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Abstract

The availability of complete sequenced genomes has led to the crucial dis-

covery that large amounts of non protein coding DNA is a general property

of the genomes of complex eukaryotes. Altough the great increase in method-

ologies and approaches to analyze the unknown fraction of the genome, the

rules governing its structure, function and evolution are far from being well

understood. In this direction, statistical and computational methods can

provide a great aid to extract information about general features of the non

coding genome.

The first part of the thesis manuscript is devoted to discuss a general sta-

tistical property observed in the length distribution of a particular class of

eukaryotic non coding DNA sequences, namely the 5’UTR exons. We show

that both in mouse and in human these exons show a very clean power law

decay in their length distribution and suggest a simple evolutionary model

which may explain this finding. We conjecture that this power law behaviour

could indeed be a general feature of higher eukaryotes.

In the second part of the manuscript, I introduce comparative genomics

methods applied to the non coding DNA of complex eukaryotes, in particular

in the Drosophila genome. Based on the recent availability of 12 Drosophila

species genome sequences and annotation, we present a novel large scale com-

parison strategy optimized to highlight peculiar rearrangements and turnover
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of non coding DNA evolution.

The statistical analysis and the comparative methods applied to DNA

sequences during this work rely on extensive application and development

of computational tools. The aim is considering the whole available genome–

wide ensemble of non coding sequences, treated as a complex system, to give

some insights into general rules behind the observed biological experimental

data.
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Chapter 1

Biological background

This first chapter aims at giving a concise background on eukaryotic non–

protein coding DNA involved in regulation of gene expression, mainly follow-

ing [1–3]. We discuss the features of DNA sequences known to play a role in

transcription and processing of RNA, their function and their contribution

to genome evolution.

1.1 Eukaryotic genome

Since our research focuses on eukaryotic organisms, we present a brief overview

on the key features of eukaryotic genomes.

1.1.1 Genome organization in eukaryotes

The genome of most eukaryotes is much more complex than those of prokary-

otes and the DNA of eukaryotic cells is also organized differently from that

of prokaryotic cells. Unlike bacterial cells, eukaryotic ones contain a nucleus

that accommodates the chromosomes.

The genomes of prokaryotes are contained in single chromosomes, which

are usually circular DNA molecules. In contrast, the genomes of eukaryotes

are composed of multiple chromosomes, each containing a linear molecule

of DNA. Although the numbers and sizes of chromosomes vary considerably

7



1.1. EUKARYOTIC GENOME 8

between different species, their basic structure is the same in all eukaryotes.

The different levels of structural organization of the genome are depicted

in Fig.1.1, where a replicated chromosome with two sister chromatids is

shown. The DNA of eukaryotic cells is tightly bound to small basic pro-

teins, called histones, that package the DNA in an orderly way in the cell

nucleus. The complexes between eukaryotic DNA and proteins are called

chromatin and the basic structural unit of chromatin is called nucleosome

(Fig.1.2). The genetic material of cells fully condenses only upon entering

the process of cell division. Resting cells show a varying pattern of active

relaxed chromatin and silent condensed chromatin. The terms active and

silent refer to the process of gene transcription, which will be explained later

on.

Figure 1.1: Structural organization of the genome in an eukaryotic cell (image

from NIH website).
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Figure 1.2: Nucleosome organization of eukaryotic genome (image from NIH

website).

1.1.2 Gene structure

When a particular molecule is made by the cell, the corresponding region

of the genome must therefore be accurately decoded. In molecular terms, a

gene can be defined as a segment of DNA that is expressed to yield a func-

tional product, which may be either an RNA or a polypeptide. Although

most genes encode for proteins, some DNA sequences are transcribed into

RNAs that do not encode proteins and they are referred to as non coding

RNA genes.

Almost all mRNA genes have a common structure, given by the following

elements.

promoter The part of a gene that contains the information to turn the gene

on or off. The process of transcription is initiated at the promoter. The

extent of a promoter is often difficult to determine. Proximal and distal

promoter elements play a role in controlling the expression level of a

gene.

exons Regions that are transcribed and exported from the nucleus as part

of the messenger RNA (mRNA). The mRNA contains all information

(“the message”) for the formation of the final protein product of a gene.
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introns Regions that are also transcribed into RNA but are excised (spliced)

from the maturating RNA. Thus, these regions are absent from the

mature mRNA.

UTRs Boundary mRNA regions, before the start codon and after the stop

codon, which are transcribed but not translated. Namely a flanking 5’

untranslated region (5’ UTR) and a final 3’ UTR 1

The mRNA genes contain coding regions known as exons, which are ex-

pressed, with intervening sequences, known as introns, which are not ex-

pressed (Fig.1.3). Introns are included into the primary mRNA, also known

as pre–mRNA, but they are spliced out of the mature mRNA in the cy-

toplasm. A cell can splice the “primary transcript” in different ways and

thereby make different polypeptide chains from the same gene (a process

called alternative RNA splicing) and a substantial proportion of higher eu-

karyotic genes (at least a third of human genes, it is estimated) produce

multiple proteins in this way (isoforms), thanks to special signals in primary

mRNA transcripts.

The mature mRNA usually contains not only the protein coding sequence,

but also additional flanking segments, which are not translated, namely a

flanking 5’ untranslated region (5’ UTR) and a final 3’ UTR. The 5’ UTR

marks the start of transcription and contains an initiator codon which indi-

cates the site of the start of translation. The 3’ UTR contains a termination

codon, which marks the end of translation, plus nucleotides which encode a

sequence of adenosine residues known as the poly(A) tail.

During mRNA maturation, 5’ and 3’ UTRs can be spliced in different

ways and survive in mature mRNA. For this reason, the exons in the 5’ and

3’ UTR regions are usually termed “non coding exons”. Nucleotide patterns

or motifs located in 5’ UTRs and 3’ UTRs are known to play crucial roles in

the post–transcriptional regulation.

15’ and 3’ refer to the position (5’ and 3’ respectively) of the carbon atoms of the

mRNA backbone at the two extrema of the mRNA and are conventionally used to denote

the “upstream” (5’) and ”downstream” (3’) sides of the mRNA chain.
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Figure 1.3: Structure of an eukaryotic genome (image from NIH website).

The translation of DNA into proteins requires a series of complex pro-

cesses carefully controlled at each step by specific regulatory mechanisms

activated by the cell. In particular, two crucial events in this process are

the production of an intermediate molecule, the messanger RNA (mRNA)

transcript, and the translation of the mRNA into proteins.

During the transcription, the promoter elements support the buildup of the

RNA polymerase machinery. A full–length RNA copy of the genomic DNA

including exons and introns is generated. The transcribed product of a gene,

nuclear RNA, is subject to further modifications. A capping component is

added to the 5’ end and a Poly–A tail to the 3’ end. The nuclear RNA is

additionally shortened by the splicing process. The process of translation

takes place after the export of the mature mRNA from the nucleus. Trans-

lation means to transfer protein–coding information on mRNAs into actual

proteins by another synthesis step. Ribosomes, which are large complexes of

RNA and protein, are the factories of protein biosynthesis that utilize mRNA

as a template.

The flow of genetic information in cells is therefore from DNA to RNA to

protein (Figure1.4). All cells, from bacteria to humans, express their genetic

information in this way, a principle so fundamental that it is termed the

central dogma of molecular biology.

1.2 Gene regulation in eukaryotes

The cell provides fine regulatory systems to regulate the gene expression both

at transcriptional and post–transcriptional level, using several cis–acting sig-
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Figure 1.4: (A) In eukaryotic cells, genetic information is from DNA to RNA

to protein. (B) In procaryotes, the production of mRNA molecules is simpler.

The 5’ end of an mRNA molecule is produced by the initiation of transcrip-

tion by RNA polymerase, and the 3’ end is produced by the termination of

transcription. (Reproduced from http://www.accessexcellence.org)

nals located in the DNA sequence. A common molecular basis for much of

the control of gene expression (whether it occurs at the level of initiation

of transcription, mRNA processing, translation or mRNA transport) is the

binding of protein factors and specific RNA elements to regulatory nucleic

acid sequences. The absence or presence of regulatory elements has been

shown to influence the initiation rate of transcription.

We can classify some general types of cis–acting elements controlling the

activity of RNA polymerase II–transcribed genes:

• basal promoter sequences near the transcriptional initiation site

• long distance elements (enhancers, silencers), which regulate levels of

gene activity
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• Boundary elements or insulators, which can functionally separate reg-

ulatory elements.

• chromatin regulatory elements, such as those interacting with Poly-

comb and Trithorax proteins, which contribute to gene regulation at

chromatin structure level rather than at gene level.

Since long–distance interactions are difficult to study in experiment, little

is known about the underlying principles. The situation is better described

for proximal elements.

1.2.1 Gene regulation at promoter level

Transcription initiates when proteins known as transcription factors bind

to the promoter region and to other regulatory regions. The transcription

factors contain specific structural domains, such as leucine zippers and zinc

fingers, which bind to the regulatory regions that become exposed in sur-

face folds of the double helix through the process of chromatin remodelling.

There is increasing evidence that changes in chromatin structure play a key

role in gene expression. Actively transcribed genes in euchromatin occur in

clusters in a loop or “domain” which is unfolded.

Therefore, a prerequisite to start transcription is satisfied if a set of bind-

ing sites is occupied and/or released by the corresponding transcription fac-

tors. The RNA polymerase II complex is then recruited. Transcription fac-

tors are organized in a complex network and they act in a cooperative and

combinatorial way by protein–protein interactions. A typical control region

for a gene includes DNA binding sites to several factors, organized in mod-

ules. Moreover, each specific TF binding site is also often overrepresented in

a given promoter sequence (cfr. [1, 4]).

TF binding sites are in general characterized by the common following

features:

• they are short motifs, ranging from 5 to 20 bps
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• they can be overrepresented, i.e. to appear in multiple copies in the

same promoter region

• they are quite variable, meaning that are not fixed DNA strings but

more often they are specified by a nucleotide pattern

• they are dispersed over long distances, over 10000 bps in the human

case

• they are active in both the orientation of the DNA molecule

1.2.2 Enhancers and silencers

Enhancers/silencers were originally defined as DNA sequences that increased

or decreased expression of a linked gene in an orientation- and distance- in-

dependent manner. In contemporary usage, an enhancer/silencer can refer

to any (usually few Kbps long) element that binds sequence–specific tran-

scription factors acting in a positive or negative manner. Usually more than

one single type of transcription factor binds to an enhancer/silencer, creating

a so called cis–regulatory module. They have been suggested to function in

two distinct ways through remodeling of chromatin, facilitating or interfering

with binding of the transcriptional machinery, and through direct interactions

with the basal transcriptional machinery (see [5, 6]).

Two distinct models of enhancer action have been proposed to ascribe

different computational functional roles to the enhancer (Fig.1.5). In the

first one, the “enhanceosome” model, the arrangement of binding sites within

the enhancer is critical to dictating the correct output of the element, so the

enhancer acts as a molecular computer, leading to a single output directed

to the general machinery.

In the second model, the enhancer acts as an information display, or “bill-

board”, which is then read and interpreted by consecutive interactions with

the basal machinery. In the case of a billboard enhancer, exact binding site

locations are less critical, and both activating and repressing states can be

represented at the same time within an enhancer.
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Figure 1.5: Two models of enhancer action. (A) In the “enhanceosome”

model, the binding sites within the enhancer allow for a highly cooperative

assembly of transcription factors(ovals), leading to gene activation. Disrup-

tion or displacment of a single binding site, or the absence of one regulatory

protein, causes the element to be inactive. (B) In the “billboard” model, the

enhancer contains multiple functional units that are able to independently

regulate gene expression. (Image from [5]).

Recent data show that enhancers are in the same genomic region of the

genes the activate and that these interactions persist during transcription,

suggesting that direct interactions between enhancers and target genes may

be important for activation. The level of expression from a promoter is de-

termined by the frequency of enhancer–promoter communication, the time

of enhancer–promoter interaction, and by competition between alternative

enhancer–promoter interactions. Notwithstanding data showing that en-

hancers are in physical proximity to the genes they regulate, it is unclear

how they find their targets.



1.2. GENE REGULATION IN EUKARYOTES 16

1.2.3 Chromatin insulators

Active and silenced chromatin domains are often in close juxtaposition to

one another and enhancer and silencer elements operate over large distances

to regulate the genes in these domains. The lack of promiscuity in the func-

tion of these elements suggests that active mechanisms exist to restrict their

activity [7].

Insulators are DNA elements that restrict the effects of long–range regu-

latory elements. Studies on different insulators from different organisms have

identifed common themes in their mode of action. Numerous insulators map

to promoters of genes or have binding sites for transcription factors and like

active chromatin hubs and silenced loci, insulators also cluster in the nucleus.

Regulatory elements such as chromatin insulators may function as nucleation

sites for the initiation of active or repressed chromatin states, creating the

frontier between domains 1.6.

1.2.4 Regulation of chromatin structure

The effects that chromatin structure can have on gene expression range from

the modulation of transcription initiation at an individual promoter, through

to the silencing of large segments of DNA in higher order chromatin structure.

One example of chromatin silencing concerns the Polycomb gene family.

The proteins coded by these genes bind to DNA sequences called Polycomb

response elements and induce formation of heterochromatin, the condensed

form of chromatin that prevents transcription of the genes that it contains.

1.2.5 Gene regulation at post–transcriptional level

Once the mRNA is transcribed, the cell provides many subsequent mecha-

nisms to drive is fate. 5’ UTR and 3’ UTR contain regulatory signals involved

in mRNA transport, localization and stability.

5’ UTR features, as their length, secondary structure and the presence



1.2. GENE REGULATION IN EUKARYOTES 17

Figure 1.6: Insulators block enhancer and silencer elements in a position-

dependent manner. (a) Barrier elements block the linear spread of silenced

chromatin protecting the reporter gene from silencing. (b) Enhancer-blocking

elements interfere with enhanced transcription when placed between an en-

hancer element and the promoter. (c) Flanking a transgene with insulator

elements generates a functionally independent domain protected from posi-

tion effects. Regulatory interactions can occur within the domain whereas

the insulators block external signals. (Image from [7]).

of AUG triplets upstream of the true translation start in mRNA, known as

upstream AUGs, have been shown to affect the efficiency of translation and

to be preserved in the evolution of these sequences [9, 36, 40].

A recent remarkable discovery revealed the existence of an extremely im-

portant post–transcriptional regulatory mechanism, performed by an abun-

dant class of small non coding RNA, known as microRNA (miRNA), that
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recognize and bind to multiple copies of partially complementary sites in

3’UTR of target transcripts, without involving 5’UTR [12–14].

Appropriately named microRNA (miRNA), these mini-molecules are en-

coded by DNA like all RNA. At this stage, miRNA molecules display a very

peculiar property: folding back on themselves to create a double–stranded

structure known as a stem-loop (see Figure 2). This stem–loop binds special

enzymes in the nucleus, that cut the miRNA molecules into smaller pieces

and drive them into the cytoplasm. Once here the enzyme Dicer further cuts

the miRNA, bringing it to its working size. Finally, the miRNA is able to

bind a number of proteins collectively known as the RNA–Induced Silencing

Complex (RISC) and assumes a linear single-stranded shape 1.7.

Figure 1.7: Generation pathway of a typical human miRNA.

Even though the precise mechanism of action of the miRNA/RISC com-

plex is not very well understood, the current idea is that miRNAs are able

to negatively affect the expression of a “target” gene via mRNA cleavage or

translational repression, by antisense complementary base–pair matching to

specif target sequences in the 3’ UTR of the target gene. In plants, usually
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miRNA have perfect or near perfect complementarity to their mRNA target,

whereas in animals the complementarity is restricted to the 5’ regions of the

miRNA, in particular requiring a “seed” of 6 nucleotides, around nucleotides

2 to 7.

1.2.6 Non coding DNA and eukaryotic complexity

The genome sequencing projects have revealed an unexpected result in our

understanding of the complexity in the higher organisms: a small portion of

eukaryotic genome covered protein–coding genes (only up to 1.5 % in human

genome), while most of eukaryotic DNA sequences that do not code for pro-

teins.

Another striking surprise rises from the observation that complex organ-

isms have lower numbers of protein coding genes than expected. The fruitfly

Drosophila melanogaster and the nematode Caenorhabditis elegans appear to

have only about twice as many protein coding genes (12-14 000) as microor-

ganisms such as Saccharomyces cerevisiae (6200). Humans appear to have

only twice as many again (30 000) (International Human Genome Sequenc-

ing Consortium, 2001). Moreover, the proteome of the higher organisms is

relatively stable. Humans and mice share the 75% of their protein coding

genes (cfr. [15, 16]).

Thus, phenotypic variation between both individuals and species may be

based largely on differences in non–protein coding sequences and be mainly

a matter of variation in gene expression, due to the control of the system.

Although protein variation will also contribute, the primary source of com-

plex phenotype and variation is due to the machanisms developed by the cell

to control gene activity.

The non–coding DNA seems to have a primary role in differentiation and

evolution. We described some of the them, in particular:

• the role of introns and alternative splicing process

• the information located in cis–acting gene promoters and enhancers

subject to combinatorial inputs from transcription factors
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• the signals devoted to the control of chromatin structure

• the activity of non–coding RNAs

The investigation of eukaryotic non–coding sequences is still at the be-

ginning and much more about the information specified inside them has to

be decipher.

1.3 DNA sequence evolution

A change in the DNA sequence that is passed on to daughter cells is called

a mutation. Mutations - or changes to the nucleotide sequence of DNA - can

arise in a number of ways. Mistakes can be made during DNA replication

that result in the transmission of an incorrect base. The chemical nature of

any given base can be altered either by environmental or chemical means.

Once altered, these changes may then be propagated by DNA replication.

Finally, large scale changes can sometimes occur in the form of chromosomal

rearrangments [17, 18, 20, 21].

1.3.1 Types of mutations

We can consider the following broad categories of mutations:

• point substitution (or point mutation) involves a change in the identity

of a single base. There are two types of mutation that change the

identity of a base–pair:

Transitions do not alter the chemical nature of the base. Thus, a

purine base is replaced by another purine; a pyrimidine is replaced

by a pyrimidine.

The only transitions are:

A → G or G → A

C → T or T → C
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Transversions change the the chemical nature of the base. Thus, a

purine base is replaced by a pyrimidine; a pyrimidine is replaced

by a purine.

The transversions are:

A → C or A → T

C → A or C → G

G → C or G → T

T → A or T → G

• Deletions that result in missing DNA. These can be small, such as the

removal of just one base, or longer deletions that affect a large region

on the chromosome.

• Insertions that result in the addition of extra DNA.

• Inversions in which an entire section of DNA is reversed. A small

inversion may involve only a few bases, while longer inversions involve

large regions of a chromosome.

Figure 1.8: Models of nucleotide substitution.

Larger changes in genetic sequence (i.e. chromosomal rearrangements)

place DNA chunks of several thousands to millions of nucleotides into a new

genomic context. These large–scale rearrangements are often observed in

cancer cells where entire chromosomes are broken up and randomly fused.

Figure1.9 summarizes the most important of these changes operating at the



1.3. DNA SEQUENCE EVOLUTION 22

chromosome level.

Base pair changes are not necessarily deleterious, a change in genotype

need not necessarily cause any change in phenotype. It depends on whether

the change occurs within a coding region or within some other important

regulatory sequence.

Silent mutations occur when a base pair change in a coding region does

not affect the amino acid that is encoded. Another way in which silent

mutations might occur is when the change occurs in a non–coding or non–

regulatory region.

When mutations occur in a coding region, they can change one amino acid

or change the entire sequence of amino acids from the point of the insertion or

deletion, because the codons are now different. As the vast majority of such

copying errors are deleterious, sophisticated error–correcting mechanisms try

to avoid them. Uncorrected deleterious mutations are quickly removed from

the gene pool by negative natural selection, if the fitness is decreased suf-

ficiently. Some random mutations may have no effect on fitness, and very

rarely they are beneficial. It seems to be a widespread belief that these very

rare beneficial random mutations are the main source for the genetic variation

on which positive natural selection acts, thus driving the process of evolution.

1.3.2 Evolution of genes

Gene configurations of species often resemble one another. This is rather

intuitive as many biological processes like the cell cycle are shared among

species. This idea is readily carried over to single gene pairs. Gene products

from different species like proteins or microRNAs are far more similar than

what would be expected by chance. The theory of Evolution explains this re-

markable observation by postulating common ancestor sequences or species.

Thus, the evolutionary history of genes or species can be represented by tree

structures [22, 23].
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However, gene and species trees may differ for individual gene groups.

Another problem may occur when the gene studied belongs to a multi–gene

family. Suppose that two related species, 1 and 2, have two duplicated genes

(A1,B1) and (A2,B2), respectively. Gene duplication occurred before the

speciation event. In this case, genes A1 and A2 as well as B1 and B2 are

called orthologous genes. All other pairings are called paralogous. In other

words, two genes are said to be paralogous if they are derived from a du-

plication event, but orthologous if they are derived from a speciation event.

Taken together, orthologous and paralogous genes form a group of homolo-

gous genes because of their shared ancestry.

Contiguous DNA regions that encompass two or more related genes in

the same order in different species (i.e. man and mouse) are an example of

conserved synteny. Conserved synteny generalizes the concept of homology

to large chromosomal regions.

1.3.3 Evolution of regulatory regions

Regulatory regions are needed to control the timing, level, and spatial lo-

cation of transcription for thousands of proteins, and can have evolutionary

dynamics much different from the protein–coding regions they control.

Some kinds of phenotypic difference are easier to achieve through cis–

regulatory mutations than through coding mutations. Transcription is a

dynamic process that can be “fine–tuned” to meet context–dependent func-

tional demands, whereas structure is generally more static. Many aspects

of organimsal phenotype require dynamic changes in gene function, includ-

ing reproduction, development, behaviour, immune responses and resource

utilization. Phenotypes associated to these dynamic processes might be ex-

pected to evolve to some extent more readily through regulatory rather than

coding mutations [24, 25].

Gain and loss of functional transcription factor binding sites has been
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proposed as a major source of evolutionary change in cis–regulatory DNA

and gene expression [26,27,29]. Since binding sites in a CRM are short over–

represented motifs, the regulatory module can preserve its function though

after multiple point mutations. In other cases, binding sites can arise or dis-

appeare quite easily, when a point mutation in a crucial base result in the

complete loss of binding affinity.

Moreover, the modular organization of cis–regulatory regions allows a

mutation in one module to affect only one part of the overall transcription

profile. For instance, the effects of a cis–regulatory mutation could be lim-

ited to larval anatomy without affecting the adult, or to a single organ or

tissue even when the gene is much more widely expressed. By contrast, most

non–silent coding mutations change the resulting protein no matter where it

is expressed.

A paradigmatic example of the complexity in cis–regulatory modules evo-

lution is provided by the elegant work by Ludwig et al. [26], who studied a well

characterized enhancer of the Drosophila even–skipped gene. They demon-

strated that selection during evolution in enanhcers sequences is more likely

to work at the level of en entire cis-regulatory module than on the individual

binding sites. Moreover, there can be conpensatory mutations that mantain

the function of the enhancer despite the loss of individual binding sites.

Similar studies highlighted the extensive turn over of binding sites during

evolution, as in this work about the comparison of Ubx promoter regions

between different drosophila sp ecies [27, 28]. Again, they observed that the

promoter is able to preserve its function, despite the high rate of rearrange-

ments and turn over at the binding sites level.

Analogous studies have not been carried out for miRNAs due to the

paucity of experimentally verified miRNA binding sites. However, several

recent microarray-based studies have indicated that the rate of binding site

conservation is also around 50%. Furthermore, computational miRNA target

predictions indicate that many lineage-specific miRNA binding sites exist in
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Drosophila and vertebrates (Rajewsky N. unpublished data)

Despite these recent observations, our current knowledge of how tran-

scription factors, miRNAs, signalling pathways and other regulators are put

together is very limited. A great challenge in modern biology is the recon-

struction of the global network evolution.



Figure 1.9: Chromosomal rearrangements. Large–scale mutations may alter

the structure of a genome (i.e. number of chromosomes) and place large

chunks of DNA into a new genomic context. (Image from NIH website)



Chapter 2

Statistics and bioinformatics

for DNA sequences evolution

This second chapter aims at giving a brief overview of some statistical and

computational methods extensively applied in the analysis of DNA sequences

evolution. We will firstly discuss simple stochastic models for DNA se-

quences evolution and the search of general rules behind the observed ge-

nomic features. Then, we will introduce comparative genomics methods to

identify DNA related sequences. Most of the fundamentals presented here

are adapted from the excellent introductory text book Durbin et al. [17] and

from [30].

2.1 Statistical analysis of DNA sequences evo-

lution

Genomic sequences are a valuable source of information about the evolution-

ary history of species. With the rapidly growing availability of whole–genome

sequence data, the evolution of genomic DNA can now be studied systemat-

ically over a wide range of scales and organisms.

Statistical analysis of the sequences can provide important biological in-

formation concerning the evolution of DNA molecules. The nucleotide se-

quence of a DNA molecule can be viewed as a text containing the hereditary

27
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information of a living organism. The information content and the structure

of the text is related to its evolution.

The statistical analysis is quite intricate since genomic DNA is a rather

“patchy” statistical environment [31]: it consists of genes, noncoding regions,

repetitive elements, etc..., and all of these substructures have a systematic

influence on the local sequence composition.

2.1.1 Scaling laws in DNA sequences

In these last years lot of efforts have been devoted in trying to find univer-

sal laws in nucleotide distributions in DNA sequences. A typical example

was the identification more than ten yars ago of long range correlations in

the base composition of DNA (see for instance [32] and references therein).

With the availability of complete sequenced genomes, the correlation prop-

erty of sequences has been studied separately for coding and non coding

segments of complete bacterial genomes, showing a rich variety of behaviour

for different kinds of sequences [33,34]. This line of research has been recently

extended to the search of similar universal distribution for more complex fea-

tures of eukaryotic DNA sequences like for instance 5’ untranslated regions

(UTR) lengths [36], UTR introns [37] or strand asymmetries in nucleotide

content [38, 39]. The main reason of interest for this type of analyses is the

search of general rules behind the observed universal behaviours. The hope

is to get in this way new insight in the evolutionary mechanisms shaping

higher eukaryotes genomes and to understand functional role of the various

portions of the genome.

The content and the organization of non–coding DNA is poorly under-

stood and it seems to evolve by its own laws not restricted by a specific

biological function. These laws are based on probabilities of various muta-

tions that resemble the laws governing other complex systems, like systems of

interacting particles such as liquids and magnets, but also purely geometric

systems, such as random networks.
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A wide variety of complex natural phenomena is characterized by power

law behavior of their parameters. This type of behavior is also called scaling.

Power laws were found to describe various systems, like the ones described

above, in the vicinity of critical points. Empirical power laws are found to

characterize also many physiological, ecological, and socio–economic systems.

An important step to highlight general rules in DNA sequences evolution

is the construction of simplified (and possibly exactly solvable) stochastic

models to describe the observed behaviours. This is the case for instance of

the model discussed in [31] for base pair correlations or the model proposed

in [36] for the 5’UTR length.

2.1.2 Evolutionary models of DNA sequences

From a biological point of view, the two main assumptions of any evolutionary

model are:

• evolution can be decribed as a Markov process, i.e. the modifications

of a DNA sequence only depend on its current state and not on its

previous history.

• evolution is “shaped” by functional constraints: DNA sequences with

a negligible functional role evolve at a higher rate with respect of func-

tionally important regions. This implies that regions with different

functional roles must be described by different choices of the various

mutational rates. The free evolution of sequences without functional

constraints is usually called “neutral evolution”.

Let us see a few examples:

• protein coding exons are usually strongly constrained since the proteins

they code have an important role in the life of the cell, however due

to redundance of the genetic code, the third basis of each codon in

the coding exons is free to mutate. On the contrary insertions and

deletions are suppressed because they can dramatically affect the shape

and function of the protein.
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• Sequences devoted to transcriptional regulations (which very often lie

outside exons) are usually so important for the life of the cell that they

are kept almost unchanged over millions of years of evolution

• Regulatory sequences on the messanger RNA (mRNA) whose function

often depends on the tridimensional shape of the RNA molecule and

not on its exact sequence are in an intermediate situation between the

above cases and the neutral evolution: they can tolerate mutations

which do not modify their tridimensional shape (typically these are

pairs of pointlike changes of bases and are usually called “compensatory

mutations”). Most of the mRNA regulatory signals of this type are

located in 3’UTR exons.

• 5’UTR regions contain sometimes regulatory sequences of the transcrip-

tional type (which, as mentioned above, are stongly conserved under

evolution) but their relative position seem not to have a crucial func-

tional role. They can thus tolerate insertion and deletions as far as

they do not affect the regulatory regions.

2.1.3 Markovian processes

A markovian process is defined as a process obeying the following rules.

1. A system at any time step t, can be in n possible states e1, e2, ..., en.

2. The probability to find a system in a certain state at any time step

depends only on its state at the previous time step. Thus to fully

characterize a markovian process, we must define a nxn set of transition

probabilities pij which are the probabilities to find a system in a state

ei at time t + 1 provided that a time t it was in a state ej . Obviously,
∑

ni = pij = 1.

3. It is assumed that pij do not depend on time.

The evolution of DNA may be thought of as a markovian process, with

mutation probabilities depending on the nature of the current state of bases.
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Minimal markovian models describe evolution of the DNA sequence as

a series of stochastic mutations. Three elementary processes are taken into

account: changes in the nucleotide type, insertions or deletions of one or

more nucleotides. The various existing models differ with each other for

the different assumptions they make on the parameter which control these

changes (for a review see for instance [17, 18, 42]).

2.1.4 Models of nucleotide substitution

Jukes-Cantor Model The basic assumption is equality of substitution fre-

quency for any nucleotide at any site. Thus, changing a nucleotide to

each of the three remaining nucleotides has probability α per time unit.

The rate of nucleotide substitution per site per time unit is then r = 3α.

Let q be the proportion of identical nucleotides between two sequences.

In a continuous time model q is given by the following equation:

q = 1 −
3

4
(1 − e−

8rt

3 ) (2.1)

The expected number of substitutions per site (d) is approximately 2rt.

Rearranging the equation above yields:

d = −
3

4
ln[1 −

4

3
p] (2.2)

where p = 1 − q is the proprortion of different nucleotides.

Kimura model In DNA, the rate of transitions is usually higher than that

of transversions. In the model of Kimura, both types of substitution

rates are explicitly modeled with parameters α (the rate of transitions)

and β (the rate of transversions). The total substitution rate per site

and time unit is then α+2β. Hence, the expected number of nucleotide

substitutions is given by d = 2rt = 2αt + 4βt where t is the time after

divergence of two sequences. Using his model, Kimura showed that the

frequencies of Transitions (Ts) and Transversions (Tv) are given by

Ts =
1

4
(1 − 2e−4(α+β)t + e−8βt) (2.3)

Tv =
1

2
(1 − e−8βt) (2.4)
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The expected number of substitutions per site (d) is then

d = −
1

2
ln[1 − 2Ts − Tv]ln[1 − 2Tv] (2.5)

Both models have an equilibrium frequency of each nucleotide of 0.25.

Both models are reversible meaning that sequences evolve equally over time.

In this regard, it is irrelevant whether some sequence A evolves into B or

vice versa. The degree of similarity between two sequences is expressed in

the expected number of substitutions per site (d). Therefore, we employ the

notion of point accepted mutation per site or PAM .

One point accepted mutation (1PAM) is defined as an expected number

of substitutions per site of 0.01. A PAM1 substitution matrix is thus derived

from any evolutionary model by setting the row sum of off-diagonal terms

to 0.01 and adjusting the diagonal terms to keep the row sum equal to 1. A

substitution matrix M for any PAM distance n is then obtained by iterative

multiplication of a 1PAM matrix: Mn = (M1)
n . We are now able to

model substitution processes by selecting an evolutionary model and a PAM

distance, which reflects the expected degree of sequence similarity.

2.2 Sequence alignments

Once a DNA evolutionary model is defined, it is possible to compare se-

quences looking for evidence that they have diverged from a common ances-

tor. This is usually done by first aligning the sequences (or part of them) and

then deciding whether that alignment is more likely to be occurred because

the sequences are related, or just by chance.

An alignment can bee seen as a way of transforming one sequence into the

other. The idea of aligning two sequences (of possibly different sizes) is to

write one on top of the other. The example in Fig.2.1 illustrates an alignment

between the sequences A=“ACAAGACAGCGT” and B=“AGAACAAGGCGT”.
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Figure 2.1: Example of nucleotide pairwise alignment.

The objective is to match identical subsequences as far as possible. In

the example, nine matches are highlighted with vertical bars. However, if the

sequences are not identical, mismatches are likely to occur as different letters

are aligned together. Two mismatches can be identified in the example: a

“C” of A aligned with a “G” of B, and a “G” of A aligned with a “C” of

B. The insertion of spaces produced gaps in the sequences. They were im-

portant to allow a good alignment between the last three characters of both

sequences.

The key issues of an alignment procedure are:

• what sort of alignment should be considered

• the scoring system used to rank alignments

• the algorithm used to find optimal (or good) alignments

• the statistical method used to evaluate the significance of an alignment

score

2.2.1 Global vs local sequence alignment

The similarity between entire sequences was the first alignment problem that

caught the attention of researchers. Needleman and Wunsch (1970) were the

first to report a global alignment approach, which consists in finding the best

match covering the two sequences in their entirety.
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Global alignment methods are widely used to identify highly similar re-

gions in the sequences which appear in the same order and orientation. A

global alignment procedure can be suitable to find a map of genomic colinear

conserved segments between the input sequences, as syntenic regions. More-

over, global alignments methods can be used for closely related sequence, as

members of the same protein family, such as globins, that are highly con-

served and have almost no variation in sequence length.

In many cases, the score of an alignment between substrings of two se-

quences may be larger than the overall score in a global alignment. In this

case, detecting local sequence similarities is more informative. This is the

reason why biologists are frequently interested in short regions of local simi-

larity. Local alignment algorithms are generally very useful in finding similar-

ity between regions that may be related but are inverted or rearranged with

respect to each other. Smith andWaterman (1981) proposed an algorithmic

solution for the local alignment problem. Both algorithms return optimal

solutions to the respective problems. Both employ dynamic programming

for this purpose, that will be discuss in section....

Global alignments are less prone to demonstrating false homology as each

letter of one sequence is constrained to being aligned to only one letter of the

other. Local alignments, on the other hand, can cope with rearrangements

between non-syntenic, orthologous sequences by identifying similar regions in

sequences; this, however, comes at the expense of a higher false positive rate

due to the inability of local aligners to take into account overall conservation

maps.

To compare entire genomes from different species, biologists increasingly

need alignment methods that are efficient enough to handle long sequences,

and accurate enough to correctly align the conserved biological features be-

tween distant species. For this reason, the novel notion of glocal alignment,

a sophisticated combination of global and local methods, has been intro-

duced [54]. This class of alignment algorithms create a map that transforms

one sequence into the other while allowing for rearrangement events. This
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procedure, at the base of Shuffled-LAGAN algorithm [55], is able to take into

account large scale genomic rearrangments, but fails at lower scale.

2.2.2 Scoring scheme

An alignment procedure is an optimization problem and thus requires an

objective function that could be maximized in terms of an alignment score.

The total score we assign to an alignment will be the sum of scores for each

aligned pair of residues and each gap. If the two sequences under compar-

ison are related, we expect a match between identical residue pairs to be

more likely than we expect by their single frequencies. Thus matches should

contribute positively to the alignment score whereas non-conservative substi-

tutions (i.e. transversions) and gaps should penalized. Generally, an additive

scoring scheme is used under the assumption that mutations occur indepen-

dently. Most alignment algorithms depend on this assumption.

Assume A and B are two sequence of length n and m over an alphabet

Σ := A, C, G, T . Given a gapless alignment of those sequences, we want to

assign a score to the alignment that gives a measure of the relative likelihood

that the sequences are related as opposed to being unrelated. A prominent

additive scoring system is based on the log-odds ratio of a residue pair (ai, bj)

occurring as an aligned pair instead of being unaligned.

Score =
∑

i

pairscore(ai, bj) (2.6)

where

pairscore(ai, bj) = ln
pab

qaqb
(2.7)

pab is the probability of seeing a residue pair (a, b) in a match model (i.e. a 1

PAM Kimura model) and qa, qb are the letter frequencies in a random model

assuming that letters occur independently.

Introducing gaps in alignments raises the question of evaluating them.

Biologists have long recognised that insertions and deletions generally do not

occur a single base at a time. Therefore, when biomolecular sequences are
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compared, it is commonly accepted that a gap of k spaces is more likely to

appear than k incidences of a single gap spread across the sequences. In

order to make this distinction, a general gap penalty function is needed so

that the cost of a gap is a function of its length. The most common function

is called affine gap penalty function. For affine gap penalties, the score for a

gap of length x is (g + ex), where g < 0 is the penalty for introducing a gap

(gap open) and e < 0 is the penalty for each gap symbol (gap extension).

2.2.3 Dynamic programming alignment

Dynamic programming is a strategy of building a solution gradually using

simple recurrences to compute the similarity between two sequences A and

B of lengths m and n [8]. The key observation for the alignment problem is

that the similarity between sequences A[1..n] and B[1..m] can be computed

by taking the maximum of the three following values:

• the similarity of A[1..n−1] and B[1..m−1] plus the score of substituting

A[n] for B[m];

• the similarity of A[1..n − 1] and B[1..m] plus the score of deleting

aligning A[n];

• the similarity of A[1..n] and B[1..m − 1] plus the score of inserting

B[m].

From this observation, the following can be derived:

sim(A[1..i], B[1..j]) =

max[sim(A[1..i − 1], B[1..j − 1]) + sub(A[i], B[j]);

sim(A[1..i − 1], B[1..j]) + gap;

sim(A[1..i], B[1..j − 1]) + gap]

where sim(A, B) is a function that gives the similarity of two sequences A

and B, sub(a, b) is the scoring function that gives the score of a substitution

of character a for character b and gap is the gap scoring. This is complete
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with the following base case:

sim(A[0], B[0]) = 0;

where A[0] and B[0] are defined as empty strings.

To solve the problem with this , the algorithm build an (n+1)(m+1) ma-

trix M where each M [i, j] represents the similarity between sequences A[1..i]

and B[1..j] (Fig.2.2).

Figure 2.2:

The first row and the first column represent alignments of one sequence

with spaces. M [0, 0] represents the alignment of two empty strings, and is

set to zero. All other entries are computed with the following formula:

M [i, j] = max[M [i−1, j−1]+sub(A[i], B[j]); M [i−1, j]+del(A[i]); M [i, j−1]+ins(B[j])]
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The matrix can be computed either row by row (left to right) or column

by column (top to bottom). In the end, M [n, m] will contain the similar-

ity score of the two sequences. Since there are (m + 1)(n + 1) positions to

compute and each take a constant amount of work, this algorithm has time

complexity of O(n2). Clearly, it has also quadratic space complexity since it

needs to keep the entire matrix in memory.

Once the matrix has been computed, the actual alignment can be re-

trieved by tracing a path in the matrix from the last position to the first

(Figure 2.2). The trace is a simple procedure that compares the value at

each M [i, j] to the values of its left, top and diagonal entries according to

the formula given above. For instance, if M [i, j] = M [i, j − 1] + gap, the

trace reports an insertion of character B[j] and proceeds to entry M [i, j−1].

In the matrix of Figure 2.2, two optimal alignments can be retrieved (Figure

2.1 and Figure 2.3).

Figure 2.3: A second example of nucleotide pairwise alignment obtained

comparing sequences A and B.

2.2.4 Smith–Waterman algorithm

A local alignment was defined as the problem of finding the best alignment

between substrings of both sequences. In 1981, T. F. Smith and M. S. Wa-

terman [29] showed that a local alignment can be computed using essentially

the same idea employed by Needleman and Wunsch. The main difference is

that M [i, j] contains the similarity between suffixes of A[1..i] and B[1..j]. As
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a result, the relation is slightly altered because an empty string is a suffix of

any sequence and, therefore, a score of zero is always possible. The formula

for computing M [i, j] becomes:

M [i, j] = max[0; M [i−1, j−1]+sub(A[i], B[j]); M [i−1, j]+del(A[i]); M [i, j−1]+ins(B[j])]

Another important distinction is that the score of the best local alignment

is the highest value found anywhere in the matrix. This position is the

starting point for retrieving an optimal alignment using the same procedure

described for the global alignment case. The path ends, however, as soon an

entry with score zero is reached. We could observe that the Smith-Waterman

algorithm has the sametime and space complexity as the Needleman-Wunsch.

2.2.5 Suboptimal alignments

The best local alignment of two DNA sequences does not always capture

the biological meaning. The best local alignment would be either misleading

(e.g. returns only one particular element) or non-specific (e.g. covers regions

of poor conservation) in such a setting. A better way of handling such com-

parisons is to retrieve more than one alignment from the alignment space.

Waterman and Eggert (1987) proposed an algorithm for finding non–trivial

local similarities, which are called suboptimal local alignments.

2.2.6 Heuristic approach

The dynamic programming algorithms are guaranteed to find the optimal

solution for a given scoring scheme. However, these algorithms are not a fea-

sible solution to the comparison of long sequences in the order of 100 Kb to

several Mb. Heuristic approaches mitigate this problem by trying to reduce

the search space, while still maintaining a high sensitivity level.

The most famous tool is certainly the BLAST package (Altschul et al.,

1990). The BLAST algorithm exploits the idea that meaningful alignments

contain short identical subsequences, or very high scoring matches. BLAST

compiles a list of all words of a fixed length (e.g. 11 nucleotides for DNA),
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that would match the query sequence with scores higher than some threshold.

BLAST assumes collinearity of the local similarities.

2.2.7 Alignment statistical significance

To assess whether a given alignment constitutes evidence for homology, it

helps to know how strong an alignment can be expected from chance alone.

Distinguishing between “true” alignments (those resulting from homology)

and spurious alignments (resulting from chance similarities) is a notable issue

in extensive searches, where a large number of sequences are compared to a

single query sequence.

The significance of an alignment (p − value) is the probability that an

equal or better alignment score could be attained by aligning two unrelated

(random) sequences. Generally, the p − value of a random variable T is the

probability P (T ≤ tobserved).

It is possible to generate scores from random sequences and compute

p–values for our observed alignments based on those. This simulation ap-

proach has the disadvantages that the sample size directly affects the accu-

racy of the computed p–values. Traditionally, one would generate a random

DNA sequence by sampling letters from an alphabet A with probabilities

Σi=A,C,G,Tpi = 1. However, this is a rather simplistic view of randomness in

a biological setting. Global sequence properties like length and nucleotide

composition are preserved, but regions of low complexity and local composi-

tional biases are not represented. An alternative practical solution could be

reversing one nucleotide sequence in a pairwise comparison.

While it is then possible to express the score of interest in terms of stan-

dard deviations from the mean, it is a mistake to assume that the relevant

distribution is normal and convert this Z-value into a P-value; the tail behav-

ior of gapped alignment scores is unknown. The most one can say reliably is

that if 100 random alignments have score inferior to the alignment of interest,

the P-value in question is likely less than 0.01.



Chapter 3

Universal power law behaviours

in genomic sequences and

evolutionary models

This chapter presents our study about the length distribution of a particular

class of DNA sequences, namely the 5’UTR exons. These exons belong to

the messanger RNA of protein coding genes, but they are not coding and are

thus less constrained from an evolutionary point of view. We observe that

both in mouse and in human these exons show a very clean power law decay

in their length distribution and suggest a simple evolutionary model which

may explain this finding.

3.1 Motivation

In these last years lot of efforts have been devoted in trying to find universal

laws in nucleotide distributions in DNA sequences. A typical example was

the identification more than ten yars ago of long range correlations in the

base composition of DNA (see for instance [32] and references therein). With

the availability of complete sequenced genomes, the correlation property of

length sequences has been studied separately for coding and non coding seg-

ments of complete bacterial genomes, showing a rich variety of behaviour for

different kinds of sequences [33, 34]. This line of research has been recently

41
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extended to the search of similar universal distribution for more complex fea-

tures of eukaryotic DNA sequences like for instance 5’ untranslated regions

(UTR) lengths [36], UTR introns [37] or strand asymmetries in nucleotide

content [38, 39]. The main reason of interest for this type of analyses is the

search of general rules behind the observed universal behaviours. The hope is

to get in this way new insight in the evolutionary mechanisms shaping higher

eukaryotes genomes and to understand functional role of the various portions

of the genome. An intermediate important step of this process is the con-

struction of simplified (and possibly exactly solvable) stochastic models to

describe the observed behaviours. This is the case for instance of the model

discussed in [31] for base pair correlations or the model proposed in [36] for

the 5’UTR length. In this letter we describe a similar universal law for the

exon length in the 5’UTR of the human and mouse genomes. Looking at the

5’UTR exons collected in the existing genome databases for the two organ-

isms we shall first show that they follow with a high degree of confidence a

power law distribution with a decay exponent of about 2.5 and then suggest

a simple solvable model to describe this behaviour.

We shall also compare the impressive stability of the power law decay

of 5’UTR exons with the distributions in the case of the 3’UTR and coding

exons which turn out to be completely different. This is most probably due

to the different evolutionary pressures to which are subject the three types

of sequences.

We think that the behaviour that we observed should indeed be a general

feature of higher eukaryotes, however its identification requires a very careful

annotation of 5’UTR regions which exist for the moment only for human and

mouse (see tab. below).

3.2 5’UTR exons biological constrains

In eukaryotic organisms, DNA information stored in genes is translated into

proteins through a series of complex processes, carefully controlled at each

step by specific regulatory mechanisms activated by the cell. In particu-

lar, two crucial events in this process are the production of an intermediate

molecule, the messanger RNA (mRNA) transcript, and the translation of the
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mRNA into proteins. The cell provides fine regulatory systems to regulate

the gene expression both at transcriptional and post–transcriptional level,

using several cis–acting signals located in the DNA sequence. A common

molecular basis for much of the control of gene expression (whether it occurs

at the level of initiation of transcription, mRNA processing, translation or

mRNA transport) is the binding of protein factors and specific RNA elements

to regulatory nucleic acid sequences.

Once mRNA is transcribed, it usually contains not only the protein cod-

ing sequence, but also additional segments, which are transcribed but not

translated, namely a flanking 5’ untranslated region (5’ UTR) and a final

3’ UTR Nucleotide patterns or motifs located in 5’ UTRs and 3’ UTRs are

known to play crucial roles in the post-transcriptional regulation. Most of the

primary transcripts of euKaryotic genes also contain sequences (named “in-

trons”) which are eliminated during a maturation process named “splicing”.

The sequences which survive this splicing process are named ”exons” they

are glued together by the splicing machinery and form the mature mRNA

transcript. Both the UTRs and the coding portions of the mRNA are usually

composed by the union of several exons. It is thus possible to classify the

exons as coding, 3’UTR and 5’UTR depending on the portion of the mRNA

to which they belong.

A cell can splice the “primary transcript” in different ways and thereby

make different polypeptide chains from the same gene by alternative RNA

splicing process and a substantial proportion of higher eukaryotic genes (at

least a third of human genes, it is estimated) produce multiple proteins in

this way (isoforms), thanks to special signals in primary mRNA transcripts.

Some hints about the 5’ and 3’ role in gene expression can be derived

from a quantitative analysis of UTR length.

Recent large scale databases suggest that the mean 3’ UTR length in

human transcript is nearly four times longer than the mean human 5’UTR

length [8] and that the evolutionary expansion of 3’UTR in higher verte-

brates, not observed in 5’ UTR, is associated to their peculiar regulatory

role. Very recent works revealed the existence of an extremely important

post-transcriptional regulatory mechanism, performed by an abundant class

of small non coding RNA, known as microRNA (miRNA), that recognize and
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bind to multiple copies of partially complementary sites in 3’UTR of target

transcripts, without involving 5’UTR [12–14].

Differently, 5’UTR sequences are expected to be constrained mainly by

splicing process and translation efficiency. The exons in the 5’ UTR regions

are usually termed “non coding exons”, since they are not included in the

protein coding portion of the transcript. However, their characteristics, as

their length, secondary structure and the presence of AUG triplets upstream

of the true translation start in mRNA, known as upstream AUGs, have been

shown to affect the efficiency of translation and to be preserved in the evo-

lution of these sequences [9, 36, 40]. 5’UTR exons length can vary between

few tens until hundreds of nucleotides, without typical length scale around

favourite size, and the lower and upper bounds of this distribution is likely

to be shaped by splicing and translation efficiency: exons that are too short

(under 50 bp) leave no room for the spliceosomes (enzymes that perform

the splicing) to operate [41], while exons that are too long can contain sig-

nals that affect translation efficiency. 5’UTR “non coding exons” are also

free from selective pressure acting on coding exons, which strongly preserves

the amminoacid information written in triplets of nucleotides in the protein

coding exons.

3.3 Length distribution of 5’UTR exons

In our analysis we decided to construct strictly disjoint subsets of exons,

according to their position in the transcript (5’UTR exons, protein coding

exons or 3’UTR exons)1. Moreover, we created a non redudant genome-

wide datasets of exons, considering only one isoform for each gene, the most

extended one.

Curated information about DNA sequences and annotation of eukaryotic

organisms are provided by the Ensembl project, based on a software system

which produces and maintains automatic annotation on selected eukaryotic

genomes [16].

1Obviously in several cases one can have exons which are partially included in one of

the two UTR regions and partially in the coding portion of the mRNA. These mixed exons

were excluded from our analysis.
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We downloaded from the Ensembl database (release 40 [16]) all the avail-

able transcripts annotated as protein coding for different organisms, and

we created a filtered dataset of non redundant exons, considering the most

extended transcript for each gene. We eliminated all the exons with mixed

annotations and grouped the remaining ones in three classes: 5’UTR, protein

coding exons, and 3’UTR.

Plotting the length distribution of exons, separately for 5’UTR, coding

exons and 3’UTR, we clearly observe different behaviours, which we think

should reflect different evolutionary constrains acting on these classes of DNA

sequences (Fig.1 a,b,c). In particular, the 5’ UTR exons size distribution

shows a remarkably smooth power decay for large enough values of the exon

length. To assess this point and to evaluate the threshold above which the

power law behaviour starts, we fitted the observed distributions with a power

law:

N(l) = l−α (3.1)

where N(l) is the number of exons of length l.

In order to evaluate the goodness of the fits that we performed, we divided

the set of all exons into 18 equivalent bins and then assumed the variance

of these bins as an indication of the statistical uncertainty of our estimates

(results are independent from the binning choice). This allowed us to perform

a meaningful χ2 test on the fits. This test is commonly used when an assumed

distribution is evaluated against the observed data [19]. The quantity χ2

may be thought of as a measure of the discrepancy between the observed

values and the respective expected values. It is convenient to compute the

reduced chi square χ̃2 (i.e. the ratio χ2/(Np−Nf ) where Np is the number of

points included in the fit and Nf the number of parameters of the fit). With

this normalization one can immediately see if the fitting function correctly

describes the data (which requires χ̃2 ≤ 1). When instead χ̃2 > 1 the absolute

value of χ̃2 gives a rough estimate of how inaccurate is the tested distribution

to describe the data.

We fitted the data for the 5’UTR exons setting a minimum threshold on

the exon length and then gradually increasing this threshold until a reduced

χ̃2 value smaller than one was obtained. The rationale behind this choice is

that (as we shall see below) the power law decay is likely to be an asymptotic
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behaviour which is violated for short exon lengths. Starting from lmin ∼ 150

both in human and in mouse good χ̃2 values were obtained and we could

estimate the critical index to be α ∼ 2.5. Detailed results of the fits are

reported in Tab.1. The χ̃2 values that we found support in a quantitative

way the power law behaviour of the data, which was already evident looking

at Fig.1a.

On the contrary, the coding exons and the 3’UTR exons length histograms

display (on a log-log scale) non linear distributions with peaks of population

around favourite sizes. In the range, where we are able to fit the power law

decay of 5’UTR exons length, χ̃2 values for linear fit in the other classes of

exons are completely unacceptables (Tab. 2).

Species χ̃2 α index lmin (bps)

H.Sapiens 0.52 2.56(2) 150

M.Musculus 0.74 2.61(2) 140

Table 3.1: Extimate of critical index α and length threshold lmin for the

power law distribution of 5’UTR exons in human and mouse

Species protein coding exons 3’UTR exons lmin (bps)

H.Sapiens 84.37 13.46 150

M.Musculus 153.31 5.91 140

Table 3.2: χ̃2 values for the linear fit of protein coding exons and 3’UTR

exons length distribution, in the same range where we are able to fit the

power law decay of 5’UTR exons length

The same plots for other organisms show exactly analogous trend, but

they are affected by poor annotation of 5’ and 3’ UTR, which are very difficult

to identify entirely (see Tab.3). In Tab. 3 we reported the total number of

annotated protein coding genes, annotated 5’UTR and annotated 3’UTR for

4 different mammalian genomes, according to Ensemble database release 40.

These data underline the current lack in the annotatation of 5’UTR and
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Figure 3.1: Exons length distribution in 5’UTR (a), protein coding exons (b)

and 3’UTR (c) in human and mouse genome reported in log-log histograms

(with bin size growing logaritmically). Plot errors are derived dividing the

complete dataset in subsets of comparable dimension, avoiding biological

biases, and averaging the length distribution of each subset.
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3’UTR for other mammals, besides H. Sapiens and M. Musculus. For this

reason, the same analysis performed for H. Sapiens and M. Musculus exon

length distribution is prevented for other organisms.

Species Annotated protein coding genes Annotated 5’UTR Annotated 3’UTR

H.Sapiens 23735 18333 18592

M.Musculus 24438 15945 16429

C.Familiaris 18214 5925 6298

G.Gallus 18632 7463 7670

Table 3.3: Annotated protein coding genes, 5’UTR and 3’UTR in Ensembl

database release 40

3.4 The model

In order to understand this peculiar behaviour of the 5’UTR exons we propose

and discuss a simple model of exon evolution. Our goal is to understand if

it is possible to associate the different behaviour that we observe to the

greater freedom from selective pressure of the 5’UTR exons with respect to

the coding and 3’UTR ones.

Evolutionary models describe evolution of the DNA sequence as a series

of stochastic mutations. There are three major classes of mutations: changes

in the nucleotide type, insertions or deletions of one or more nucleotides.

The various existing models differ with each other for the different assump-

tions they make on the parameter which control these changes (for a review

see for instance [17, 18, 42]). From a biological point of view the two main

assumptions of any evolutionary model are:

• evolution can be decribed as a Markov process, i.e. the modifications

of a DNA sequence only depend on its current state and not on its

previous history.

• evolution is “shaped” by functional constraints: DNA sequences with

a negligible functional role evolve at a higher rate with respect of func-
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tionally important regions. This implies that regions with different

functional roles must be described by different choices of the various

mutational rates. The free evolution of sequences without functional

constraints is usually called “neutral evolution”.

Let us see a few examples:

• protein coding exons are usually strongly constrained since the proteins

they code have an important role in the life of the cell, however due

to redundance of the genetic code, the third basis of each codon in

the coding exons is free to mutate. On the contrary insertions and

deletions are suppressed because they can dramatically affect the shape

and function of the protein.

• Sequences devoted to transcriptional regulations (which very often lie

outside exons) are usually so important for the life of the cell that they

are kept almost unchanged over millions of years of evolution

• Regulatory sequences on the messanger RNA (mRNA) whose function

often depends on the tridimensional shape of the RNA molecule and

not on its exact sequence are in an intermediate situation between the

above cases and the neutral evolution: they can tolerate mutations

which do not modify their tridimensional shape (typically these are

pairs of pointlike changes of bases and are usually called “compensatory

mutations”). Most of the mRNA regulatory signals of this type are

located in 3’UTR exons.

• 5’UTR regions contain sometimes regulatory sequences of the transcrip-

tional type (which, as mentioned above, are stongly conserved under

evolution) but their relative position seem not to have a crucial func-

tional role. They can thus tolerate insertion and deletions as far as

they do not affect the regulatory regions.

Since in our model we are only interested in the exon length distribution

we may neglect the nucleotide changes and concentrate only on insertions

and deletions. From this point of view, according to the above discussion

both coding and 3’UTR should behave as highly constrained sequences while
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the 5’UTR ones should be more similar to the neutrally evolving ones. With

this picture in mind we decided to model the neutral evolution of a DNA

sequence under the effect of insertions and deletions only, to see which general

behaviour one should expect for the length distribution and then compare it

with the data discussed in the previous section.

To this end let us define nj as the number of 5’ UTR exons of length j

in the genome and let N be the total number of such exons. Let xj ≡ nj/N

be the fraction of exons of length j.

If we assume that the exon length distribution evolves as a consequence

of insertions and/or deletions of single nucleotides we find the following evo-

lution equation for the xj(t) (where t labels the time step of this process)

xj(t+1) = xj(t)+(j−1)αxj−1(t)−jαxj(t)+(j+1)βxj+1(t)−jβxj(t) (3.2)

where α and β denote the insertion and deletion probabilities respectively

and we have kept into account the fact that for an exon of length j there

are exactly j sites in which the new nucleotide can be inserted (i.e. that the

insertion and deletion probabilities are linear functions of j, since the implied

assumption is that all sites in our sequences are independent of one another).

At equilibrium the exon length distribution must satisfy the following

equation (we omit the t dependence which is now irrelevant)

(j − 1)αxj−1 − jαxj + (j + 1)βxj+1 − jβxj = 0 (3.3)

It is easy to see that the only solution compatible with this equation is

a power law of this type: xj = cjη with c a suitable normalization constant.

Inserting this proposal in eq.(3.3) one immediatly finds η = −1.

This result is very robust, it does not depend on the values of α and β

and, what is more important, it holds also if instead of assuming the insertion

(or deletion) of a single nucleotide, we assume the insertion or deletion of

oligos (i.e. small sequences of nucleotides) of length k, with any choice of

the probability distribution for the oligos length as fas as k is much smaller

than the typical exon length. Moreover one can also show that the power

law decay still holds if we add to the process a fixed background probability

of creation of new exons of random length as far as this probability is smaller

than xjmax
(α − β) where jmax is the largest exonic length for which the
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power law is still observed. This is rather important since it is known that

retrotransposed repeats (in particular of the Alu family) may in some cases

(with very low probability) become new active exons and represent one of

the major sources of evolutionary changes in the transcriptome.

On the contrary this power law disappears if we assume that there is a

finite probability that, as a consequence of the new insertion of deletion, the

exon is eliminated. In this case the power law changes into a exponential dis-

tribution. This may explain why the power law decay is not observed in the

coding and 3’UTR portion of the genes which are under a much stronger se-

lective pressure (in the 3’UTR region are contained lot of post-trascriptional

regulatory signals).

Since the critical index that we observe in the actual exon distribution in

human and mouse is much larger than 1 it is interesting to see which type

of evolutionary mechanism could lead to a η > 1 behaviour while keeping

a power law decay. It is easy to see that this can be achieved assuming

that the insertion (or deletion) probability is not linear with the length of

the exon but behaves, say, as pinsertion = αjλ with λ > 1. Then, following

the same derivation discussed above, we find at equilibrium an exon length

distribution xj = cj−λ.

A possible explanation for such non-linear insertion rate comes from the

observation that the transcribed portions of the genome (like the 5’ UTR

exons in which we are interested), besides the normal mutation processes

typical of the intergenic regions, are subject to specific mutation events due

to the transcriptional machinery itself (see for instance [38]).

It is clear from the above discussion that in this case the critical index of

the exon distribution, strictly speaking, is not any more an universal quantity,

but depends on the particular biological process leading to the pinsertion = αjλ

probability discussed above. However it is conceivable that similar mecha-

nisms should be at work in related species. This in our opinion explains why

the critical indices associated to the mouse and human distributions are so

similar and led us to conjecture that similar values should be found also in

other mammalians as more and more 5’UTR sequences will be annotated.

Let us conclude by noticing that this whole derivation is based on the

assumption that the system had reached its equilibrium distribution. This is
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by no means an obvious assumption and it is well possible that the fact that

we observe a critical index larger than 1 simply denotes that the system is

still slowly approaching the equilibrium distribution. There are three ways

to address this issue. First one should extend the analysis to other organisms

(however, as we discussed above, this will require a better annotation of the

UTR regions in these organisms). Second one could reconstruct, by suitable

aligning procedures, the UTR exons of the common ancestor between mouse

and man and see if they also follow a power law distribution and, if this is

the case, which is the critical index. Third one could simulate the model

discussed above and look to the behaviour of the exon distribution as the

equilibrium is approached.

3.5 Derivation of the power law

Inserting the distribution xj = cjη in eq.(3.3) we find

α(j − 1)η+1 − α(j)η+1 + β(j + 1)η+1 − β(j)η+1 = 0 (3.4)

which can be expanded in the large j limit as

jη+1

[
α

(
1 −

η + 1

j

)
− α + β

(
1 −

η − 1

j

)
− β

]
= 0 (3.5)

which implies:

(β − α)
η + 1

j
= 0 (3.6)

which (assuming β 6= α) implies, as anticipated, η = −1.

A few observations are in order at this point:

a] It is clear from the derivation that the result is independent from the
specific values of α and β as far as they do not coincide. This indepen-
dence from the details of the model holds also if we assume at each time
step a finite, constant (i.e. not proportional to j) probability α′ (β ′) of
random insertion (deletion) of a nucleotide. In this case the evolution
equation becomes:

xj(t+1) = xj(t)+(j−1)αxj−1(t)−jαxj(t)+(j+1)βxj+1(t)−jβxj(t)+α′(xj−1(t)−xj(t))+β′(xj+1(t)−xj(t))

(3.7)

which still admits the same asymptotic distribution xj = cj−1
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b] If we include a fixed exonization probability pe to create new exons from,

say, duplicated or retrotransposed sequences the evolution equation

changes trivially by simply adding such a constant contribution. The

solution becomes in this case xj = cj−1 + d where the constant d is

related to pe as follows d = pe/(α − β) and is negligible as far as it is

smaller than xjmax

c] Remarkably enough the above results are still valid even if the inserted

(or deleted) sequence is composed by more than one nucleotide. Let

us study as an example the situation in which we allow the insertion

of oligos of length k with 0 < k < L and L smaller than the typical

exon length. Let us assume for simplicity to neglect deletions and let

us choose the same insertion probability α for all values of k. The

evolution equation becomes:

xj(t + 1) = xj(t) + α

[
L∑

k=1

xj−k(t)(j − k) − Ljxj(t)

]
(3.8)

which implies

jxj =
1

L

L∑

k=1

(j − k)xj−k (3.9)

In the large j limit this equation admits again a power law solution

xj = cjη. Inserting this solution in eq.(3.8) we find

jη+1α

[
1

L

L∑

k=1

(
1 −

k(η + 1)

j

)
− 1

]
= 0 (3.10)

which is satisfied, as above, if we set η = −1.

d] On the contrary, if we assume a finite probability (1 − γ) of elimination

of an exon as a consequnce of the insertion (or deletion) event (as one

would expect if the sequence is under strong selective pressure) we find

the following evolution equation:

xj(t + 1) = xj(t) + [(j − 1)αxj−1(t)γ − jαxj(t)] (3.11)

where α is, as above, the insertion probability and we are assuming

for simplicity single base insertions. This equation does not admit any
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more a power law solution at equilibrium but requires an exponential

distribution: xj = e−λjjη with η = −1 and λ = log(γ).

e] It is instructive to reobtain the result discussed in [a] above by looking

at the equilibrium equation as a recursive equation in j:

xj+1 =
j

j + 1

(
1 +

α

β

)
xj −

α

β
xj−1 (j > jmin) (3.12)

and

xj+1 =
j

j + 1
(1 +

α

β
)xj (j = jmin) (3.13)

and construct recursively the solution for any j starting from xjmin
=

c/jmin. The recursion can be solved exactly and gives:

xj = xjmin

jmin

j

1 −
(

α
β

)j−jmin+1

1 − α
β

(3.14)

which (assuming α < β) 2 leads asymptotically to the solution xj = c/j

with c = xjmin

jmin

1−α/β
. This result allows to understand exactly the

“finite size” corrections with respect to this asymptotic solution which

turn out to be proportional to
(

α
β

)j−jmin+1
and vanish if only deletions

(i.e. α = 0) or only insertions (i.e. β = 0) are present. In these cases

the asymptotic solution is actually the exact equilibrium solution of

the stochastic model.

2If β < α one should study the inverse recursion relation starting from xjmax
.



Chapter 4

DrosOCB: a high resolution

map of conserved non coding

sequences in Drosophila

In this chapter we introduce comparative genomics methods applied to the

non coding DNA of complex eukaryotes, in particular in the Drosophila

genome. In particular, this part of the manuscript presents our novel large

scale alignment strategy, which aims at drawing a precise map of conserved

non coding regions between genomes, even when these regions have under-

gone small scale rearrangments events and a certain degree of sequence vari-

ability.

4.1 Motivation

The functional annotation of eukaryotic DNA sequences represents a great

challenge in post–genomic biological research. The identification of func-

tional non–coding elements, such as untranslated regions (UTRs), genes for

non–protein-coding RNAs, and cis-regulatory elements, is extremely difficult,

as the rules governing their structure and function are far from being well

undertood.

A great aid to functional annotation of genome sequences is provided by

56
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comparative genomics methods which, since a few years, have been extended

also to non coding DNA regions. The basic assumption of comparative ge-

nomic approach is that common features of two organisms are encoded within

the DNA that is conserved between the species, due to purifying selection

during evolution. According to the same assumption, the DNA sequences

controlling the expression of genes that are regulated similarly in two related

species should also be selected during evolution.

However, comparison of non coding sequences requires new algorithms

and strategies to take into account the different evolutionary mechanisms

affecting regulatory sequences. Recent studies examining the evolution of

cis–regulatory modules in Drosophila, reveals that regulatory sequences may

frequently evolve through compensatory gain and loss events in transcription

factors binding sites, that produces little functional change [26], [27]. Great

plasticity in the arrangement of binding sites within cis–regulatory modules is

another remarkable evolutionary feature revealed to occur in vertebrates [29].

Once complete genomes from different species are available, a global align-

ment procedure is suitable to find a map of colinear conserved segments be-

tween the input sequences, descarding alignments that overlap or cross over.

Global alignment methods are widely used to identify highly similar regions

in the sequences which appear in the same order and orientation. On the

contrary, local alignment algorithms are generally very useful in finding sim-

ilarity between regions that may be related but are inverted or rearranged

with respect to each other.

Recently, the novel notion of glocal alignment, a sophisticated combina-

tion of global and local methods, has been introduced [54]. This class of

alignment algorithms create a map that transforms one sequence into the

other while allowing for rearrangement events. This procedure, at the base

of Shuffled-LAGAN algorithm [55], is able to take into account large scale

genomic rearrangments, but fails at lower scale.

Here, we present an novel large scale alignment strategy which aims at

drawing a precise map of conserved non-coding regions between genomes,

even when these regions have undergone small scale rearrangement events.
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Our procedure is optimized to take into account the great plasticity of non

coding DNA, such as shuffling and sequence variability of binding sites within

functional modules, low scale translocations, inversions and duplications. We

used a “gene-centric” approch, in that it starts with a list of orthologous genes

between two species, and applies a local alignment algorithm to the corre-

sponding flanking intergenic regions and intronic regions of these orthologous

pairs. Hence, it is a local alignment strategy but applied systematically on

a genome-wide scale and, for this reason, we decided to call it “lobal”.

The recent availability of 12 Drosophila species sequences and annota-

tions [57] offers a complete and reliable genomic dataset for developing and

testing methods for comparative genomics of non coding DNA. We applied

our lobal alignment approach to align Drosophila melanogaster to several

other drosophila species (D. yakuba, D. pseudoobscura, D. virilis, ...), for

which a reliable genome build and annotation is available.

4.2 A comparative genomics procedure for

non–coding DNA

4.2.1 Gene–centric comparative approach

For each Drosophila species examined (listed in Tab.1 and referenced to as

D.xxx), we compile a list of genes orthologous to a D.melanogaster (D.mel)

gene, according to the “12 drosophila genomes project” data (Tab.1 and

Material and Methods). For each pair of D.mel/D.xxx orthologous genes,

we extract in both species the upstream, downstream and intronic regions.

Upstream and downstream regions are extracted up to the next neighbor-

ing gene (see Material and Methods for more details), taking the longest

transcript as a reference in case of multiple transcripts. All sequences have

been previously masked for repeats using the RepeatMasker program [71].

At this stage, the comparison procedure crucially depends on the availability

of genomic annotations (i.e. gene coordinates and orthology relationships).

The orthologous regions are then aligned using a local alignment procedure
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described later. For the alignment, the orthologous regions are oriented such

that the corresponding genes are in the same orientation. Using this gene-

centric approach, most intergenic regions are considered twice. For example,

the region chr4:64404-68333 in D.melanogaster is first considered as the up-

stream region of the PlexB gene, and then as the downstream region of the ci

gene. This redundancy is taken care of in the post-processing step, described

later.

4.2.2 Alignment procedure

For each pair of orthologous D.mel/D.xxx genes, we respectively align their

upstream regions, downstream regions and introns. This is done by orient-

ing the transcripts in the same direction, such as to distinguish same from

opposite strand. Local pairwise alignments between orthologous sequences

was performed using CHAOS [54], which is an heuristic alignment algorithm

with some peculiar features optimized for large non coding DNA sequences.

CHAOS works by chaining small words (called seeds) that match between the

two input sequences. Unlike BLAST, it is a double seed technique which al-

lows some degeneracy in seeds. It chains toghether seeds that are closer than

a maximum distance d and it returns the highest scoring chains, according to

a standard NeedlemanWunsch metric. These highest scoring chains constitue

the conserved noncoding blocks (CNBs). Because it is a local alignment, it is

able to identify nonsyntenic CNBs order with a very high resolution. More-

over, because the alignment is performed on both strands, we also identify

CNBs resulting from inversion events. Also, it is able to rapidly align large

sequences with a better specificity than purely local aligners, thanks to the

double seed technique. We choose a quite sensitive set of parameters in

CHAOS (see Material and Methods). An assessment of statistical signifi-

cance of alignment scores is introduced to discriminate true from random

alignments. The scoring cutoff is calculated by aligning randomly selected

non-orthologous sequences, and setting a false discovery rate (FDR) of 2·10−3

.
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4.2.3 Processing of Drosophila sequences

Sequences and annotations have been downloaded from the AAA site [57] as

fasta and GFF3 files respectively. The Drosophila melanogaster sequences

and annotations correspond to version 4.3. For the other drosophila, the

sequences correspond to the CAF1 assemblies and are now available from

GenBank. The annotations result from a reconciliation procedure of various

annotations, whereas the homology maps are built using a fuzzy reciprocal

blast. For details, see [57].

We rely on the gene annotations to extract the D.melanogaster introns.

When several transcripts exist for a single gene, we consider the longest tran-

script and its introns. For other drosophila species, no annotations exist for

intron/exon structure. Hence, we extract the locus corresponding to the

full gene, and align it using CHAOS to each intron of the orthologous gene.

For intergenic regions, we applied a conservative definition. We define the

upstream region as the longest consecutive sequence of nonexonic, nonin-

tronic nucleotides on the 5’ end of the longest transcript, and similarly for

the downstream region. While this is an intuitive definition in general, it

has particular implications in the case of nested genes. For a gene A nested

inside the intron of a gene B, the intergenic regions associated to gene A

will start at the 5’/3’ extremities of gene B, in order to respect the previous

definition.

We use CHAOS with the following set of parameters: chaos -wl 7 -co 12

-b -v -rsc 1500. The last parameter is a very loose lower threshold on the

alignment score, but we apply more stringent thresholds in the postprocessing

step.

4.2.4 Post–processing and availability

As mentioned previously, sequences are often considered and aligned twice,

resulting in redundant CNBs. We eliminate this redundancy by scanning the

output of the alignments, and merging overlapping CNBs. More precisely,

we merge two CNBs if they meet all of the following requirements: (i) they
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overlap in D.melanogaster, (ii) they overlap in the other species, (iii) both

blocks are in the same orientation in D.melanogaster, and in the same ori-

entation in the other Drosophila species. Conditions (i) and/or (ii) are for

example not fulfilled in the case of duplications; in this case, the CNBs are

not merged and appear as distinct blocks. Each block is assigned a unique

identifier and is labelled with its score, percentage identity, as well as with

the name of the gene(s) in the surrounding of which it is located. For the

reasons mentioned previously, a block often refers to its two flanking genes.

The full collection of CNBs for all eleven pairwise comparisons is avail-

able as a queryable database, named DrosOCB (for Drosophila Conserved

Blocks). It can be accessed through a userinterface which allows to query a

particular gene or a genomic region. Our database is linked with the UCSC

genome browser [72], such that CNBs can be displayed in their genomic

context with the browser.

4.3 DrosOCB database content

In Table 1, the content of the database is summarized for each species com-

pared with D.melanogaster. Their phylogenetic relationship is shown in Fig.

4.1. The cumulated size of the D.melanogaster sequences (intronic and inter-

genic) which are aligned varies in the range between 78.6 Mbp and 87.7 Mbp,

depending on the total number of orthologous genes between D.melanogaster

and the other species. Considering that the D.melanogaster genome size is

around 120 Mbp, this means that we aligned between 65% and 73% of the

D.melanogaster genome. Analyzing the catalog of CNBs, we can make some

observations about the conservation features of Drosophila genus at large

scale. The estimated percentage of non coding sequences evolutionary con-

strained in Drosophila genome is reported in Tab. 4.1 and displayed in

Fig. 4.2. As expected, the percentage of conservation follows the evolu-

tionary distance. It varies between 16% (13%) for D.melanogaster/D.virilis

intergenic (intronic) sequences, the most evolutionary distant species in the

phylogenetic tree, and 68% (54%) for D.melanogaster/D.sechellia. These

estimations are lower than the ones obtained for D.melanogaster compared
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with Drosophila D.virilis, D.pseudoobscura and D.yakuba from previous work

[911]. However, we applied a rather conservative threshold on the scores of

the CNBs, such as to reduce the number of spurious alignments. These con-

servation percentages are always higher in intergenic regions as compared to

intronic regions. However, these figures should be taken with some care, as

some regions, labelled as “intergenic” in some drosophila species (and thus

not aligned as introns) might well turn out to be intronic, as distant ex-

ons will become better annotated. In fact, whereas the mean size of genes

in D.melanogaster is 6.1 kb, it ranges from 2.9 kb (D.sechellia) to 4.1 kb

(D.virilis) for the other species, indicating that some gene annotations might

still miss distant exons.

Interestingly, these proportions are roughly constant inside the melanogaster

subgroup (around 50%), indicating that the difference in the evolutionary

distance between D.melanogaster and D.simulans/D.sechellia on one hand

(about 5 My), and D.yakuba/D.erecta (about 10 My) on the other hand is

too small to affect the conservation of noncoding DNA. There is a impor-

tant decrease outside this branch (roughly 25% for D.ananassae, the closest

species outside the melanogaster subgroup). The percentages for species out-

side the Sophophora subgenus (D.virilis, D.mojavensis and D.grimshawi) are

again very comparable (about 15%). The mean size of CNBs obtained in our

output is comprized between 50 bp and 94 bp, and increases with decreasing

evolutionary distance, as expected (cf. column 6 in Tab.1). It is shorter

for intronic regions than for intergenic regions. The lower threshold of 50

bp indicates that, although the alignment procedure is sensitive in allowing

some degeneracy in the compared sequences, it preserves a certain degree of

selectivity, discarding very short isolated CNBs with a score below the cutoff

threshold.
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4.4 Peculiarity of Drosophila non–coding DNA

evolution

Due to the fact that we use a sensitive local alignment procedure, we are able

to spot small scale genomic rearrangements that are not visible in standard

alignments (see Fig. 4.3). As an illustration, we will focus on a particular

feature, namely inverted CNBs. By this, we mean CNBs that lie on opposite

strands in the orthologous regions, a situation which might result from local

genomic inversions in one of the two species. Since the drosophila genomes

are known to have an extreme plasticity at large/medium scales [68], it is

interesting to verify whether this is also true in or below the kb range. Fig.

4.4 plots the percentage of CNBs that are inverted, for all eleven pairwise

alignments, for intronic and intergenic regions. Depending on the evolution-

ary distance, this percentage ranges from 15% to almost 30%. Interestingly,

these percentages are very comparable for intergenic and intronic regions,

indicating that the evolutionary dynamics is similar for these regions [25]. In

the custom track provided for UCSC genome browser, we use a particular

color coding to distinguish between CNBs on the same strand (grey boxes)

and the inverted CNBs (red boxes). Figure 4.5 shows an interesting example

of such an event, in one of the introns of the white gene on chromosome X.

The central region is highly conserved in all pairwise alignments, but the

CNBs are inverted in the pairwise alignments with D.mojavensis, D.virilis

and D.grimshawi. This is not due to an inversion of the full gene locus, since

the transcripts are all taken in the same orientation when performing the

alignment. The inverted CNBs have a very high score and a conservation of

90% over 66 bp, excluding that they might be spurious alignments. Hence,

one can speculate that there exists a local inversion inside this intron which

appeared in the common branch of these three Drosophila species. Note

that we applied a high threshold on the score of the DrosOCB blocks (2200,

FDR = 0.8 · 10−3 ) such as to reduce the number of displayed blocks. In-

terestingly, the ORegAnno track [69] in the lower part of the UCSC window

indicates the presence of a regulatory element, more precisely an enhancer,

underlying that even functional elements are subject to extensive rearrange-

ments, as previously noted [26, 27, 29].
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Genome Number Size of % of mean size

size* orthologous aligned conserved of CNBs

(Mbps) genes sequences (Mbps) sequences (bps)

intronic intergenic intronic intergenic intronic intergenic

D.sim 139,8 11540 36,9 55,4 50% 61% 103 118

D.sec 168,9 12074 39,2 56,7 54% 68% 102 115

D.yak 168,0 13005 45,7 62,5 52% 64% 84 94

D.ere 154,9 12459 44,1 60,7 51% 65% 88 95

D.ana 234,3 11530 47,7 61,7 25% 33% 57 59

D.pse 154,9 11795 66,9 44,1 19% 24% 52 54

D.per 191,0 10657 39,4 58,3 17% 21% 53 54

D.wil 238,9 10907 52,5 79,9 15% 18% 49 49

D.moj 196,6 11213 51,1 76,6 13% 15% 49 49

D.vir 209,0 11346 51,6 77,2 13% 16% 49 49

D.gri 203,3 11541 48,9 71,7 13% 16% 49 49

Table 4.1: DrosOCB database content summary From the left, columns indicate the Drosophila species, the size

of the genome (defined as the total size of the genome fasta files downloaded), the number of orthologous genes

between D.melanogaster and the second species, the size of intronic and intergenic sequences aligned, the percentage

of conserved sequences (i.e. the total nonredundant size of intronic and intergenic CNBs divided by the size of

intronic/intergenic sequences aligned), the mean size of intronic and intergenic CNBs.
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Figure 4.1: The evolutionary tree of Drosophila genus, according to the “12

drosophila genomes project”. This is taken from the AAA web site [6].

Figure 4.2: Percentage of conserved sequences in intergenic and intronic re-

gions for each of the 11 species compared with D.melanogaster The percent-

ages are determined taking the total length of the intergenic/intronic CNBs

(redundant CNB portions are counted only once), and dividing by the to-

tal nonredundant length of the aligned intergenic/intronic sequences. This

correponds to columns 5 and 6 of Table 1.
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Figure 4.3: Rearrangements events of CNBs The picture represents typical

genomic rearrangements that can be observed in DrosOCB. In the case A,

the CNB (red box in the picture) is a conserved sequence that has changed

is orientation in one of the two species, taking as common reference the

orientation of the transcript. Case B represents a CNB which is dupli-

cated in the second species compared with D.melanogaster. In this case,

the same D.melanogaster sequence matches two different regions in the com-

pared species, and appears as two overlapping blocks. Case C shows a third

case of genomic rearrangement that can be detected in the DrosOCB con-

tent. We called ”reshuffled CNBs” two sequences that are conserved in non

collinear order in the two species (purple box in the picture). Note that

we have not depicted here the most frequent configuration of noninverted,

collinear CNBs.
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Figure 4.4: Percentage of inverted CNBs in intergenic and intronic sequences

in DrosOCB. These percentages are computed by taking the ratio of the

number of inverted CNBs divided by the total number of blocks, in intergenic

and intronic regions respectively. Note that the length of the blocks is not

taken into account here.

Figure 4.5: Example of inverted CNBs UCSC genome browser window with

our custom tracks, showing an example of specific lineage inversion event

in Melanogaster region X:5,494,877-5,495,622. Grey colour coded boxes rep-

resents DrosOCB CNBs conserved across all species in the same orienta-

tion respect to the Melanogaster locus. The red boxes (tracks dmoj-dmel,

dvir-dmel, dgri-dmel) represent inverted CNBs in all species with respect to

Melanogaster, highlithing an inversion event specific of the branch common

to D.mojavensis, D.virilis and D.grimshawi (see also Figure 1).



Chapter 5

Conclusion

In the previous chapters, we presented two proposed applications of statisti-

cal and computational methods for investigating eukaryotic non–coding DNA

features. We considered the whole available genome–wide ensemble of non

coding sequences, treated as a complex system, to give some insights into

general rules behind the observed biological experimental data. The hope is

to get in this way new insight in the evolutionary mechanisms shaping higher

eukaryotes genomes and to understand functional role of the various portions

of the genome.

The first part focuses on the length distribution of a particular class of

DNA sequences, namely the 5’UTR exons. We observe that both in mouse

and in human these exons show a very clean power law decay in their length

distribution and suggest a simple evolutionary model which may explain this

finding. A simple stochastic model based on base pairs insertion and dele-

tion events is able to reproduce the observed experimental power law decay.

These results are obtained analytically and the implications for genome evo-

lution are discussed.

The obtain solution is very robust and it does not depend on the values

of insertion and deletion probabilities. Moreover, it holds also if instead of

assuming the insertion (or deletion) of a single nucleotide, we assume the

insertion or deletion of oligos (i.e. small sequences of nucleotides).

68
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We show that the power law decay still holds if we add to the process

a fixed background probability of creation of new exons of random length,

with a superior limit in the this exonization probability. Finally we derived

a possible modification of our model, leading a critical index greater than 1,

in agreement with that observed in the actual exon distribution in human

and mouse.

It is conceivable that similar evolutionary mechanisms should be at work

in related species. This in our opinion explains why the critical indices as-

sociated to the mouse and human distributions are so similar and led us to

conjecture that similar values should be found also in other mammalians as

more and more 5’UTR sequences will be annotated.

Let us conclude by noticing that this whole derivation is based on the

assumption that the system had reached its equilibrium distribution. This is

by no means an obvious assumption and it is well possible that the fact that

we observe a critical index larger than 1 simply denotes that the system is

still slowly approaching the equilibrium distribution. There are three ways

to address this issue. First one should extend the analysis to other organisms

(however, this will require a better annotation of the UTR regions in these

organisms). Second one could reconstruct, by suitable aligning procedures,

the UTR exons of the common ancestor between mouse and man and see if

they also follow a power law distribution and, if this is the case, which is the

critical index. Third one could simulate the model discussed above and look

to the behaviour of the exon distribution as the equilibrium is approached.

The second part of this thesis is devoted to discuss bioinformatics meth-

ods for comparative genomics of non–coding DNA. Once a DNA evolutionary

model is defined, it is possible to compare sequences looking for evidence that

they have diverged from a common ancestor. This is usually done by first

aligning the sequences (or part of them) and then deciding whether that

alignment is more likely to be occurred because the sequences are related, or

just by chance.
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Comparison of non coding sequences requires new algorithms and strate-

gies to take into account the different evolutionary mechanisms affecting

regulatory sequences. We present an novel large scale alignment strategy

which aims at drawing a precise map of conserved non-coding regions be-

tween genomes, even when these regions have undergone small scale rear-

rangement events. Our procedure is optimized to take into account the great

plasticity of non coding DNA, such as shuffling and sequence variability of

binding sites within functional modules, low scale translocations, inversions

and duplications.

The recent availability of 12 Drosophila species sequences and annota-

tions [57] offers a complete and reliable genomic dataset for developing and

testing methods for comparative genomics of non coding DNA in complex

eukaryotes.

We have described a new, local but genomewide alignment procedure for

binary comparisons of Drosophila melanogaster with eleven currently avail-

able drosophila genomes. We have shown that the resulting collection of

CNBs, organized in the DrosOCB database, constitutes a highresolution col-

lection of noncoding DNA conservation in drosophila. The small size of the

blocks, and the local nature of the alignment highlights small scale genomic

rearragement events, that are not apparent from other approaches.

As a preliminary study, we have focused on inverted CNBs which might

correspond to small scale inversions. A more detailed analysis of this phe-

nomenon and other rearragements is left for a future more complete investi-

gation. An interesting aspect of our preliminary analysis is that the localiza-

tion of these inverted blocks is not evenly distributed among chromosomes.

Chromosome X seems to have a much higher than average proportion of

these inverted blocks, indicating that it has undergone more extensive rear-

ragements than the autosomal chromosomes, as noted previously [70].

The alignment procedure described in this work provides an optimal tool

for a high resolution comparison of non coding DNA sequences. The content
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of the database, and the observed high rate of low scale reshuffling suggest

that this database of CNBs can constitute the starting point for several in-

vestigations, related to the evolution of regulatory DNA in Drosophila, the

in silico identification of unannotated functional elements and the search for

transcription factor binding sites.

Statistical and computational approaches presented in this thesis work

aim at analyzing the unknown fraction of the genome, the rules governing

its structure, function and evolution. The objective is considering the whole

available genome–wide ensemble of non coding sequences, treated as a com-

plex system, to give some insights into general rules behind the observed

biological experimental data. In this direction, statistical and computational

methods can provide a great aid to extract information about general fea-

tures of the non coding genome.



Appendix A

Biological glossary

In this chapter, we report some useful biological definitions, mainly from [81].

chromatin DNA complexed with histones and other chromosomal proteins.

ChIP chromatin immunoprecipitation is a method for extract DNA that

specifically interact with proteins of interest. Bound proteins are chem-

ically linked to DNA and then selectively precipitated by using cognate

antibodies.

coding sequence a DNA sequence that encode for a gene product such as

a protein.

coding strand the strand of the DNA duplex that is really translated into

a protein through the genetic code.

codon a trinucleotide (triplet, or 3-word) that specifies for a particular am-

minoacid through the genetic code.

differential expression the expression of one or more genes to different

extents, depending upon growth conditions, treatments applied, or the

state of the cell cycle.

euchromatin the portion of a chromosome that is less condensed and more

transcriptionally active.
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eukaryote organisms characterized by a true membrane-bounded nucleus

containing chromosomes complexed with histones, a cytoskeleton, and

mebrane-bound organelle such as mithocondria. Humans and yeasts

are eukaryotes.

exon a contigous segment of DNA that is represented in a processed mature

RNA molecule after splicing has removed intronic sequences. Exon

sequences may be translated or untranslated.

gene a genomic locus (or DNA segment) specifying or contributing to an

heritable trait associated with an organism. A gene usually encode

for a RNA species and (after translation) to polypeptide chains, the

proteins.

genome the entire genetic complement of an organism.

heterochromatin the portion of chromatin that is highly condensed and

less commonly transcribed throughout the cell life.

homologs related genes or loci whose similarity is a consequence of descent

from a shared common ancestor. Homologs in different species are

orthologs, and homologs within a species are paralogs.

intron a segment of non-coding DNA separating exons within genes. Introns

are removed by splicing from precursor RNA molecule to form mature

mRNA.

locus a position on a genetic map or genome defined by a certain gene or

DNA sequence appearing at that position.

mutation a heritable change in DNA relative to a defined ”wild-type” ref-

erence sequence.

non coding sequence DNA sequence that does not appear in the final gene

product. This include intergenic sequences, introns, untraslated re-

gions.

open reading frame ORF a succession o triplet not interrupted by STOP

codons.



APPENDIX A. BIOLOGICAL GLOSSARY 74

ortholog homologs appearing in different species.

paralog homolog arising from a gene duplication within a single lineage or

species instead of arising by descent in diverging lineages.

microRNA or miRNA a particular class of short ∼ 22 RNA molecules

displaying post-transcriptional regulatory features trough binding to

specific loci in the 3’ UTR region of the regulated genes.

prokaryote an organism that does not contain a true nucleus, membrane-

bound organelle, or complex cytoskeleton.

promoter a DNA sequence element required for initiation of transcription

of a gene, including sites where transcription factors bind to control

the time and cell type in which transcription occurs.

proteome the complete set of protein encoded by a certain organism.

repeated sequence a DNA sequence that appears more than once in a

genome.

splicing processing of primary RNA transcript to remove introns and to

produce mature mRNA molecules containing a continuous coding se-

quence composed by joined exons.

spottet microarray a collection of DNA probes, used for measuring gene

expression levels.

transcription factors proteins involved in the starting of transcription for

a certain gene trough binding to specific loci in the promoters regions

(transcription factor binding sites, TFBSs) of the regulated gene.

transcriptome the complete collection of mature transcripts in a particu-

lar cell type under a specified set of physiological and environmental

conditions.

UTR UnTRaslated region DNA segment transcribed into mRNA but not

translated into amminoacids.
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Bioinformatic glossary

In this chapter, we report some useful bioinformatics definitions, mainly from

[81].

alignment the procedure by which two (or more) nucleic (or protein) se-

quences are arranged to establish a relationship between them.

assembly given numerous short sequences of DNA, the assembly is the pro-

cedure to merge them into a larger one or into a genome.

binomial distribution the binomial is the probability distribution describ-

ing the number of successes and failures in a fixed number of indepen-

dent trials when only two outcomes are possible, often called ”success”

and ”failure”. The number of heads in some fixed number of tosses of a

coin is an example of a binomial random variable. If we denote with Y

the total number of success in n trials, so the probability distribution

of Y is given by the formula

PY (y) =

(
n

y

)
py(1 − p)n−y y = 0, 1, 2, ..., n.

where:

(
n

y

)
=

n!

(n − y)!y!
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BLAST Basic Local Alignment and Search Tool a program for rapidly search-

ing protein or DNA sequences in a database and to detect statistically

significant local alignments throught heuristic procedures.

Bonferroni correction the bonferroni is a multiple testing correction method.

If N multiple independent hypotheses are tested for significance, the

correct cutoff should be written as ≃ cutoff
N

.

clustering the procedure of grouping together objects based upon some

kind of similarities or distance measure between them.

consensus sequence a short DNA or protein sequence having, at each po-

sition, the most probable letter at that position.

conserved sequence a DNA or protein region found nearly identical in two

or more genomes, after alignment.

deletion an alteration in DNA sequences resulting from removing one or

more contiguous bases from the sequence string.

dissimilarity a measure of the degree of difference between objects with

respect to a certain distance measure.

false discovery rate or FDR, in classification, the fraction of those features

identified as positive that are in fact false positives.

FASTA a rapid local alignment method based upon locations of k-words in

a alignment matrix. This allow a more detailed examination of regions

where hits are frequent.

gene expression matrix for n genes whose expression is measured for m

conditions, the n × m matrix of expression levels (typically ratios of

treatment to control conditions) is the gene expression matrix.

global alignment alignment between two sequences such that all letters of

both sequences are aligned opposite letters or indels.

hit a database entry matching a query sequence after a database search.



APPENDIX B. BIOINFORMATIC GLOSSARY 77

hypergeometric distribution suppose that an urn contains N objects, of

which n are red and N − n are white. Of these, m objects are taken

out of the urn at random, in particular without reference to the color

and without replacement. The number of red objects taken out is a

random variable Y , with probability distribution given by the formula

PY (y) =

(
n
y

) (
N−n
m−y

)

(
N
m

) y = A, A + 1, ..., B.

where A = max(0, n + m − N), B = min(n, m).

indel an insertion or deletion of letters applied to either of two sequences

string being aligned.

IUPAC-IUB symbols symbols for DNA combination bases:

A = Adenine R = A or G (purine) M = A or C

C = Cytosine Y = T or C (pyrimidine) B = T,G or C

G = Guanine S = G or C V = A,G or C

T = Thymine W = A or T H = A,T or C

U = Uracil K = G or T F = A,T or G

N = any base

information of a sequence: a measure of it nonrandomness. Can be mea-

sure i.e. using relative entropy or Shannon’s entropy.

insertion the addition of one or more nucleotides into a nucleic acid se-

quence.

local alignment alignment of substrings taken from each of two different

sequence strings.

Markov chain a probabilistic model for a sequence of dependent random

variables. The probability distribution of the next outcome depends

only on the identity of the k previous outcomes. The case k = 1 is

called one-step Markov chain.



APPENDIX B. BIOINFORMATIC GLOSSARY 78

mismatch non-identity between two letters, each derived from o ne of two

sequences strings being aligned or compared.

motif a short local sequence pattern found among a set of proteins or DNA

sequences.

multiple alignment alignment of more than two sequences strings.

multiple hypothesis testing the simultaneous testing of two or more al-

ternative hypotheses.

pairwise alignment alignment of two sequence strings.

PAM or Point Accepted Mutations a set of matrices for scoring amino acid

or DNA substitutions in alignments.

phylogenetic footprinting a DNA sequence pattern recognized to appear

similar in aligned regions of related genomes.

position specific scoring matrix or PSSM a matrix whose rows corre-

spond to letters that occur at positions in a DNA signal and whose

columns corresponds to the positions. Matrix element are the log-odds

scores for each letter at each position, computed relative to an appro-

priate null model. A PSSM is a particular type of a PWM.

positional weight matrix or PWM a matrix whose rows correspond to

letters that occur at positions in a DNA signal and whose columns

corresponds to the positions. Elements of this matrix are related to

the probability of occurrence of each letter at each position.

substitution matrix a matrix specifying scores to be applied for matching

DNA sequences in an alignment. An example is the PAM matrix.
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Publications

Publications directly related to the thesis work:

• [82] Martignetti L., Caselle M.

Universal power law behaviors in genomic sequences and evolutionary

models

Phys Rev E Stat Nonlin Soft Matter Phys. Aug:76 2007

• [83] Martignetti L., Caselle M., Jacq B., Herrmann C.

DrosOCB: a high resolution map of conserved non coding sequences in

Drosophila

arXiv:0710.1570 2007
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