V2).Array washing was performed using Illumina High-

stringency wash buffer for 30 min at 55, and followed by staining and scan-

ning according to standard Illumina protocols. Probe intensity data were

obtained using the Illumina BeadStudio software, and further processed with

R-Bioconductor [52]. Probe intensity data were obtained using Illumina

BeadStudio 1.5.1.3 software, and further processed with R-Bioconductor and

Excel software. Data was normalized according to Rank-Invariant and a fil-

ter for detection was applied in order to discard genes with a Detection Score

beyond 0.99 in at least one condition. Filtered data were scaled to remove

negative expression values from the analysis.

5.4 SeaMT, signature enrichment analysis for

microRNA targets

We developed an R-Bioconductor [104, 52] package for microRNA binding

sites enrichment analysis, SeaMT, depending on two available libraries, Heat-

plus and biomaRt. This package takes advantage from the published database

for microRNA binding sites such as Miranda, in the version provided by Di-

ana [90]. The core function of the package compares the microRNA targets

occurrence in a set of genes in respect to a background defined by the user.

The analysis is subdivided in 4 steps:

1. Definition of the background according to genes expressed in the model

2. Definition of the signature of interesting genes

3. Mapping the background and the signature to microRNAs binding site

database and count the number of occurrences of each microRNAs binding

site in the two lists of genes.

4. Enrichment analysis of microRNA targets according to hypergeometric

distribution.

SeaMT is based on database of putative targets biased by high level of false
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positive. To overcome this limits we applied very stringent selection criteria.

First of all we corrected for multiple testing with Bonferroni correction ac-

cording to the number of microRNA in the database; second we considered

only those microRNA emerging from enrichment analysis also in the human

orthologous genes. Finally we exploited the analysis onto independent mi-

croRNA binding site database ”PITA” [78] to verify the significance of the

candidates.

5.5 Functional annotation and functional en-

richment analysis

Probe identifiers contained in the annotation manifest provided by Illumina

were loaded on the David Ease portal (5) to generate a background list (all

probes) and the GAB2-signature list. Enrichment in biological functions for

the GAB2-signature genes was evaluated using the ”functional annotation

chart” function on the portal.

5.6 Enrichment in genes discriminating the

Dasatinib response

To indentify molecular markers predictive of response to Dasatinib, Huang

and colleagues conducted gene expression profiling using Affymetrix HGU133

arrays on a panel of 23 breast cancer cell lines, either resistant (16 lines)

or sensitive (7 lines) to Dasatinib (GSE6569). For each probe in the array,

the differential expression between Dasatinib-sensitive and resistant cells was

calculated using the Signal to Noise ratio [54]. To assess the enrichment of

the GAB2-signature in genes with high SNR, Gene Symbols corresponding

to the signature were mapped on the dataset, resulting in 356 Affymetrix

probe sets. Subsequently, the number of signature genes with absolute SNR

values falling in the top 5% (or 10% for miRna enrichment) of all the dataset
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was counted.

5.7 Enrichment in genes discriminating good

and poor prognosis breast cancer.

For metanalysis on breast cancer microarray data, two public available data

sets from the Netherlands Cancer Institute [132, 133] (NKI; http://www.rii.com/publications/2002/d

were used and merged into a unique 311-sample dataset (NKI-311). The data

were filtered to remove probes whose signal and standard deviation never

reached the 50th percentile of their respective distributions. Further filtering

was applied on probes for which more than 99% of the expression values were

missing. The probes were annotated with gene symbols obtained via Unigene

(release Hs 204), and for each of them the SNR between good- and poor-

prognosis samples (absence or presence of metastatic relapse within 5 years)

was calculated in the NKI-311 dataset as described above. After mapping the

GAB2-signature on this dataset via Gene Symbols, its enrichment in genes

with high SNR was calculated as described above (observed/expected = 2.8,

hypergeometric p.val < 10−5).

5.8 Classification of Breast cancer samples

To generate a classifier for breast cancer patients, we applied the nearest mean

classifier approach [143]. Briefly, we calculated for each gene of the GAB2-

Signature the median expression in the good and poor prognosis subgroups of

the NKI-311 dataset. For a more accurate calculation of the median expres-

sion, the data were bootstrapped (1000 bootstraps each including a random

selection of 80% of subgroup samples). The classifier is therefore composed

of the lists of the signatures’ genes mapped on the NKI dataset and, for each

gene, the median expression values (means) for the good and poor prognosis

groups. To classify samples, a ”Metastasis Score” (MS) is then calculated,

based on the GAB2-signature genes, by subtracting the Pearson correlation
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with the good prognosis mean from the Pearson correlation with the poor

prognosis mean. The MS is therefore directly proportional to the risk of

metastatic relapse within five years. To further map the GAB2-signature

on independent breast cancer datasets obtained on different microarray plat-

forms, we used a univocal cross-mapping table generated by the Microarray

Quality Control (MAQC) consortium [87] and applied it on an independent

dataset of 198 samples from the TRANSBIG consortium [35]. To reach ho-

mogeneity in data structure, to properly apply the NMC obtained in the

NKI-311 dataset, the Affymetrix log2 expression signals of the 198-sample

dataset were converted to log2ratios, using as reference the median expres-

sion calculated in the same dataset. Univariate and multivariate analyses

conducted on the validation datasets.

5.9 Cell Culture and Reagents.

MCF10A cells were obtained from ATCC and cultured as described [138].

MDA-MB-231 and MDA-MB-435 cells were obtained from ATCC and cul-

tured in DMEM (Gibco) supplemented with 10% fetal bovine serum (Sigma).

The antibodies used were: anti-Gab2 (Upstate Biotechnology), anti- Tyr416-

phosphorylated Src (Cell Signaling), anti-total Src (Cell Signaling), anti-

Tyr705-phosphorylated Stat3 (Cell Signaling), anti-total Stat3 (Cell Signal-

ing), goat anti-actin (Santa Cruz). A mouse testis retroviral expression li-

brary together with pFB-hrGFP retroviral supernatant, packaged in the VSV

envelope were purchased from Stratagene (ViraPort, Cat n. 972300) and

used to infect 1.5x105 MCF10A cells in 60mm tissue culture plates using

10µg/ml DEAE-dextran (Amersham Bioscence). GFP expression analysis

was performed after 48 hours using a FACS Calibur flow cytometer (Becton

Dickinson). Retroviral expression vector for GAB2 in pMIG (also known as

pMSCV-IRES-GFP) was a gift of R. Daly. Virus production and transduc-

tion were performed as described [138]. Lentiviral shRNA expression vectors

against murine or human GAB2 were purchased from Sigma (MISSIONâĎć
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TRC shRNA Target Set), together with the pLKO.1-puro Control Vector.

Viral supernatants were obtained according to the manufacturer’s protocol.

Infected cells were selected by puromycin treatment (2µg/ml for one week).

Specific shRNA sequences which efficiently downregulated Gab2 protein, as

assessed in Western blot, were the following: (i) Murine: CCGGCCGACA-

CAATACAGAATTCAACTCGAGTTGAATTCTGTATTGTGTCGGTTTTTG;

(ii) Human: CCGGCAGCCAACTCTGTTCACGTTTCTCGAGAAACGT-

GAACAGAGTTGGCTGTTTTTTG.

5.10 XenoArray analysis

RNA was extracted using the TRIzol reagent (Invitrogen), according to the

manufacturer’s protocol, and then further purified using the RNeasy Mini

kit from Qiagen. Quantification and quality analysis of RNA was performed

on a Bioanalyzer 2100 (Agilent). Synthesis of cDNA and biotinylated cRNA

was performed using the Illumina TotalPrep RNA Amplification Kit (Am-

bion Cat. n. IL1791), according to the manufacturer’s protocol, with pre-

viously reported variations [85]. Hybridization was carried out on Illumina

Mouse6 V1 arrays, using 1.5 µg of cRNA.

5.11 Anchorage-independent growth selection.

Polyhema-coated 10cm Petri dishes were prepared by applying 4ml of a

12mg/ml solution of poly-hydroxy-ethyl-methacrylate (polyhema; Sigma) in

ethanol, drying under tissue culture hood, repeating the application once and

incubating the plates overnight at 37. For the selection, 3 x 106 trypsinized

cells were plated onto polyhema-coated plates in complete growth medium.

Cells were cultured in suspension for 48h then were let to recover on regular

plates for 24h before repeating the selection cycle.
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5.12 Western Blot.

Cell lysates from 2-5ÃŮ106 cells were prepared in RIPA buffer (150 mM

NaCl, 1% NP40, 0.5% DOC, 50 mM TrisHCL at pH 8, 0.1% SDS, 10% glyc-

erol, 5 Mm EDTA, 20 mM NaF and 1 mM Na3VO4) supplemented with 1

µg/ml each of pepstatin, leupeptin, aprotinin, and 200 µg/ml phenyl methyl-

sulphonyl fluoride (PMSF). Lysates were cleared by centrifugation at 12,000

rpm for 20 min at 4and normalized with the BCA Protein Assay Reagent Kit

(Pierce). Extracts were run on SDS-polyacrylamide gels, transferred onto ni-

trocellulose membranes (Hybond; GE Healthcare) and incubated with differ-

ent antibodies overnight at 4. Nitrocellulose-bound antibodies were detected

by the ECL system (GE Healthcare).

5.13 Real-time PCR.

Two micrograms of total RNA extracted with TRIzol reagent (Invitrogen)

were reverse transcribed with the High Capacity cDNA Reverse Transcription

Kit (Applied Biosystems, Foster City, CA). Quantitative Real-time PCR with

Sybr Green was performed on the ABI Prism 7900HT Sequence Detection

System (Applied Biosystems, Oak Brook, IL). PCR primers were designed

with Primer Express software (Applied Biosystems) against mouse-specific

regions of the transcripts (except for the PGK housekeeping gene) in order

to monitor the expression of only library-derived transcripts: hPGK: sense 5’-

CTTATGAGCCACCTAGGCCG-3’; antisense 5’-CATCCTTGCCCAGCAGAGAT-

3’; mNtrk3: sense 5’- TGGCAACTACACCCTCATTGC-3’; antisense 5’-

GAAATCTGTGCTCTCTGGAAAGG-3’; mCyp11a1: sense 5’- GGACTTAAGGCAGAAGCGAGA

3’: antisense 5’- AATGTTGGCCTGGATGTTCTTG-3’; mGab2: sense 5’-

CTGCTGAACCTCCAGGAAAGA-3’; antisense 5’- GCCAGCAGGGTAGAAGAACCT-

3’.
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5.14 Cell-based assays

For MTT cell growth assays, 103 cells of each cell line were seeded in trip-

licate in regular or polyhema-coated 96-well plates. Cells were cultured in

growth medium containing all supplements or in starving medium (serum re-

duced to 2%, no EGF). At the indicated times, a tetrazolium saltâĂŞbased

reagent (CellTiter96 Aqueous One Solution, Promega) was added to each

well according to the instructions provided by the manufacturer. After an

incubation of 2 h, absorbance was read at 490 nm on a DTX 880 plate reader

(Beckman Coulter). A control of cell plating, estimated after 4h from plat-

ing, was used as a reference to adjust subsequent acquisitions of each cell

line. For soft agar growth, 3x104 cells were resuspended in 2ml of 0.5% top

agar (SeaPlaque Agarose from Cambrex) in growth medium and seeded in

6-well plates previously filled with 3ml of 1% basal agar in growth medium.

The assay was performed in duplicate. After 3 weeks, phase-contrast pictures

were captured by a BD Pathway microscopic station (BD biosciences). Image

analysis and quantification of single colonies number and size were performed

by the Attovision 1.5 software (BD biosciences). Briefly, a threshold of colony

size was defined either as the 95th or 5th percentile of the colony size in pic-

tures taken from the control cells. Then the number of colonies above the

threshold was calculated for all fields (8 fields/sample). The bar chart indi-

cates the average and standard error of the number of colonies/field above

the threshold. For detachment-induced cell death analysis, 3x105 cells were

plated on regular or polyhema-coated 35mm plates for 48 hours. Cell death

was then measured by assessing the number of hypodiploid nuclei with the

DNAcon3 kit (ConsulTS, Rivalta, Italy), according to the manufacturer’s

protocol, and with cytofluorimetric analysis using a FACSCalibur (Becton

Dickinson, San Diego, CA). Hypodiploid, subG0/G1 nuclei were defined as

those displaying a PI staining value lower than that of cells in the G0/G1

cell cycle phase (diploid DNA peak).
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[123] SÃÿrlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de

Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein LÃÿnning P,
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