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Abstract

In the last few years the amount of information about genomes, especially accurate complete
sequences, has been exponentially increasing. Despite this abundance of information the
interpretation in biological signi�cant terms of the entire genomic sequence of an organism
remains a challenge of the post-genomic scienti�c era.

In this study we propose paralogous alignments (i.e. the alignments of a genome with
itself) as a tool to extract meaningful information from raw genomic sequences. We com-
puted a complete database of such alignments for a few organisms and we developed a set of
software tools to mine, collect, visualize and integrate these data with the present knowledge
about genomic sequences.

As a �rst result we were able to identify previously unknown genes (chapter 2).
As a second step we adopted a more abstract perspective which was inspired by two

considerations: on one hand many known languages are structured so that the used words
are only few of the possible combinations of characters; on the other hand, a word is often
present many times in the same text. Therefore we searched for sequences of nucleotides
occurring many times in the genomes using paralogous alignments and managing them with
graph theory concepts. Within the �genomic words� that we found there are many well
known sequences, such as protein domains, but also previously uncharacterized sequences
(chapter 3).

Alongside this principal project, which is centred on a genomic level, we investigated
other ways to extract meaningful information from large sets of publicly available biological
data. We developed a strategy able to handle gene expression pro�les in order to infer
interactions among genes at proteomic level starting from data at the transcriptomic level
(appendix A).
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Chapter 1

Introduction

Nowadays the �systems biology� is one of the most fascinating and prospering research �eld.
This term has a lot of de�nitions, but the underlying common perception of systems biology
researchers is that the living realm of nature is characterized by complex behaviors which
cannot be understood in a purely reductionist framework.

Each scale (from sub-cellular molecular processes to population dynamics and ecosys-
tems) shows complex behaviors which emerge from the interaction of many subsystems that
are in turn complex systems.

Each scale has a typical formalism in order to explain the observations and to make
predictions. However, even when the scienti�c principles governing a speci�c scale are very
well understood, the organization at the nearest higher scale is often impossible to predict
starting from these principles. For instance the prediction of the structure and function of
a protein is actually almost impossible starting from physical and biochemical principles.

This thesis aims to give some contributions to the study of the biomolecular scale and
in particular we focused our attention to the processing of the information that lives in the
genomes. This information gives rise to the molecules that are the fundamentals players in
the complex team play which makes the cell a living being.

A commonly accepted theoretical framework able to completely describe this particular
�eld of research in its wholeness has not been developped yet. Even if the Darwin's theory
of evolution provides the underlying principles, only in few cases this theory can be directly
applied in a well formalized way in order to explain phenomena occurring at the biomolecular
scale. Besides the Darwin's theory another paradigm drives the biomolecular interpretations:
the so called �central dogma of molecular biology�. It was proposed by Francis Crick in
1958, after the discovery of the structure of DNA molecule. According to this paradigm, the
information �ows in the cell become of prime interest.

The �central dogma of molecular biology� has the great merit to be clear and simple in
its statement, but nowadays too many phenomena do not �t with the original formulation
and a more general one is required.

8



CHAPTER 1. INTRODUCTION 9

1.1 The extended central dogma
1.1.1 The original formulation and the exceptions

Figure 1.1: Central dogma: general and special kinds of information
�ows in molecular biology. Modi�ed from [1].

The central dogma of molecu-
lar biology was �rst enunciated
by Francis Crick in 1958 [2]
and re-stated in a Nature pa-
per published in 1970 [3]:

The central dogma of molec-
ular biology deals with the de-
tailed residue-by-residue trans-
fer of sequential information.
It states that such informa-
tion cannot be transferred back
from protein to either protein
or nucleic acid.

In other words, �once in-
formation gets into protein,
it can't �ow back to nucleic
acid.�

Strictly speaking the prin-
ciple is true, indeed there are
not biomolecular mechanism,
neither in living organisms nor
in arti�cial ones, that can
produce nucleic acid polymers
with a sequence speci�ed in a protein. Nevertheless the Crick paradigm is often intended in
a more rich form asserting that:

• the genetic information is stored in DNA,

• each gene is a portion of DNA,

• each gene has a speci�c function,

• the function of a gene is expressed by a protein,

• the primary structure of a protein is encoded in the gene sequence,

• an RNA molecule carries the information from the DNA level to the protein (trough
a transcription and translation process)

Nowadays this is a commonly accepted framework; the usual information �ows in a cell (blue
arrows in �gure 1.1) are

• from DNA to DNA during replication,

• from DNA to RNA during transcription,

• from RNA to protein during translation.

Nevertheless some remarkable exceptions (red arrows in �gure 1.1) have to be taken into
account.

Retrotranscription
In 1970 the scientists Howard Temin and David Baltimore independently discovered an
enzyme capable to make a double stranded DNA molecule from a single stranded RNA
template. They denoted this enzyme reverse transcriptase because it acts in the opposite or
reverse direction of transcription.
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The retrotranscriptase is fundamental for the life-cycle of retroviruses such as the human
immunode�ciency virus (HIV). The genome of this kind of viruses consists of RNAmolecules;
when the viruses entered in to a cell and uncoated, the genome is reverse transcribed into
double stranded DNA which can be incorporated into the host cell and subsequently ex-
pressed.

Higher eukaryotes present transposable elements that duplicate themselves in the genome
in a similar way (see section 1.5).

RNA-RNA replication
An example of RNA-RNA replication is provided by a class of viruses (including Coronavirus
and SARS) which have their genome directly utilized as if it were mRNA, producing a single
protein which is modi�ed by host and viral proteins in order to form the various proteins
needed for replication. One of these proteins is a RNA replicase, which copies the viral
RNA to form a double-stranded replicative form, which in turn directs the formation of new
virions [3].

Direct translation from DNA to protein
Direct translation from DNA to protein has been demonstrated in a test tube, using extracts
from E. Coli that contained ribosomes, but the same result was impossible to obtain with
intact cells [4].

1.1.2 Taking regulation and RNA-processing into account
The relatively simple scheme of central dogma depicted in �gure 1.1 becomes much more
complex if we take into account the regulatory information �ow.

In the original enunciation (which is still valid) the central dogma refers to blueprint
information that describes the primary molecular structure. In order to function, the cell
needs blueprint and machinery able to build molecules, but it also needs a system able to
decide when a certain molecular species has to be produced and the rate of its production.
This system is often denoted by �gene regulation�.

Ultimately the information which drives the rate of production of various molecular
species (mainly di�erent proteins) originates from the environment in which the cell lives,
or from changes in its internal state. Usually this information is picked up by specialized
sensor proteins which initiate a complex information processing: the information returs to
DNA in a way which is more or less opposite to that of standard molecular blueprint which
�ows form DNA to proteins.

The �gure 1.2 is an attempt to depict in a simple and schematic way the principal
processes, actors and �ows in the information processing of the eucariotic cell, taking into
account the regulation.

RNA molecules are involved in gene regulation
The transcription and the translation processes are fundamental steps in the canonical
(molecular blueprint) information �ow which goes from DNA to protein (blue arrows in
�gure 1.2). They are also the key step in which regulators proteins intervene in order to
promote or to block the production of a certain molecular species.

As a consequence of the standard statement of the central dogma, it has been gener-
ally assumed that the RNA has only the role of passive messanger which carries blueprint
information from DNA to protein1, then only proteins may regulate the gene expression.
In the early 2000's a new class of regulatory RNA, sometimes denoted as smallRNA or
sRNA (including miRNA and siRNA), became popular in the scienti�c community2 and it

1The tRNA and rRNA class of RNA molecule are well known since the early 60's and were considered
as notable exception.

2In 1990, plant scientists at a biotechnology company were studying enzymes that formed anthocyanin,
the pigment that makes petunias purple [5]. Testing whether chalcone synthase (CHS), was the rate-limiting
enzyme in anthocyanin biosynthesis, they overexpressed chalcone synthase in petunias: "Unexpectedly the
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Figure 1.2: Extended central dogma.
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is now clear that not only proteins intervene in the gene regulation process but also many
kind of RNA molecules have an important role. The smalRNAs intervene not only at the
transcription level but mainly at post-transcriptional and translation level.

RNA-processing
Now it is clear that a wide class of RNA molecules is fundamentally involved in gene regu-
lation but also that the standard messanger RNA (mRNA) are not passive carriers.

The initial RNA copy of a gene encoded in the DNA (preRNA) undego a cut and paste
processing (splicing) in which certain portions are removed (introns) and others (exons) are
retained. The �nal product, called mature mesanger (mRNA) is ready to be potentially
translated into a protein.

Each preRNA may undergo alternative splicing process and hence one single gene (that
produce one single preRNA) can produce many di�erent mRNA and as many di�erent
proteins.

The splicing mechanism is regulated in a complex and still unclear way. Remarkabley the
principal molecular complex involved in this process (the spliceosome) is a ribonucleoprotein
complex, i.e. its components are both proteins and RNA molecules. The ribosome has
the same mixed composition and it is the crucial machinery involved in the translation
process. Thus the RNA has several crucial roles: carrying and processing information, gene
regulation, enzymatic activity in fundamental molecular machinery.

Protein-protein interaction
Alongside the transcription-processing-translation �ow, regulated by sRNA and regulators
proteins, there are other processes to take into account: the replication process (in which
the DNA is duplicated in order to give the genome to o�spring) and the retrotransposition
processes (see section 1.1.1 and 1.5).

Moreover, considering the information processing of the cell as a whole, we cannot forget
the protein-protein interactions: many responses to external or internal stimuli or to envi-
ronmental changes, involve only a cascade or a network of interaction among proteins, while
they do not involve the RNA or DNA level. The protein-protein interactions induced by
a stimulus often produce variations in some proteins (cleavage, phosphorillation, etc) or in
the topology of the interaction network itself; these changes allow new biological functions
(sometimes very complex) which react to the initial stimulus.

1.2 Genes and genomes
The main topic of this thesis is a novel computational methodology devoted to gene predic-
tion. The concept of gene remains central even when we assume a more abstract perspective:
looking in the genomes for interesting patterns of symbols we often anchor our observation to
genes. For these reasons a clear de�nition of a gene is necessary, and hence a brief historical
evolution of the concept of gene is reported afterward.

The more expert scientists become in molecular genetics, the less easy it is to be sure
about what a gene actually is [7].

In classical genetics, a gene was an abstract concept � a unit of inheritance that ferried a
characteristic from parent to child. As bio-chemistry came into its own, those characteristics
were associated with enzymes or proteins, one for each gene. And with the advent of
molecular biology, genes became real, physical objects � sequences of DNA which when
converted into strands of so-called messenger RNA could be used as the basis for building
their associated protein piece by piece. The great coiled DNA molecules of the chromosomes
were seen as long strings on which gene sequences sat like discrete beads.

This picture is still the working model for many scientists. But those at the forefront
of genetic research see it as increasingly old-fashioned � a crude approximation that, at
introduced gene created a block in anthocyanin biosynthesis" [5] and 42% of the plants became white or
had chimeric purple-white patterns [6]. This was the �rst experiment of RNA interferece and it opened the
research �eld of RNA-mediated regulation.
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best, hides fascinating new complexities and, at worst, blinds its users to useful new paths
of enquiry [7].

Information seems to be parcelled out along chromosomes in a much more complex way
than that originally supposed. Moreover, the RNA molecules are not just passive conduits
through which the gene's message �ows, but they are active regulators of cellular processes
and messengers across generations [8].

1.2.1 Historical perspective on the concept of gene
1860s�1900s: Gene as a discrete unit of heredity
There are various de�nitions of the term �gene�, although common initial descriptions include
the ability to determine a particular characteristic of an organism and the heritability of this
characteristic. In particular, the word gene was �rst used by Wilhelm Johannsen in 1909,
based on the concept developed by Gregor Mendel in 1866 [9]. The word was a derivative
of pangene, which was used by Hugo De Vries for entities involved in pangenesis, Darwin's
hypothetical mechanism of heredity [10]. Johnannsen called a gene the "special conditions,
foundations and determiners which are present [in the gametes] in unique, separate and
thereby independent ways [by which] many characteristics of the organism are speci�ed" [11].
The etymology of the term derives from the Greek genesis ("birth") or genos ("origin").

Mendel showed that when breeding plants, some traits such as height or �ower color do
not appear blended in their o�spring � that is, these traits are passed on as distinct, discrete
entities. His work also demonstrated that variations in traits were caused by variations
in inheritable factors (or, in today's terminology, phenotype is caused by genotype). It
was only after Mendel's work was repeated and rediscovered by Carl Correns, Erich von
Tschermak-Seysenegg, and Hugo De Vries in 1900 that further work on the nature of the
unit of inheritance truly began [12].

1910s: Gene as a distinct locus
In the next major development, the American genetist Thomas Hunt Morgan and his stu-
dents were studying the segregation of mutations in Drosophila melanogaster. They were
able to explain their data with a model that genes are arranged linearly, and their ability
to cross-over is proportional to the distance that separated them [9]. The �rst genetic map
was created in 1913 and Morgan and his students published �The Mechanism of Mendelian
Inheritance� in 1915 [13]. To the early geneticists, a gene was an abstract entity whose
existence was re�ected in the way phenotypes were transmitted between generations. The
methodology used by early geneticists involved mutations and recombination, so the gene was
essentially a locus whose size was determined by mutations that inactivated (or activated) a
trait of interest and by the size of the recombining regions [9]. The fact that genetic linkage
corresponded to physical locations on chromosomes was shown later, in 1929, by Barbara
McClintock, in her cytogenetic studies on maize [14] while the fact that genetic information
reside on chromosomes was already observed by Theoder Boveri in 1907 [15].

1940s: Gene as a blueprint for a protein
Beadle and Tatum [16], who studied Neurospora metabolism, discovered that mutations in
genes could cause defects in steps in metabolic pathways. This was stated as the "one gene,
one enzyme" view, which later became "one gene, one polypeptide." In this viewpoint, the
gene is being implicitly considered as the information behind the individual molecules in a
biochemical pathway [9]. This view became progressively more explicit and mechanistic in
later decades.

1950s: Gene as a physical molecule
The fact that heredity has a physical, molecular basis was demonstrated by the observation
that X rays could cause mutations [17]. Gri�th's [18] demonstration that something in
virulent but dead Pneumococcus strains could be taken up by live nonvirulent Pneumococcus
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and transform them into virulent bacteria was further evidence in this direction. It was later
shown that this substance could be destroyed by the enzyme DNase [19]. In 1955, Hershey
and Chase established that the substance actually transmitted by bacteriophage to their
progeny is DNA and not protein [20]. .

1960s: Gene as transcribed code
It was the solution of the three-dimensional structure of DNA by Watson and Crick in
1953 [21] that explained how DNA could function as the molecule of heredity. Base pairing
explained how genetic information could be copied, and the existence of two strands ex-
plained how occasional errors in replication could lead to a mutation in one of the daughter
copies of the DNA molecule.

From the 1960s on, molecular biology developed at a rapid pace. The RNA transcript of
the protein-coding sequences was translated using the genetic code [22] into an amino acid
sequence. Francis Crick [23] summarized the �ow of information in gene expression as from
nucleic acid to protein (the beginnings of the �Central Dogma�, see section 1.1). However,
there were some immediate exceptions to this: it was known that some genes code not for
protein but for functional RNA molecules such as rRNA and tRNA. In addition, in RNA
viruses the gene is made of RNA. The molecular view of the gene that developed through
the 1960s can be summarized in general terms to be a code residing on nucleic acid that
gives rise to a functional product [9].

1970s�1980s: Gene as open reading frame (ORF) sequence pattern
The development of cloning and sequencing techniques in the 1970s, combined with knowl-
edge of the genetic code, revolutionized the �eld of molecular biology by providing a wealth
of information on how genes are organized and expressed [9]. The �rst gene to be sequenced
was from the bacteriophage MS2, which was also the �rst organism to be fully sequenced [24].
The parallel development of computational tools led to algorithms for the identi�cation of
genes based on their sequence characteristics (see section 1.3). In many cases, a DNA se-
quence could be used to infer structure and function for the gene and its products. This
situation created a new concept of the �nominal gene�, which is de�ned by its predicted
sequence rather than as a genetic locus responsible for a phenotype [25]. The identi�cation
of most genes in sequenced genomes is based either on their similarity to other known genes,
or the statistically signi�cant signature of a protein-coding sequence [9].

1990s�2000s: Annotated genomic entity, enumerated in the databanks (current
view, pre-ENCODE)
The current de�nition of a gene used by scienti�c organizations that annotate genomes still
relies on the sequence view. Thus, a gene was de�ned by the Human Genome Nomen-
clature Organization as �a DNA segment that contributes to phenotype/function. In the
absence of demonstrated function a gene may be characterized by sequence, transcription or
homology� [26]. Recently, the Sequence Ontology Consortium called the gene a �locatable
region of genomic sequence, corresponding to a unit of inheritance, which is associated with
regulatory regions, transcribed regions and/or other functional sequence regions� [27].

The sequencing of �rst the Haemophilus in�uenza genome and then the human genome [28,
29, 30] led to an explosion in the amount of sequence that de�nitions such as the above could
be applied to. In fact, there was a huge popular interest in counting the number of genes in
various organisms. This interest was crystallized originally by Gene Sweepstake's wager on
the number of genes in the human genome, which received extensive media coverage. The
landmark human genome sequencing surprised many with the small number (relative to
simpler organisms) of protein-coding genes that sequence annotators could identify (21000
[31]),

It has been pointed out that these enumerations overemphasize traditional, protein-
coding genes. In particular, when the number of genes present in the human genome was
reported in 2003, it was acknowledged that too little was known about RNA-coding genes,
such that the given number was that of protein-coding genes [9]. Moreover alternatively
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spliced transcripts, in the Gene Sweepstake's Wagner de�nition, all belong to the same
gene, even if the proteins that are produced are di�erent [32].

A current computational metaphor: Genes as "subroutines" in the genomic
operating system
Given that counting genes in the genome is such a large-scale computational endeavor and
that genes fundamentally deal with information processing, the lexicon of computer science
naturally has been increasingly applied to describing them. In particular, people in the
computational biology community have used the description of a formal language to describe
the structure of genes in very much the same way that grammars are used to describe
computer programs [33]. Moreover, one metaphor that is increasingly popular for describing
genes is to think of them in terms of subroutines in a huge operating system. That is, insofar
as the nucleotides of the genome are put together into a code that is executed through the
process of transcription and translation, the genome can be thought of as an operating
system for a living being. Genes are then individual subroutines in this overall system that
are repetitively called in the process of transcription [33].

1.2.2 Recent development: FANTOM and ENCODE
Two recent international e�orts devoted to functional annotations of genomes gave us a
bumper crop of data that upset considerably the classical concept of gene.

The Functional ANnoTation of Mouse (FANTOM) consortium [34] was originally a
Japanese national project for establishing a system for connecting genes with phenotypes
and drug targets/e�ects by using the same platform in multiple biological systems [34]. It
became an international consortium in 2001 with the aim to provide the ultimate charac-
terization of the mouse transcriptome. It released the last data in 2005 [35].

The National Human Genome Research Institute (NHGRI) launched a public research
consortium named ENCODE, the Encyclopedia Of DNA Elements, in September 2003, to
carry out a project to identify all functional elements in the human genome sequence [36].
In the pilot phase (concluded in 2007), ENCODE researchers devised and tested high-
throughput approaches for identifying functional elements in the genome. Those elements
included genes that code for proteins; genes that do not code for proteins; regulatory ele-
ments that control the transcription of genes; and elements that maintain the structure of
chromosomes and mediate the dynamics of their replication [37]. The pilot project focused
on 44 targets, which together cover about 1 percent of the human genome sequence, or about
30 million DNA base pairs.

These projects represent a major milestone in the characterization of genomes, and the
current �ndings show a striking picture of complex molecular activity [9]. Before the advent
of FANTOM and ENCODE projects, there were a number of aspects of genes that where
complex to explain and did not �t well with the common concept of gene, but much of this
complexity was in some sense swept under the rug and did not really a�ect the fundamental
de�nition of a gene [9]. Indeed much of the new observation are not really new: during
the past decades almost each special characteristic shown by FANTOM or ENCODE where
already depicted in some scienti�c paper. However these recent large international e�orts
demonstrated that these characteristics are not peculiar of few special genes but they are
widespread in the genome. Therefore the scienti�c community realized that these observation
must �t the proper concept of what a gene is.

Classical works on special features of genes
Concerning the de�nition of a gene it is hard to decide what is special and what is not,
likewise it is not always clear who experimentally depicted a new phenomenon at �rst.
Nevertheless it is remarkable that several complex gene characteristics which nowadays are
fashionable, were discovered many years ago. Table 1.1 brie�y reports some particular cases.
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1.2.3 Some aspects of genomic complexity
ENCODE and FANTOM mainly analyzed the transcriptome, using di�erent experimental
techniques such as CAGE, tiling arrays, RACE and other [38]. A �rst �nding from this
techniques is that a vast amount of DNA, not annotated as known genes, is transcribed
into RNA [9].

These novel transcribed regions are usually called TARs (i.e., transcriptionally active
regions) or transcriptional fores . While the majority of the genome appears to be transcribed
at the level of primary transcripts, only about half of the processed (spliced) transcription
detected across all the cell lines and conditions mapped is currently annotated as genes [9].
Moreover a considerable fraction of TARs do not contain transcript with a well characterized
ORF.

Thanks to these novel techniques the detectable transcribed genomic fraction is notice-
ably increased, but even more astonishing is the complexity of the transcription processes
with respect to the previous expectation.

The following sections describe some of the most important observations about tran-
scription complexity that FANTOM and ENCODE highlighted.

Gene overlapping
Some genes have been found to overlap one another, sharing the same DNA sequence in
a di�erent reading frame or on the opposite strand. The discontinuous structure of genes
potentially allows one gene to be completely contained inside another one's intron, or one
gene to overlap with another on the same strand without sharing any exons or regulatory
elements [9]. Thousands of examples of ncNAT (non-coding Natural AnTisense) transcript
have been discovered [39], many of them have a role in the expression regulation of the
corresponding sense transcript.

Unannotated and alternative transcription start sites
There are a large number of unannotated transcription start sites (TSSs) [9]. Since the
control of the rate of transcription is principally related to sequences located in the upstream
region of the TSS, the fact that a gene could have multiple TSS complicates the interpretation
of experiments devoted to expression pro�ling.

Moreover some of these new discovered TSSs use the promoter of an entirely di�erent
gene locus (i.e., there are transcript of di�erent genes sharing the same transcription start
site) [9].

Transcript encompassing multiple gene locus
Many known protein coding genes have alternative TSSs that are sometimes more than
100 kilobases upstream of the previously annotated TSS. Thus, some alternative isoforms
are transcripts that span multiple gene loci [9].

Gene fusions
Many of the alternative isoforms encompassing multiple gene loci code for the same protein
di�ering only in their 5' untranslated regions (UTRs). Therefore there are some case in which
two consecutive genes are transcribed into a single RNA. The translation (after splicing) of
such RNAs can lead to a new, fused protein, having parts from both original proteins [9].

Transplicing
There are also cases of ligation of two separate mRNA molecules. Clearly, the classical
concept of the gene as �a locus� no longer applies for these gene products whose DNA
sequences are widely separated across the genome.
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Alternative splicing
The number of annotated alternative isoforms per locus has increased up to (on average)
5.4 transcripts per locus [9].

Dispersed regulation
The regulatory sites for a given gene are not necessarily directly upstream of it and they can,
in fact, be located far away on the chromosome, closer to another gene. While the binding of
many transcription factors appears to blanket the entire genome, it is not arranged according
to simple random expectations and tends to be clumped into regulatory rich "forests" and
poor "deserts"[40]. Moreover, it appears that some of regulatory elements may actually
themselves be transcribed [9].

1.2.4 An updated de�nition of gene
According to Gerstein et al. [9] in this thesis I use the following de�nition of what is a gene:
the gene is a union of genomic sequences encoding a coherent set of potentially overlapping
functional products.

Some interesting consequences of this de�nition can be highlighted.

De�nition based on genomic sequence
In the era of whole genome sequencing, the de�nition of what a genomic sequence is seems
to be easier and clearer rather than the de�nition of what a gene is. Thus the de�nitions
of gene rely on those of genome. It is a change of the historical perspective in which the
knowledge about genes came before that about genomes.

Union of sequences
A single gene is a union of sequences and not a single one. The reasons for that is clear if
we think about alternative splicing. Moreover now is clear that a single gene can be made
starting from di�erent primary transcript (transplicing), or by a very long single primary
transcript and encompassing other gene locus.

Encoding functional products
A gene is not itself functional but contains the information to produce a functional product
(there is no distintion on the biochemical nature of this product that can be either a protein
or an RNA molecule). This de�nition of gene relies on the de�nition of function, but it is
di�cult to establish what is functional and what is not. The simple transcription is not
taken as evidence of function.

Potentially overlapping
Di�erent functional products of the same class (protein or RNA) that overlap in their usage
of the primary DNA sequence are combined into the same gene. This overlap is done by
projecting the sequence of the �nal product (either amino acid or RNA sequence) down onto
the original genomic sequence from which it was derived [9]. For the protein conding genes
the functional product is a protein, since potentially overlapping UTRs parts of two mRNAs
are not considered in order to decide if they are two isoforms of the same gene or not.

The UTRs are considered regulative regions and regulation is simply too complex to be
folded into the de�nition of a gene, and there is obviously a many-to-many (rather than one-
to-one) relationship between regulatory regions and genes. Moreover in procariotic genomes
the fact that genes in an operon share an operator and promoter region has traditionally
not been considered to imply that their protein products are alternative products of a single
gene [9].

Two functional products A and B may refer to the same gene even if they do not share
any genomic sequences as blueprint: a third transcript C may overlap both A and B.
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An obvious point that should still be stated is that, when looking at genomic products
with common sequence segments, mere sequence identity is not enough; the products have
to be encoded directly from the same genomic region. Thus, paralogous proteins may share
sequence blocks, but DNA sequences coding for them reside in separate locations in the
genome, and so they will not constitute one gene.

Coherent set of potentially overlapping products
Two distinct products are united in the same gene if they overlap; �coherent� means that
this union is performed separately for �nal protein and RNA products.

1.3 Gene prediction
One of the main justi�cations for achieve genome sequencing project is to identify new
genes for which there is only partial or no previous information [41].

Essentially, two di�erent types of methods are currently used to try to locate genes in a
genomic sequence.

Extrinsic (homology): historically, the existence of a su�cient similarity with a biologi-
cally characterized sequence has been the main means in order to �nd genes. Similarity-
based approaches have often been called extrinsic in opposition to others that try to
capture some of the intrinsic properties of a gene.

Intrinsic (ab-initio): using statistic measures (like compositional bias, codon usage, the
presence of the functional sites speci�c to a gene) these methods try to classify a DNA
region into types, e.g. coding versus non-coding etc.

Each single type of information useful to determine the presence and the structure of a
gene in a DNA sequence is retrieved by an algorithm, called sensor.

Complete gene prediction pipelines combine many sensors (therefore may type of infor-
mation) to achieve more accurate prediction; in the Ensembl [42] pipeline, for instance the
ab initio programs are called upon �rst. Then, to reduce the high incidence of false posi-
tives, the resulting gene predictions are '�xed' by the incorporation of similarity information.
Ensembl keeps only those exons that show sequence similarity to a gene or protein in the
vertebrate databases, not necessarily the entire gene prediction and not necessarily from the
same species.

1.3.1 Extrinsic (homology) sensors
Extrinsic sensors simply exploit a su�cient similarity between a genomic sequence region
and a protein or DNA sequence present in a database in order to determine whether the
region is transcribed and/or protein coding. The basic tools for detecting su�cient similarity
between sequences are local alignment methods ranging from the optimal Smith�Waterman
algorithm to fast heuristic approaches such as FASTA [43] and BLAST [44].

Often when one tries to map a given sequence (taken from a protein or from a RNA
molecule) in the genome, beside a region that shares exact sequence similarity (excluding
sequencing error, genotipic variability and sequence editing), it is possible to �nd other
regions sharing statistically signi�cant similarity; also this partial information could indicate
the presence of a gene.

The obvious weakness of such extrinsic approaches is that nothing will be found if the
database does not contain a su�ciently similar sequence. Furthermore, even when a good
similarity is found, the limits of the regions of similarity, which should indicate exons, are
not always very precise and do not enable an accurate identi�cation of the structure of the
complete gene or of the simpler single transcript.

Overall, similarities with three di�erent types of sequences may provide information
about exon/intron locations. The �rst and most widely used are protein sequences that
can be found in databases such as SwissProt or PIR. It is estimated that almost 50% of
the genes can be identi�ed thanks to a su�cient similarity score with a homologous protein
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sequence. However, even when a good hit is obtained, a complete exact identi�cation of the
gene structure can still remain di�cult because homologous proteins may not share all of
their domains. Furthermore, UTRs cannot be delimited in this way.

The second type of sequences are transcripts, sequenced as cDNAs (a cDNA is a DNA
copy of a mRNA) either in the classical way for targeted individual genes with high coverage
sequencing of the complete clone or as expressed sequence tags (ESTs), which are one shot
sequences from a whole cDNA library. ESTs and �classical� cDNAs are the most relevant
information to establish the structure of a gene, especially if they come from the same source
as the genome to be annotated. ESTs provide information that enable the identi�cation of
(partial) exons, either coding or non-coding, and give unbiased hints on alternative splic-
ing. However, ESTs give only local and limited information on the gene structure as they
only re�ect a partial mRNA. Furthermore, the correct attribution of EST sequences to an
individual member in a gene family is not a trivial task [45].

Finally, under the assumption that coding sequences are more conserved than non-
coding ones, similarity with genomic DNA can also be a valuable source of information
on exon/intron location. Two approaches are possible: intra-genomic comparisons can pro-
vide data for multigenic families, apparently representing a large percentage of the existing
genes (e.g. 80% for Arabidopsis) [45]; inter-genomic (cross-species) comparisons can allow
the identi�cation of orthologous genes, even without any preliminary knowledge of them.
Nevertheless, the similarity may not cover entire coding exons but be limited to the most
conserved part of them. Alternatively, it may sometimes extend to introns and/or to the
UTRs and promoter elements. This will be the case when genomes are evolutionarily close or
when genome duplications are recent events. In both cases, exactly discriminating between
coding and non-coding sequences is not an obvious task.

In all cases, an important strength of similarity-based approaches is that predictions rely
on accumulated pre-existing biological data . They should thus produce biologically relevant
predictions (even if only partial) [45].

1.3.2 Intrinsic (ab�initio) methods
Although an ab-initio gene predictor do not uses external information other that the raw
(partial) genomic sequence, a set of well known gene is required, and the model inside
the predictor summarize and generalize this previous knowledge. Therefore � although
these methods are considered as �intrinsic� � the fact that the models are built from known
sequences will inherently limit the applicability of the methods to sequences that, globally,
behave in the same way as the learning set [41].

In the following sections I make a brief excursus on the ab-initio gene predictors and
then I describe the gene model that is the core of the most used nowadays: GENSCAN.

Content sensors
Originally, intrinsic content sensors were de�ned for prokaryotic genomes. In such genomes,
only two types of regions are usually considered: the regions that code for a protein and
will be translated, and intergenic regions. Since coding regions will be translated, they are
characterized by the fact that three successive bases in the correct frame de�ne a codon
which, using the genetic code rules, will be translated into a speci�c amino acid in the �nal
protein.

In prokaryotic sequences, genes de�ne long uninterrupted coding regions that must not
contain stop codons. Therefore, the simplest approach for �nding potential coding sequences
is to look for su�ciently long open reading frames (ORFs), de�ned as sequences not con-
taining stops, i.e. as sequences between a start and a stop codon. In eukaryotic sequences,
however, the translated regions may be very short and the absence of stop codons becomes
meaningless [46].

Several other measures have therefore been de�ned that try to more �nely characterize
the fact that a sequence is �coding� for a protein: nucleotide composition and especially
(G+C) content (introns being more A/T-rich than exons, especially in plants) [45], codon
composition, hexamer frequency, base occurrence periodicity, etc. Among the large variety
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of coding measures that have been tested, hexamer usage (i.e. usage of 6 nt long words) was
shown to be the most discriminative variable between coding and non-coding sequences [46].
This characteristic has been widely exploited by a large number of algorithms through
di�erent methods.

Thus, hexamer frequency is one of the main variables used in SORFIND [47], Gen-
view2 [48], the quadratic discriminant analysis approach of MZEF [49] and the neural net-
work procedure of GeneParser [50]. This last program combines the use of hexamer frequency
with local compositional complexity measures estimated on octanucleotide statistics. Such
statistics are also e�ciently used, among other variables, in the linear discriminant analysis
of GeneFinder [51].

More generally, the kmer composition of coding sequences is the basis of the now ubiq-
uitous so-called �three-periodic Markov model� introduced in the pioneering algorithm Gen-
eMark [52]. Very brie�y, a Markov model is a stochastic model which assumes that the
probability of appearance of a given base (A, T, G or C) at a given position depends only
on the k previous nucleotides (k is called the order of the Markov model). Such a model is
de�ned by the conditional probabilities P(X|k previous nucleotides), where X = A, T, G or
C. In order to build a Markov model, a learning set of sequences on which these probabilities
will be estimated is required. Given a sequence and a Markov model, one can then very
simply compute the probability that this sequence has been generated according to this
model, i.e. the likelihood of the sequence, given the model [45].

The simplest Markov models are homogeneous zero order Markov models which assume
that each base occurs independently with a given frequency. Such simple models are often
used for non-coding regions, although it is now frequent to use higher order models to
represent introns and intergenic regions as, for instance, in GeneMark, Genscan [53] and
EuGène [54]. The more complex three-periodic Markov models have been introduced to
characterize coding sequences. Coding regions are de�ned by three Markov models, one for
each position inside a codon [45].

The larger the order of a Markov model, the �ner it can characterize dependencies be-
tween adjacent nucleotides. However, a model of order k requires a very large number of
coding sequences to be reliably estimated. Therefore, most existing gene prediction pro-
grams, such as GeneMark and Genscan, usually rely on a three-periodic Markov model of
order �ve (thus exploiting hexamer composition) or less to characterize coding sequences.
To cope with these limitations, interpolated Markov models (IMMs) have been introduced
in the prokaryotic gene �nder Glimmer [55]. For each conditional probability, an IMM com-
bines statistics from several Markov models, from order zero to a given order k (typically k
= 8), according to the information available. These IMMs are now also used in GlimmerM,
a version dedicated to eukaryotes, and in EuGène. The new version of Glimmer introduces
yet another sophistication of Markov models called interpolated context models, which can
capture dependencies among 12 adjacent nucleotides [55].

Another type of re�nement is often needed in eukaryotic genomes. It consists of esti-
mating several gene models according to the G+C content of the genomic sequence. This
is done by Genscan and GeneMark.hmm [56]. Indeed, it was shown that di�erences in
gene structure and gene density along some genomes are closely related to their �isochore�
organization [57, 58, 59].

In general, most currently existing programs use two types of content sensors: one for cod-
ing sequences and one for non-coding sequences, i.e. introns, UTRs and intergenic regions.
A few software re�ne this by using a di�erent model for the di�erent types of non-coding
regions (e.g. one model for introns, one for intergenic regions and an optional speci�c 3'-
and 5'-UTR model in EuGène) [45].

Signal sensors
The basic and natural approach to �nding a signal that may represent the presence of a
functional site is to search for a match with a consensus sequence (with possible variations
allowed), the consensus being determined from a multiple alignment of functionally related
documented sequences.More sophisticated approachs are based on models of various type
(HMMs for instance) but as for the previous �intrinsic� content sensors, the fact that the
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models are built from sets of known functional sequences inherently limits the sensors to
canonical signals [41].

Simple match with a consensus sequence is used, for instance, for splice sites prediction
in SPLICEVIEW and SplicePredictor [60] . A more �exible representation of signals is
o�ered by the so-called positional weight matrices (PWMs3), which indicate the probability
that a given base appears at each position of the signal. Equivalently, one can say that a
PWM is de�ned by one classical zero order Markov model per position, which is called an
inhomogeneous zero order Markov model. The PWM weights can also be optimized by a
neural network method [61].

In order to capture possible dependencies between adjacent positions of a signal, one may
use higher order Markov models. The so-called weight array model4 (WAM) is essentially an
inhomogeneous higher order Markov model. It was �rst proposed by Zhang and Marr [62]
and later used by Salzberg [63].

Of course, higher-order WAM models capturing second-order (triplet) or third-order
(tetranucleotide) dependencies in signal sequences could be used in principle, but typically
there is insu�cient data available to estimate the increased number of parameters in such
models [53].

These methods assume a �xed length signal. Hidden Markov models (HMMs) further
allow for insertions and deletions [64]. In order to capture the most signi�cant dependencies
between adjacent as well as non-adjacent positions, Burge [53] proposed another model for
donor sites called the maximal dependence decomposition (MDD) method 5.

It was also shown that combining sequence-based metrics for splice sites (WAM) with
3 In a PWM the frequency p

(i)
j of each nucleotide j at each position i of a signal of length n is derived

from a collection of aligned signal sequences and the product P{X} =
∏n

i=1
p
(i)
xi

is used to estimate the
probability of generating a particular sequence, X = x1, x2, . . . , xn. [53]

4In a weight array model the probability of generating a particular sequence is:

P{X} = p
(1)
x1

n∏
i=2

p
(i−1,i)
xi−1,xi

where p
(i−1,i)
j,k

is the conditional probability of generating nucleotide xk at position i, given nucleotide xj at
position i− 1 (which is estimated from the corresponding conditional frequency in the set of aligned signal
sequences) [53].

5The goal of the MDD procedure is to generate, from an aligned set of signal sequences of moderate to
large size (i.e. at least several hundred or more sequences), a model which captures the most signi�cant
dependencies between positions (allowing for non-adjacent as well as adjacent dependencies), essentially by
replacing unconditional PWM probabilities by appropriate conditional probabilities provided that su�cient
data is available to do so reliably. Given a data set D consisting of N aligned sequences of length k, the �rst
step is to assign a consensus nucleotide or nucleotides at each position. For each pair of distinct positions
{i, j}, a 2 by 4 contingency table was constructed for the indicator variable Ci (1 if the nucleotide at position
i matches the consensus, 0 otherwise) versus the variable Xj identifying the nucleotide at position j, and
the value of the χ2 statistic for each such table was calculated.
If no signi�cant dependencies are detected, then a simple PWM should be su�cient. If signi�cant depen-

dencies are detected, but they are exclusively or predominantly between adjacent positions, then a WAM
model may be appropriate. If, however, there are strong dependencies between non-adjacent as well as
adjacent positions, then we proceed as follows.

1. Calculate, for each position i, the sum Si =
∑

j 6=i
χ2(Ci, Xj), which is a measure of the amount of

dependence between the variable Ci and the nucleotides at the remaining positions of the site.
2. Choose the value i1 such that Si1 is maximal and partition D into two subsets: Di1 all sequences

which have the consensus nucleotide(s) at position i1; and D
i1

all sequences which do not.
Now repeat steps (1) and (2) on each of the subsets, Di1 and D

i1
and on subsets thereof, and so on, yielding

a binary subdivision �tree� with (at most) k−1 levels. This process of subdivision is carried out successively
on each branch of the tree until one of the following three conditions occurs:

1. the (k − 1)th level of the tree is reached (so that no further subdivision is possible);
2. no signi�cant dependencies between positions in a subset are detected (so that further subdivision is

not indicated);
3. the number of sequences remaining in a subset becomes so small that reliable WMM frequencies could

not be determined after further subdivision.
Finally, separate WMM models are derived for each subset of the tree, and these are combined to form a

composite model.
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secondary structure metrics could lead to valuable improvements in splice site prediction [65].
However, when using splice site prediction programs, one ends up with a list of potential
splice sites, from which various gene structures may be built. The main purpose of such
programs is not to �nd the gene structure but to try to �nd the correct exon boundaries [41].
They are thus very useful in addition to a content based sensor in order to re�ne an existing
gene structure. These programs can also provide insights into possible alternative splicing
.

1.3.3 A model of gene structure
Genscan is a widely used ab-initio gene prediction program based upon a model of gene
structure encompassing many type of content and signal sensors. The information of the
initial training set of well known genes is formulated as a probabilistic mathematical model,
namely an explicit state duration Hidden Markov Model (HMM)[64].

The model is schematizzed in �gure 1.3: each circle or diamond represents a functional
unit (state) of a gene or genomic region [53]:

• N , intergenic region;

• P , promoter;

• F , 5' untranslated region (extending from the start of transcription up to the transla-
tion initiation signal);

• Esngl, single-exon (intronless) gene (translation start → stop codon);

• Einit, initial exon (translation start → donor splice site);

• Ek (0 ≤ k ≤ 2), phase k internal exon (acceptor splice site → donor splice site);

• Eterm, terminal exon (acceptor splice site → stop codon);

• T , 3' untranslated region (extending from just after the stop codon to the polyadeny-
lation signal);

• A, polyadenylation signal;

• Ik (0 ≤ k ≤ 2), phase k intron.

For convenience, translation initiation/termination signals and splice sites are included as
subcomponents of the associated exon state and intron states are considered to extend from
just after a donor splice site to just before the branch point/acceptor splice site (i.e. the
�gure represents explicitly only content based sensors and theirs combinations). The upper
half of the Figure corresponds to the states (designated with a superscript +) of a gene on the
forward strand, while the lower half (designated with superscript -) corresponds to a gene on
the opposite (complementary) strand. For example, proceeding in the 5' to 3' direction on
the (arbitrarily chosen) forward strand, the components of an E+

k (forward-strand internal
exon) state will be encountered in the order [53]:

1. acceptor site,

2. coding region,

3. donor site,

while the components of an E−k (reverse-strand internal exon) state will be encountered in
the order:

1. inverted complement of donor site,

2. inverted complement of coding region,

3. inverted complement of acceptor site.
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Figure 1.3: A representation of GENSCAN inner model. Modi�ed from [53]
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Only the intergenic state N is not divided according to strand.
The model is though of as generating a �parse� ϕ, consisting of an ordered set of states,

→
q= {q1, q2, . . . , qn}

with an associated set of lengths (durations),
→
d= {d1, d2, . . . , dn}

which, using probabilistic models of each of the state types, generates a DNA sequence S of
length

L =
n∑

i=1

di

The generation of a parse corresponding to a (pre-de�ned) sequence length L is as follows

1. An initial state q1 is chosen according to an initial distribution on the states, →π where
πi = P{q1 = Q(i)} where Q(j)(j = 1, 2, . . . , 27) is an indexing of the state types (see
�gure 1.3).

2. A length (state duration), d1, corresponding to the state q1 is generated conditional
on the value of q1 = Q(i) from the length distribution fQ(i) .

3. A sequence segment s1 of length d1 is generated, conditional on d1 and q1, according
to an appropriate sequence generating model for state type q1.

4. The subsequent state q2 is generated, conditional on the value of q1, from the (�rst-
order Markov) state transition matrix T , i.e.

Ti,j = P{qk + 1 = Q(j)|qk = Q(i)}

.

This process is repeated until the sum,
∑n

i=1 d+ i, of the state durations �rst equals or
exceeds the length L at which point the last state duration dn is appropriately truncated,
the �nal stretch of sequence is generated, and the process stops: the sequence generated is
simply the concatenation of the sequence segments, S = s1s2 . . . sn. Note that the sequence
of states generated is not restricted to correspond to a single gene, but could represent a
partial gene, several genes, or no genes at all. The model thus has four main components: a
vector of initial probabilities →π , a matrix of state transition probabilities T , a set of length
distributions f , and a set of sequence generating models P . Assuming for the moment that
these four components have been speci�ed, the model can be used for prediction in the
following way [53].

Using the model for gene prediction
For a �xed sequence length L, consider the space Ω = φL × SL where φL is the set of (all
possible) parses of length L and SL is the set of (all possible) DNA sequences of length L.
The model M can then be thought of as a probability measure on this space, i.e. a function
which assigns a probability density to each parse/sequence pair. Thus, for a particular
sequence S ∈ φL, we can calculate the conditional probability of a particular parse ϕi ∈ φL

(under the probability measure induced by M) using Bayes' Rule as:

P{ϕi|S} =
P{ϕi, S}
P{S} =

P{ϕi, S}∑
ϕj∈φL

P{ϕj , S}
The essential idea is that a precise probabilistic model of what a gene/genomic sequence
looks like is speci�ed in advance and then, given a sequence, one determines which of the
vast number of possible gene structures (involving any valid combination of states/lengths)
has highest likelihood given the sequence [53].
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Given a sequence S of length L, the joint probability, P{ϕi, S}, of generating the parse
ϕi and the sequence S is given by:

P{ϕi, S} = πq1fq1 (d1)P{si|q1, d1} ×
n∏

k=2

Tqk−1,qk
(dk)P{sk|qk, dk}

where the states of ϕi are q1, q2, . . . , qn with associated state lengths d1, d2, . . . , dn, which
break the sequence into segments s1, s2, . . . , sn. Here P{sk|qk, dk} is the probability of
generating the sequence segment sk under the appropriate sequence generating model for a
type-qk state of length dk.

A recursive algorithm of the sort devised by Viterbi [66] may then be used to calculate
ϕopt, the parse with maximal joint probability (under M), which gives the predicted gene
or set of genes in the sequence. .

Assess the initial probability
Since genecan attempt to model a randomly chosen block of contiguous human genomic
DNA the initial probability of each state should be chosen proportionally to its estimated
frequency in bulk human genomic DNA. However, even this is not trivial since gene density
and certain aspects of gene structure are known to vary quite dramatically in regions of
di�ering C + G% content (so-called �isochores�) of the human genome [67].

Assess the state transitions probabilities
The (biologically permissible) state transitions are shown as arrows in Figure 1.3. Certain
transitions are obligatory (e.g. P+ → F+) and hence are assigned probability one; all others
are assigned (maximum likelihood) values equal to the observed state transition frequency
in the learning set L for the appropriate C + G compositional group. Overall, transition
frequencies varied to a lesser degree between groups than did initial probabilities. There was
a trend for A + T-rich genes to have fewer introns, leading to slightly di�erent estimates
for the I+

j → E+
term probabilities [53].

Assess the length distributions
For the length distribution genescan uses separate empirically derived length distribution
functions for initial, internal, and terminal exons and for single-exon genes. Substantial
di�erences in exon length distributions were not observed between the C + G compositional
groups for the coding exons and the UTR while intron and intergenic lengths are modeled
as geometric distributions with parameter q estimated for each C + G group separately.

Assess signals sensors
Polyadenylation signals are modeled as a 6 bp PWM (consensus: AATAAA). A 12 bp PWM
model, beginning 6 bp prior to the initiation codon, is used for the translation initiation
signal.

For the translation termination signal, one of the three stop codons is generated (accord-
ing to its observed frequency in L) and the next three nucleotides are generated according
to a PWM. All these PWM are computed form L.

Bases -20 to +3 relative to the intron/exon junction, encompassing the pyrimidine-rich
region and the acceptor splice site itself, are modeled by a �rst-order WAM model.

In the donor splice there are highly signi�cant dependencies between non-adjacent as
well as adjacent positions, which are not adequately accounted for by WAM and which
likely relate to details of donor splice site recognition by U1 snRNP and possibly other
factors. The consensus region of the donor splice site comprises the last 3 bp of the exon
(positions -3 to -1) and the �rst 6 bp of the succeeding intron (positions 1 through 6), with
the almost invariant GT dinucleotide occurring at positions 1,2: consensus nucleotides are
GUCCAUCCA. For this signal GENSCAN use a MDD model [53].



CHAPTER 1. INTRODUCTION 28

Assess conding exons content sensor
Coding portions of exons are modeled using an inhomogeneous 3-periodic �fth-order Markov
model. In this approach, separate �fth-order Markov transition matrices are determined for
hexamers ending at each of the three codon positions, denoted c1, c2, c3, respectively; ex-
ons are modeled using the matrices c1, c2, c3 in succession to generate each codon. These
transition probabilities were derived from the training set L . It as been shown [46] that
frame-speci�c hexamer measures are generally the most accurate compositional discrimina-
tor of coding versus noncoding regions. A + T-rich genes are often not well predicted using
such bulk hexamer-derived parameters. Accordingly, a separate set of �fth-order Markov
transition matrices was derived for region of C + G composition below 43% [53].

In the model, the disruption of coding regions by introns in multi-exon genes is dealt
with by keeping track of intron/exon phase, ensuring that a consistent reading frame is
maintained throughout a gene.
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1.4 Pseudogenes
Pseudogenes were originally de�ned as DNA sequences structurally similar to functional
protein coding genes but containing important defects, which make them unable to produce
functional proteins [68]. Such defects include, for example, the loss of the start codon, the
presence of additional stop signals and the lack or abnormality of �anking regulatory regions.
Nevertheless, this de�nition has to be revised in the light of data showing the possibility
that pseudogenes can acquire novel functions during evolution [69] as well as the presence
of many non-coding genes.

Figure 1.4: Pseudogenes and paralogous genes arise both
from a duplication of an ancestor gene.

An updated de�nition is the fol-
lowing: a pseudogene is a genomic
sequence that shares high homology
with a gene but with important dif-
ferences in its sequence or �anking
regions. Important di�erences means
that (if we think that the pseudogene
came from a duplication of the gene)
it underwent mutations that would
make unfunctional the pseudogene if
its supposed function was the same
of the homologous gene. Therefore a
genomic region, to be a pseudogene,
must share sequence similarity with
a gene and must have no function
or a di�erent function form the one
carried by the homologous gene (i.e.
must not be a paralogous gene).

If a pseudogenes has no function
(as most or all pseudogenes, see sec-
tion 1.4.4) it may continue to drift

until it is either deleted or becomes unrecognizable as a genetic copy.

1.4.1 Non-processed pseudogenes
Non-processed pseudogenes are usually found on the same chromosome inside clusters of
similar functional sequences; they may possess introns and �anking regulatory sequences
like the functional gene. They usually originate from a gene duplication mechanism produc-
ing an extra copy of the gene which, being unnecessary, can accumulate mutations without
damaging the organism, but they can also be generated by unequal crossing-over mecha-
nisms. Premature stop codons, frameshift mutations, disablement of regulatory regions and
alterations in splice sites are the most obvious characteristics of pseudogenes [69].

1.4.2 Processed pseudogenes
Processed pseudogenes are caused by a retrotransposition process in three stages. The �rst
stage consists of an RNA synthesis starting from the DNA template. In the second stage, this
primary transcript is deprived of introns, producing a mature messenger RNA (mRNA). At
the last stage, the mRNA acts as a template in the reverse transcriptase process, producing
a double-helix DNA sequence which is inserted in another chromosome [69].

The structural characteristics of processed pseudogenes are:

• lack of upstream regulatory region,

• absence of introns (some introns may be retained due to incomplete splicing),

• presence of 3' end with a poly A tail,

• �anking direct repeats,
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• copy possibly incomplete (not always the entire mRNA is copied).

Most of the known processed pseudogenes produced by a retrotransposition process lose
their functionality as a consequence of defects in the mechanism generating them. In fact,
reverse transcription is a process producing errors, and a lot of changes between the template
RNA and the complementary DNA (cDNA) can be accumulated. The ENCODE processed
and nonprocessed pseudogenes [33] share mean sequence identities of 67.6% (±14%) and
61.8% (±18%) with their parent proteins in alignment coverage of 82.4% (±26%) and 69.4%
(±33%), respectively. In addition, 83.2% of processed and 79% of nonprocessed pseudo-
genes display disablements (de�ned as nonsense or frameshift mutations) in their putative
ORFs, with average disablements of 6.2 per processed pseudogene and 2.4 per nonpro-
cessed pseudogene. Overall, such disablements were located uniformly across the hypothet-
ical coding regions of pseudogenes. The di�erences in sequence identity and disablements
between processed and nonprocessed pseudogenes are signi�cant (P < 0.001, Wilcoxon
rank-sum test), appearing to suggest that the sequences giving rise to processed pseudo-
genes lose coding potential more quickly than those for nonprocessed pseudogenes [33].

Figure 1.5: Pseudogenes origin. Genes
are represented by black (exons) and white
(introns) blocks. Single and double zigzag
lines represent mRNA and cDNA produced
by retrotranscription, respectively. Modi�ed
from [69].

Moreover, unless the processed gene is tran-
scribed by RNA polymerase III, it should not
contain the promoter (which usually lies in non-
transcribed regions and) and so is quite likely to
be inactive even though its coding region is intact.

Finally, a processed gene can be inserted in a
genomic localization inappropriate for its expres-
sion which can also be a di�erent chromosome
compared with its functional counterpart. For this
reason, a processed gene is `dead on arrival' in
most cases [69].

Due to the ubiquity of reverse transcription
(see section 1.5), mammalian genomes are liter-
ally bombarded by copies of retrotranscribed se-
quences, and most of these copies become non-
functional as soon as they integrate in the genome.
Moreover, these sequences cannot be easily re-
paired through the gene conversion process [70],
because they are mostly placed at long chromoso-
mal distances from the parent functional gene.

As soon as a retropseudogene settles within a
chromosome, it undergoes two di�erent evolution-
ary processes [71]. The �rst process involves a
rapid accumulation of point mutations which can hide the similarity between the pseudo-
gene sequence and its functional homologue, which evolves much more slowly. The processed
pseudogene nucleotide composition will tend to resemble more and more the surrounding
non-functional region, enabling the pseudogene to blend with it. This process is called
`compositional assimilation' [69].

The second evolutionary process involves the reduction of pseudogene size compared with
the functional gene. This shrinkage is caused by an excess of deletions over insertions. It
has been estimated that a processed pseudogene loses about one-half of its DNA in nearly
400 million years. This process is so slow that the human genome, for instance, still contains
a large quantity of pseudogene DNA related to very distant ancestors [69]. Obviously, these
ancient pseudogenes have often lost almost all their similarity with the functional genes. The
shrinkage is too slow a process to counterbalance the increase in genome dimensions which
results from the continuous retrotranspositions. So, the restriction in pseudogene number
in the genome is probably due to other factors, such as natural selection [69].

Since processed pseudogenes are well characterized in term of sequence properties and
structure it would be possible to de�ne a processed pseudogene on the basis of these charac-
teristics, even if the pseudogene as a paralogous function with respect to homologous gene.
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As a matter of fact this is the operative de�nition used in computational pseudogene �nding.

1.4.3 Mitochondrial pseudogenes
A few decades ago, the presence of sequences of many animal species having signi�cant ho-
mology to mitochondrial DNA inside the nucleus was ascertained. These nuclear insertions
of mitochondrial DNA are called pseudogenes because, unlike their homologous counter-
parts, they are not transcribed or translated into functional proteins, owing to the di�erent
mitochondrial genetic code [72].

The integration process of the mitochondrial fragments in the nucleus is probably very
ancient; indeed, it is thought to have started soon after the settling of the �rst endosymbiont
as an organelle. In fact, at least as far as the animal line is concerned, there has been a
progressive thinning of the mitochondrial genome as a consequence of the transfer of genes
coding for mitochondrial components to the nucleus. Thus, the unsuccessful transfers could
have given rise to pseudogenes. There are essentially two mechanisms which could explain
the integration of these mitochondrial fragments in the nucleus: direct DNA transfer [73] and
RNA-mediated transfer [74]. Most of the experimental data available support the hypothesis
that transfer is by DNA, although an origin of mitochondrial pseudogenes from RNA cannot
be excluded [75].

From the available literature, it seems that mitochondrial pseudogenes are not equally
distributed in all species � they are abundant in mammals and birds, but seem to be almost
completely absent in �sh [76], very few are found in Caenorhabditis elegans (two pseudo-
genes) and Drosophila melanogaster (three pseudogenes) compared with Homo sapiens (354
pseudogenes) [69].

Computational pseudogene detection
The prevalence of pseudogenes in mammalian genomes is problematic for gene annota-
tion [77] and can introduce artifacts to molecular experiments targeted at functional genes.
The correct identi�cation of pseudogenes, therefore, is critical for obtaining a comprehensive
and accurate catalog of structural and functional elements of the human genome [33].

Since many pseudogenes are expected to be non-functional and non-transcribed the pseu-
dogenes identi�cation depends almost exclusively on computational analysis.

Several computational algorithms have been described for annotating human pseudo-
genes. Although these methods often present similar estimates for the number of pseu-
dogenes in the human genome, they can produce rather distinct pseudogene sets. For in-
stance, the Gernstein group at the Yale University (as part of the ENCODE project, see
section 1.2.2), examined �ve methods for detecting pseudogenes [33]. These methods, which
have been developed independently, are:

1. the GIS-PET method, from the Genome Institute of Singapore [78];

2. the HAVANA method of manual pseudogene annotation, by the Human And Ver-
tebrate Analysis aNd Annotation team (HAVANA) at the Wellcome Trust Sanger
Institute as part of the GENCODE collaboration [79];

3. PseudoPipe [80], from the pseudogene research group at Yale University;

4. pseudoFinder, from the University of California Santa Cruz (UCSC);

5. retroFinder, also from UCSC but focused speci�cally on processed pseudogenes [81].

A simple union of these �ve sets yielded 252 (in the 1% portion of genome studied in
ENCODE pilot project [37]) nonoverlapping pseudogenes, of which only 45 (17.9%) were
identi�ed by all methods (see Figure 1.6).

Almost all pseudogenes prediction methods detect pseudogenes by their sequence
similarity to at least one entry in a collection of query sequences representing known human
genes (referred to as the parent genes).

Each gene sequence is aligned back to the genome and all the aligned genomic regions
outside the known gene position are retained. To decide that a region of this set host a
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Figure 1.6: (A) pseudogenes annotated by a method were binned into groups based on
the number of methods that recognized them as pseudogenes. In this scheme, method-
speci�c pseudogenes were labelled as (found by) �1� method. (B) A four-way comparison
of pseudogenes identi�ed by HAVANA, PseudoPipe, retroFinder, and pseudoFinder. Note:
one pseudogene could overlap more than one pseudogene from other method(s). Modi�ed
form [9].
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processed pseudogene some typical characteristics must be present (severe mutations, lack
of introns, poly A tail, �anking repeat, ...).

In our work (see chapter 2) we look for gene-pseudogenes couples in a given genome in
a completely di�erent way, that does not rely upon a set of known genes, thus allowing the
�nding of unknown pseudogenes and unknown genes.

1.4.4 Are there functional pseudogenes?
The common assumption is that pseudogenes are nonfunctional and thus evolve neutrally.
As such, they are frequently considered as �genomic fossils� and are often used for calibrating
parameters of various models in molecular evolution, such as estimates of neutral mutation
rates [82]. However, a few pseudogenes have been indicated to have potential biological
roles [83, 84, 85, 86, 87]. Whether these are anecdotal cases or pseudogenes do play cellular
roles is still a matter of debate at this point [33].

Pseudogene transcription
Several studies have shown that a good fraction ( 5%) of the human pseudogenes were
potentially transcribed [88, 89, 90, 91]. Within the ENCODE pseudogenes the 10%÷20%
are transcribed in at least one of 12 human tissues [33].

Some transcribed pseudogenes might possess their own promoters while in a few cases
pseudogene transcription could have been initiated from the promoters of neighbouring genes
or LINE elements [89, 92, 93].

Non-processed Pseudogenes
Certainly, recent non-processed pseudogenes can be transcriptionally active if the function
of their promoters has not been lost entirely.

An example of this phenomenon is the human α-globin cluster of genes on chromosome
16 that has arisen by gene duplication and divergence. This cluster includes ξ2, which is
expressed in the embryonic yolk sac, and its non-processed pseudogene ψξ1. The latter
has a non-functional promoter but, in some individuals, its gene conversion [70] by ξ2 has
resulted in restoration of a functional promoter and the generation of ξ1 from ψξ1 [94]. An-
other reported case is that of bovine seminal ribonuclease, which has lain dormant for about
20 million years and which then appears to have been resurrected to form a functioning
gene � probably via a gene conversion event.[95] This shows that, in some cases, `resurrec-
tion' of duplicated pseudogenes, or of parts of them, can occur to result in an expressed
protein [96] [69].

Nevertheless the evidences of non-processed pseudogenes function are few and unclear [97].

Processed pseudogenes
During the retrotransposition process processed pseudogenes lack their upstream regulatory
region. Even if they do not possess all the transcriptional control regions present in the
functional gene, they can use other transcriptional elements. For example, pseudogene tran-
scription can be directed by a promoter apparently near a non-correlated sequence.21 [69]
Indeed reverse transcription polymerase chain reaction experiments have shown, through
transcript identi�cation, that some pseudogenes can be transcribed and, in some cases, they
can have a di�erent role from that of the original gene. [69]

The Makorin example
Makorin1-p1 is the most famous putative functional pseudogene, even though the authors
disagree upon the observations and the models about this pseudogene [98].

Hirotsune et al. [99] had been analysing mice in which copies of a Drosophila gene called
Sex-lethal were randomly inserted in the mouse genome. In the course of their studies,
they encountered one mouse line that died shortly after birth from multi-organ failure. As
this occurred in only one mouse line out of many, the results could not be explained by
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Figure 1.7: Plausible mechanism of gene-pseudogene interaction. A) A RNA-mediated mechanism:
here, messenger RNA copies of the pseudogene and the gene compete for a destabilizing protein that binds a
crucial 700-nucleotide region near the beginning of the mRNAs. This destabilizing protein might be an RNA-
digesting enzyme (RNAse). B) A DNA-mediated mechanism: here, regulatory elements of the pseudogene
and gene, located in the same region as above, compete for transcriptional repressors.

aberrant Sex-lethal expression. Instead, the authors attributed their �nding to a disruption
of the particular stretch of genomic information into which Sex-lethal had inserted in this
case. The disrupted genomic region host Makorin1-p1 � a pseudogene copy of the functional
Makorin1 gene6.

Normally, Makorin1 mRNA is expressed throughout the organism. But Hirotsune et al.
found that when Makorin1-p1 pseudogene was disrupted, the expression of Makorin1 was
markedly reduced in embryos and during birth and weaning. This implies that the pseu-
dogene is normally required for the high-level expression of Makorin1. Interestingly, of the
two forms of Makorin1 mRNA, only the smaller 1.7-kilobase transcript was downregulated
� the larger 2.9-kilobase copy was una�ected. The long and short forms are identical except
in a region at the 3' UTR.

The authors found that the 700-nucleotide 5' region of Makorin1-p1 not only was re-
quired but was also su�cient for regulation in experiments in vitro. These experiments also
suggested that the pseudogene acts sequence-speci�cally, a�ecting only those genes that
show some sequence similarity to itself [99].

To explain this observations it as been proposed a model in which the �rst 700 nu-
cleotides of the Makorin1 mRNA contain a recognition site for a destabilization factor.
Because this 700-nucleotide domain is shared by the Makorin1-p1 mRNA, the expression
of the pseudogene would provide a means of titrating out the destabilizing factor through
direct competition. In this model, the longer Makorin1 mRNA is una�ected because its 3
untranslated region protects it from degradation (see �gure 1.7 A) [100]. Another, more
probable, mechanism could be involved (see �gure 1.7 B). This is suggested by the fact that
mRNA stability is usually controlled by elements in the 3'UTR regions � rather than at the
5' end, where the key 700-nucleotide region of Makorin1 is found � and by the fact that some
authors claim that Makorin1-p1 is not expressed [98]. The alternative mechanism would in-
volve the pseudogene DNA locus directly. Perhaps the 700-nucleotide region in the gene
and pseudogene contains transcription factor binding sites that, on binding certain proteins,
repress transcription. In this model the repressor proteins would be limited in availability,

6Makorin1 is an ancient gene that has been evolutionarily conserved from nematode worms to fruit�ies
and mammals, and encodes a putative RNA-binding protein. It is the prototype of a large family of Makorin
genes and pseudogenes, and is located on mouse chromosome 6.
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so that Makorin1-p1 would compete for repressor binding [100].

1.5 Transposons

name family n. of occurrences
Alu SINE 1193407
L1 LINE 927393
MIR SINE 590373
L2 LINE 409271
MaLR LTR 334078
MER1 DNA 216179
ERV1 LTR 178385
ERVL LTR 132638
MER2 DNA 83486
CR1 LINE 53926
Tip100 DNA 27006
AcHobo DNA 18986
RTE LINE 16406
Mariner DNA 16259
DNA DNA 13637
ERVK LTR 10808
Tc2 DNA 7660
PiggyBac DNA 2099
MuDR DNA 1884
ERV LTR 577
Merlin DNA 54

Table 1.2: Transposons in the human
genome

Mobile elements are DNA sequences that have the
ability to integrate into the genome at a new site
within their cell of origin. The mechanism by
which many of these elements move is well known,
but for others, such as mammalian retrotrans-
posons, there is still much to learn [101].

There are mobile, or transposable, elements in
the genomes of all plants and animals. In
mammals they and their recognizable remnants ac-
count for nearly half of the genome [102, 103], and
in some plants they constitute up to 90% of the
genome [104] [101].

Many authors discuss upon a possible mu-
tually bene�cial relationship between the mobile
elements and the host organism. It is clear
how mobile elements bene�t from the hosting
cell, because they use cellular apparatus to be
transcribed, translated, to get energy and to be
replicated through generations (together with the
entire genome). But it is questionable if and
how host organisms bene�t from mobile elements.
Probably the mobile elements are one of the major
driving forces shaping the genome during evolution
but there are not enough evidences to decide if the
nowadays organisms live in spite of this force or if
they take advantage from that.

Usually mobile elements are divided in three
di�erent classes depending on the molecular mechanism of transposition:

• DNA transposons,

• autonomous retrotransposons,

• nonautonomous retrotransposons.

Retrotransposons need to be transcribed in a RNA molecule before being transposed
while DNA transposons don't needed transcription. DNA transposons and autonomous
retrotransposons encode the enzymes needed for the transposition while nonautonomous
retrotransposons borrow the enzymes encoded by autonomous retrotransposons.

1.5.1 DNA transposons
DNA transposons are prevalent in bacteria (where they are called IS, or insertion sequences),
but are also found in the genomes of many metazoa, including insects, worms, and humans.
These elements are generally excised from one genomic site and integrated into another by
a "cut and paste" mechanism.

Because sequence speci�city of integration is limited to a small number of nucleotides �
e.g., TA dinucleotides for Tc1 of Caenorhabditis elegans � insertions can occur at a large
number of genomic sites. However, daughter insertions for most, but not all, DNA trans-
posons occur in proximity to the parental insertion. This is called �local hopping� [101].

Active transposons encode a transposase enzyme between inverted-repeat termini. The
transposase binds at or near the inverted repeats and to the target DNA. It then performs
a DNA breakage reaction to remove the transposon from its �old� site and a joining reaction
to insert the transposon into its �new� site. These reactions proceed with the hydrolysis of
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phosphodiester bonds between the transposon and �anking DNA to liberate 3'-OH residues
that carry out the attack at the �new� site. Because the two strands of the �new� DNA
are attacked at staggered sites, the inserted transposon is �anked by small gaps which,
when �lled in by host enzymes, leads to short duplications of sequence at the target sites.
These are called target site duplications (TSDs), and their length is often characteristic for
a particular transposon [101].

The reactions needed to move a piece of DNA use recombinase enzymes7 encoded by the
transposon itself.

Although these elements generally transpose to genomic sites less than 100 kb from their
original site (e.g., the Drosophila P element), some are able to make distant �hops� (e.g.,
the �sh Tc1/mariner element) [101].

1.5.2 LTR retrotransposons
Retrotransposons are transcribed into RNA, and then reverse transcribed and reintegrated
into the genome, thereby duplicating the element. The major classes of retrotransposons
either contain long terminal repeats at both ends (LTR retrotransposons) or lack LTRs and
possess a polyadenylate sequence at their 3 termini (non-LTR retrotransposons).

LTR retrotransposons and retroviruses are quite similar in structure (see �gure 1.8).
They both contain gag and pol genes that encode a viral particle coat (GAG) and a reverse
transcriptase (RT), ribonuclease H (RH), and integrase (IN) to provide enzymatic activities
for making cDNA from RNA and inserting it into the genome. They di�er in that retroviruses
encode an envelope protein that facilitates their movement from one cell to another, whereas
LTR retrotransposons either lack or contain a remnant of an env gene and can only reinsert
into the genome from which they came. . For these similarities with retroviruses LTR
retrotransposons are also called endogenous-retroviruses .

Many LTR retrotransposons target their insertions to relatively speci�c genomic sites.
For example, Ty3 elements of Saccharomyces cerevisiae target speci�cally to a few nu-
cleotides from RNA polymerase III (Pol III) transcription initiation sites [106]. Moreover,
Pol III transcription factors, TFIIIB and TFIIIC, are essential for Ty3 integration. It is
interesting to observe that in this way Ty3 elements maximize the probability to transpose
themselves in a actively transcribed region. The integration of a transposon in a such re-
gions probably disrupts the original gene that the region held; this behaviour suggests that
the LTR (like viruses) are parasites and that the hosting cells can survive in spite of the
presence of transposons.

In contrast to the Ty elements of S. cerevisiae, Tf elements of Schizosaccharomyces pombe
cluster 100 to 400 nucleotides upstream of Pol II-transcribed genes. The retroviruses HIV
(human immunode�ciency virus) and MLV (mouse leukemia virus) share many structural
features with LTR retrotransposons. In general, HIV inserts into many sites throughout ac-
tively transcribed genes, whereas MLV integrates preferentially into the promoters of active
genes. The preference of retroviruses for insertion sites in and around genes may explain the
occurrence of leukemia-producing insertions into the promoter of the LMO-2 gene in 2 of 10
patients undergoing retroviral gene therapy for severe combined immunode�ciency [101].

There are also LTR transposons targetting speci�cally unfunctional zones: Ty5 targets
the heterochromatin of telomeres and the silent mating loci. Ty5 requires a speci�c protein
partner, Sir4, for tethering its cDNA to telomeric DNA, and the interaction sites of Ty5 (six
amino acids in the integrase domain) with Sir4 (a region near the C terminus) have been
characterized [107].

7There are two main classes of recombinase enzymes used by transposable elements. The �rst class is
called conservative because the enzymes do not require high-energy cofactors, the total number of phos-
phodiester bonds remains unchanged, and no DNA degradation or resynthesis occurs. Examples of this
recombinase type are the integrase protein of bacteriophage, Cre recombinase, and Flp recombinase. The
second class is the transposases that catalyze a whole set of reactions necessary for DNA transposition.
Examples are the transposases of Mu, P elements, and the Tc1/mariner family, and the integrases of long
terminal repeat (LTR) retrotransposons and retroviruses. All of these enzymes share certain structural
motifs such as a D,D35E sequence (aspartate, aspartate, 35 amino acid residues, then a glutamate) and a
handlike three-dimensional structure [101, 105].
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1.5.3 Non-LTR transposons
Non-LTR retrotransposons are typi�ed by LINE-1 (long interspersed nucleotide elements-1,
or L1) elements of mammals. Full-length non-LTR retrotransposons are 4 to 6 kb in length
and usually have two open reading frames (ORFs), one encoding a nucleic acid binding pro-
tein, and the other encoding an endonuclease and a reverse transcriptase (see �gure 1.8).
Because these elements encode activities necessary for their retrotransposition, they are
called autonomous even though they probably also require host proteins to complete retro-
transposition [101]. Some non-LTR retrotransposons integrate at speci�c genomic sites.
R1 and R2 of Drosophila melanogaster and Bombyx mori integrate at speci�c ribosomal
RNA gene locations [108], whereas heT-A and TART elements help maintain the telom-
eres of Drosophila melanogaster chromosomes [109] and TRAS1 and SART1 integrate into
telomeric repeats of B. mori [110]. In contrast, mammalian L1 elements apparently inte-
grate at a very large number of sites in the genome because their endonuclease prefers to
cleave DNA at a short consensus sequence (5-TTTT/A-3 , where / designates the cleavage
site) [111, 112]. Our knowledge of most of the steps leading to retrotransposition of non-
LTR retrotransposons is sketchy except for the reverse transcription process. In contrast to
reverse transcription of LTR retrotransposons and retroviruses, this process takes place on
nuclear genomic DNA through target primed reverse transcription, or TPRT [113, 114].
The great majority of mammalian L1 insertions are 5 truncated and much less than the
full length of 6 kb. However, the mechanism of 5 truncation is still unclear. In about 30%
of mammalian L1 insertions, but not in Drosophila R1 or R2 insertions, the 5 end of the
insertion sequence is inverted. A likely explanation for this phenomenon is a variation on
TPRT, called "twin priming" [115, 101].

Only a few members of the LINE1 family of highly repetitive retrotransposable sequences
are capable of autonomous ampli�cation. . Full-length LINE1 is bicistronic: the product
of ORF1 is an RNA-binding protein (ORF1p), and ORF2 encodes a protein (ORF2p) with
endonuclease and reverse transcriptase activities . The downstream location of ORF2
ensures that translational initiation of these catalytic activities is downregulated with respect
to ORF1p expression. Both ORF1p and ORF2p are required for LINE1 retrotransposition,
but surprisingly, ORF2p acts e�ciently only on the active LINE element that encoded its
expression (in cis ). A retrotranspositionally successful LINE must sequester its limiting
ORF2p, preventing the ampli�cation of either defective LINE elements or entirely unrelated
sequences, such as Alu (see section 1.5.4). [116]

1.5.4 Nonautonomous transposons
Other sequence elements, which do not encode their own reverse transcriptase, also transpose
via RNA intermediates. These elements include the highly repetitive short interspersed
elements (SINEs), of which there are nearly a million copies in mammalian genomes. SINEs
arose by reverse transcription of small RNAs, including tRNAs and small cytoplasmic RNAs
involved in protein transport. Since SINEs no longer encode functional RNA products, they
represent pseudogenes that arose via RNA-mediated transposition. Since these elements
do not include genes for reverse transcriptase or a nuclease, their transposition presumably
involves the action of reverse transcriptases and nucleases that are encoded elsewhere in the
genome �probably by class I or II retrotransposons, such as LINEs. This was shown at
least for the Alu repeat that borrows the retrotransposition machinery of the L1 [117]

The most conspicuous human SINE is the Alu repeat family (so called because of early
attempts at characterizing the sequence using the restriction nuclease AluI). Alu sequences
containing ' 300 base pairs are present at ' 1 million sites in the human genome, ac-
counting for about 10 percent of the total genomic DNA; similar sequences are abundant
in other vertebrates [118]. In addition to full-length Alu sequences, many partial Alu-like
sequences, clearly related to the Alu family but as short as 10 base pairs, have been found
scattered between genes and within introns in human DNA. The Alu repeat contains an
internal RNA polymerase III promoter sequence. Alu sequences are remarkably homolo-
gous to 7SL RNA, a small cellular RNA that is part of the signal-recognition particle. This
cytoplasmic ribonucleoprotein particle aids in the secretion of newly formed polypeptides
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Figure 1.8: Classes of mobile elements. DNA transposons, e.g., Tc-1/mariner, have inverted
terminal inverted repeats (ITRs) and a single open reading frame (ORF) that encodes a
transposase. They are �anked by short direct repeats (DRs). Retrotransposons are divided
into autonomous and nonautonomous classes depending on whether they have ORFs that
encode proteins required for retrotransposition. Common autonomous retrotransposons are
(i) LTRs or (ii) non-LTRs. Examples of LTR retrotransposons are human endogenous
retroviruses (HERV) (shown) and various Ty elements of S. cerevisiae (not shown). These
elements have terminal LTRs and slightly overlapping ORFs for their group-speci�c antigen
(gag), protease (prt), polymerase (pol), and envelope (env) genes. They produce target
site duplications (TSDs) upon insertion. Also shown are the reverse transcriptase (RT)
and endonuclease (EN) domains. Other LTR retrotransposons that are responsible for most
mobile-element insertions in mice are the intracisternal A-particles (IAPs), early transposons
(Etns), and mammalian LTR-retrotransposons (MaLRs). These elements are not present
in humans, and essentially all are defective, so the source of their RT in trans remains
unknown. L1 is an example of a non-LTR retrotransposon. L1s consist of a 5'-untranslated
region (5'UTR) containing an internal promoter, two ORFs, a 3'UTR, and a poly(A) signal
followed by a poly(A) tail (An). L1s are usually �anked by 7- to 20-bp target site duplications
(TSDs). The RT, EN, and a conserved cysteine-rich domain (C) are shown. An Alu element
is an example of a nonautonomous retrotransposon. Alus contain two similar monomers,
the left (L) and the right (R), and end in a poly(A) tail. Approximate full-length element
sizes are given in parentheses. Modi�ed from [101].
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through the membranes of the endoplasmic reticulum. The 7SL sequence is highly conserved
even in species as diverse as Drosophila, mouse, and man. The discovery of a small (' 100
nucleotide) E. coli RNA whose sequence is similar to eukaryotic 7SL RNA indicates that
this molecule has existed since early in evolution. However, neither Drosophila nor single-
celled organisms have any Alu-type intermediate repeats (at least in large numbers). These
�ndings suggest that 7SL RNA genes existed before Alu sequences and that Alu sequences
somehow arose fairly late in evolution from the 7SL sequences [118].

The Alu repeat is primate-speci�c but other mammals have similar types of sequence
derived from the 7SL RNA gene such as the B1 family in mouse. Unlike the Alu repeat,
another major human SINE family is not restricted to primates, with copies being found
in marsupials and monotremes. In accordance with its distribution this family has been
termed the MIR (mammalian-wide interspersed repeat) family [118].

Like all other mobile elements, Alu sequences usually are �anked by direct repeats.
Although Alu sequences do not encode proteins and contain an A/T-rich region at one end,
similar to L1 elements. Consequently, Alu sequences are thought to be retrotransposed by a
mechanism similar to that proposed for L1 elements , possibly by the reverse transcriptase
and other required proteins expressed from functional L1 elements [117].

Alu duplication mechanism and pseudogene formation
Both Alu and processed pseudogenes are duplicated by the LINE1 duplication machinery.

Figure 1.9: A model accounting for the LINE cis and trans
e�ects. LINE proteins are particularly e�cient for retrotrans-
position of the mRNA that encodes them, an e�ect (the cis
e�ect) that can be partially explained by spatial proximity
between the LINE nascent polypeptides (thick black line) and
LINE RNA (ribosome in gray, LINE RNA in green). LINE
proteins can retrotranspose cellular mRNA or non-coding
LINE RNA (in black) as well, but with a much lower e�ciency
(1 mRNA retrotransposed every 3000 LINE retrotransposed)
owing to greater distances and lower probabilities of interac-
tion (trans e�ect). The highly structured Alu transcripts (in
red) bind to the SRP9/14 proteins (shown in yellow), which
in turn interact with the ribosome, positioning the Alu tran-
script close to the nascent LINE proteins (1 Alu retrotrans-
posed every 300 LINE retrotransposed). Poly-A-binding pro-
teins (light gray) interact with the Alu poly-A track (essential
for Alu retrotransposition), as is the case for the poly-A of mR-
NAs, and target LINE ORF2p for a precise 3 end initiation of
the target primed reverse transcription. Modi�ed from [117].

LINEs are extremely versatile
genome modelers. First, they can
transpose, via a high-e�ciency pro-
cess involving the LINE ORF prod-
ucts and the transcript encoding
them (cis e�ect). Second, they can
retrotranspose, with a reduced e�-
ciency, transcribed DNAs (trans ef-
fect) and therefore mobilize tran-
scribed sequences not necessarily as-
sociated with a LINE element. The
trans e�ect results in the genera-
tion of retrotransposed copies dis-
closing features characteristic of the
naturally found processed pseudo-
genes [119].

There is no RNA sequence speci-
�city for the LINE-mediated trans ef-
fect. Indeed LINEs is also be re-
sponsible for the mobilization of the
SINE [117] retrotransposons which
are noncoding and therefore require
complementation in trans for their
retrotransposition. Concerning the
higher relative e�ciency of the cis
versus trans LINE e�ects this is
most probably due to the fact that
there is a direct recognition of the
LINE mRNA in the course of its
translation as a target for retrotransposition [120].

Alu elements are ancestrally derived from the SRP RNA gene and Alu RNA binds SRP
proteins. The translational role of SRP and its ribosomal location provide a plausible mech-
anism for co-compartmentalizing Alu RNA with nascent cis-acting ORF-2p [116]. This can
explain the higher frequency of duplications of Alu versus other transcript. Furthermore, as
expected, catalytic activities encoded by ORF2 are essential for e�cient Alu retrotranspo-
sition but exogenous ORF1p is dispensable. If Alu does not require ORF1p, a large number



CHAPTER 1. INTRODUCTION 40

of truncated LINE elements, lacking ORF1 and incapable of autonomous retrotransposition,
might provide su�cient ORF2 activity for Alu ampli�cation. Accordingly, the requirements
of Alu for retrotransposition could be far more permissive than those of LINE1, partially
explaining the relative success of Alu elements. [116]

Other reverse transcriptase expressing elements in eukaryotic genomes, like the LTR
retrotransposons, were not likely to be responsible for processed pseudogene formation. In
fact, attempts to generate such structures using retroviruses or retroviral-like elements failed
to demonstrate canonical pseudogenes [121]. Therefore LINE-encoded retrotransposition
machinery had speci�c enzymatic properties not shared by that of retroviruses (including
MoMLV and HIV), allowing the reverse transcription of cellular mRNA with high e�ciency
and resulting in non-integrated cDNA copies [121]. Although the precise role of ORF1 is
still unknown, it is absolutely required for pseudogene formation: it might be involved in
the formation of `particles'4,27,28 allowing the re-entry of the mRNA to be retrotransposed
into the nucleus and integration of the reverse transcripts. A �nal hint for a role of LINEs
in processed pseudogene formation arises from the systematic sequencing of the Saccha-
romyces cerevisiae genome, which provided evidence for the presence of numerous reverse
transcriptase expressing elements (including functional telomerases and several active LTR-
retrotransposons), but the correlated absence of LINEs, processed pseudogenes and Alu-like
sequences [122].

1.5.5 Functional role of transposons
The initial evidence for the mobility of SINES came from analysis of DNA from a patient
with neuro�bromatosis, a genetic disorder marked by the occurrence of multiple neuronal
tumors called neuro�bromas due to mutation in the NF1 gene. Like the retinal tumors
that occur in hereditary retinoblastoma, neuro�bromas develop only when both NF1 alleles
carry a mutation. In one individual with neuro�bromatosis, one NF1 allele contains an
inactivating Alu sequence; inactivating somatic mutations in the other NF1 allele in periph-
eral neurons lead to the development of neuro�bromas. Several other inherited recessive
mutations causing disease in humans also have been found to result from insertion of Alu
sequences in exons, thereby disrupting protein-coding regions [118].

Alu sequences appear to have retrotransposed widely through the human genome and
are tolerated, in both possible orientations, at sites where they do not disrupt gene function:
�anking solitary genes and between duplicated genes, as well as within introns and the
regions transcribed into the 5' and 3' untranslated regions of mRNAs. Alu sequences are
thought to have no function, like other mobile elements, despite their widespread occurrence
in mammalian genomes.

Although mobile DNA elements appear to have no direct function other than to main-
tain their own existence, their presence probably had a profound impact on the evolution of
modern-day organisms. As mentioned earlier, many spontaneous mutations in Drosophila
result from insertion of a mobile DNA element into or near a transcription unit, and mobile
elements also have been found in mutant human genes. In addition, homologous recombina-
tion between mobile DNA elements dispersed throughout ancestral genomes may have been
important in generating gene duplications and other DNA rearrangements during evolution
. Cloning and sequencing of the β-globin gene cluster from various primate species have
provided strong evidence that the human Gγ and Aγ genes arose from an unequal ho-
mologous crossover between two L1 sequences. Such duplications and DNA rearrangements
contributed greatly to the evolution of new genes. Gene duplication probably preceded the
evolution of a new member of a gene family, which subsequently acquired distinct, bene�cial
functions.

Mobile DNA most likely also in�uenced the evolution of genes that contain multiple
copies of similar exons encoding similar protein domains (e.g., the �bronectin gene). Ho-
mologous recombination between mobile elements inserted into introns probably contributed
to the duplication of introns within such genes. Some evidence suggests that during the
evolution of higher eukaryotes, recombination between introns of distinct genes occurred,
generating new genes made from novel combinations of preexisting exons. For example,
tissue plasminogen activator, the Neu receptor, and epidermal growth factor all contain an
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EGF domain . Evolution of the genes encoding these proteins may have involved recom-
binations between mobile DNA elements that resulted in the insertion of an EGF-encoding
exon into an intron of the ancestral form of each of these genes. The term exon shu�ing
has been coined to refer to this type of evolutionary process. This phenomenon relies on
the poor e�ciency of the LINE polyadenylation sequence, which results in read-through
LINE transcripts and the de facto transfer of the transcribed 3' genomic sequence to a new
location upon LINE retrotransposition [123, 124, 125] [119].

Recombination between mobile elements also may have played a role in determining
which speci�c genes are expressed in particular cell types and the amount of the encoded
protein produced. Eukaryotic genes have transcription-control regions, called enhancers,
that can operate over distances of tens of thousands of base pairs 1.2.3. Moreover the
transcription of a gene can be controlled through the combined e�ects of several enhancers.
Recombination between mobile elements inserted randomly near enhancers probably con-
tributed to the evolution of the combinations of enhancers that control gene expression in
modern organisms.

So, the early view of mobile DNA elements as completely sel�sh molecular parasites ap-
pears to be premature. Rather, they have probably indirectly made profound contributions
to the evolution of higher organisms by serving as sites of recombination, leading to the
evolution of novel genes and new controls on gene expression [118].



Chapter 2

Ab initio gene prediction through
processed pseudogenes

2.1 Background
With the development of genome projects for many organisms, an increasing number of raw
sequences needs to be annotated. In the case of unicellular organisms, gene identi�cation by
computational methods is quite straightforward, considering the limited amount of non-
coding DNA. In contrast, in the case of metazoans, the annotation of all the di�erent
RNAs that may be produced by the genome still represents a daunting task, requiring
the integration of predictive algorithms and experimental evidences.

Several sophisticated software algorithms have been devised to handle this problem [126];
these algorithms typically consist of one or more �sensors� designed to identify gene features.
A single gene prediction program usually combines di�erent sensors and complex pipelines
combine together di�erent tools. The ENSEMBL pipeline, for example, starts by using pro-
grams for signal and content terms (often called ab initio programs); then, to reduce the high
incidence of false positives, the resulting gene predictions are ��xed� by the incorporation
of similarity information [127]. Although gene-�nding programs can correctly predict most
exons of each gene, they are usually unable to cope with the complexity generated by the
alternative use of transcription units, leading to the production of many mRNA variants.

Comparative genomics represents a very powerful strategy for the identi�cation of exons
and regulatory elements. The assumption behind this type of analysis is that phylogenetic
conservation is related to functional relevance. Nevertheless, this approach is unable, by
de�nition, to reveal species-speci�c genes and transcript variants. The generation of massive
EST sequence data to be matched with the genomic sequence is probably the most direct
and e�cient method to tackle the annotation problem. However, even in the case of the
human genome, for which more than 8 million EST sequences have been obtained, some
annotated genes are still poorly represented in the corresponding databases (see for example
ref. [128]). Moreover, splice variants unique to speci�c cell types, developmental stages and
abnormal conditions may still escape detection. Obviously, these problems are much worse
in most of the newly sequenced genomes, which lack such extensive transcriptome coverage.

Processed pseudogenes (PPGs) represent an alternative source of full length transcript
information, contained in the raw genome sequence [129]. PPGs are copies of cellular RNAs,
typically containing poly(A) and lacking introns, which have been reverse transcribed and
inserted into the genome. Although PPGs cannot be expected to completely cover the
transcriptome of most eukaryotes, they represent a rich sample of it [130], as they may derive
from normal protein-coding mRNAs, alternatively spliced mRNAs [131], non-protein-coding
RNAs [132] and antisense transcripts [123].

The methods so far devised to identify PPGs are based on the use of known mRNAs
and protein sequences [131] or of gene predictions [133] as input data for suitable alignment
programs. Therefore, they could be expected to perform poorly on genomes lacking extensive
transcriptome annotation or on PPGs derived from non-canonical genes.

42
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In this report, we describe a general method for the systematic identi�cation of retro-
transposition events, based on a completely di�erent strategy. In particular, we search for
generic paralogous alignments (i.e. alignments of a given genome with itself) and then se-
lect only those showing evidences of three or more splicing events. Using this approach we
identi�ed 987 human and 709 mouse genes. Most of the identi�ed genes were already known
or supported by EST tracks, but in a few cases they were completely new predictions, not
supported by any type of evidence in the UCSC or ENSEMBL databases. We were able to
experimentally validate some of these predictions.

2.2 Results and Discussion
2.2.1 Construction of the pseudogenes database.
We based our pipeline on the observation that a processed pseudogene can be recognized, in
a set of pairwise paralogous alignments, as a cluster of nearby alignments (the exons of the
retrotransposed gene) separated by unaligned sequences (the introns of the retrotransposed
gene, see Fig. 2.1). Although one of these splicing events would be enough to identify a
canditate gene, in order to decrease the false positive rate we required at least three splicing
events. As mentioned above, the major reason of interest of our approach with respect to
the existing ones [134, 135, 130, 136, 129, 131] is that it does not rely on known protein
sequences, thus allowing to identify previously unknown genes.

We organized our pipeline as a set of consecutive steps which are discussed in detail in
the methods section.

• Construction of a database of paralogous alignments.

• Identi�cation and re�nement of the alignment clusters, which are our pu-
tative gene-pseudogene pairs.
This requires the careful identi�cation and reconstruction of �corruption gaps� i.e.
those portions of the pseudogene sequences which have been corrupted by random
mutations.

• Identi�cation of the alignments due to DNA duplication events.

• Identi�cation of the �gene side� with respect to the �pseudogene side� of
putative pairs.
Both these steps are based on the identi�cation of the gaps in the alignment due to
introns. This allows to remove alignments not associated with the retrotranscription
of processed mRNAs and at the same time it allows to distinguish in an unambiogu-
ous way the �gene side� of the alignments from the pseudogene one: this step is the
cornerstone of our algorithm.

• Re�nement of the database.
Once the �gene side� has been identi�ed we can �lter our putative candidates using our
knowledge of the expected mean size of introns and looking at possible �fake introns�
due to repeat insertions.

• Identi�cation of the pseudogene families.
In some cases a single gene can give rise to many processed pseudogenes. They would
appear as separate entries in our database, so it is mandatory to recognize these
families and to associate them to the unique original gene.

• Mapping of the candidate genes in the ENSEMBL and UCSC databases.
For each prediction we look at the ENSEMBL and UCSC databases in order to dis-
tinguish between already known genes and candidate new genes.
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Figure 2.1: This �gure shows a graphical representation of one entry of our dataset, corre-
sponding to a gene-pseudogene pair in the mouse genome. The graph is similar to a dot-plot.
On the horizontal axis we put the region where we identi�ed the gene and its annotation
from the UCSC genome browser; on the vertical axis the region corresponding to the pseu-
dogene. Each alignment between the two regions is represented as a red segment in the
central square, while blue segments are the splicing signatures recovered by our pipeline.
Finally, the background is colored in horizontal and vertical stripes mirroring the sequence
types (exons, introns, intergenic regions, transposons and other repeats). We can see tath
each alignment (or HSP) corresponds quite well with an already known exon. The transcript
that give rise to the processed pseudogene detected is a previously not annotated alternative
transcrip in which the third exon was skipped. This report is produced by our visualization
tool CGV (http://to444xl.to.infn.it/cgv).
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Using this pipeline we found in the human genome 2288 gene-pseudogenes pairs, corre-
sponding to 987 candidate genes. Out of these, 965 genes had at least one exon annotated in
ENSEMBL and 943 had at least one overlapping UCSC known gene or RefSeq; in 15 cases
we found neither (see table 2.1).

A similar analysis in mouse led to 29 candidates completely free of ENSEMBL, UCSC
known genes or Refseq annotations. For the sake of clarity, in the following we shall only
quote the results in the human case (the complete results for the mouse genome can be
found in Table 2.1)

As a by-product of our analysis we identi�ed several pseudogene families; we report in
table 2.2 the largest ones.

Human Mouse
Total number of genes 987 709
Supported by UCSC known genes 928 649
Supported by RefSeq 922 655
Supported by ENSEMBL or VEGA genes 965 668
Supported by ENSEMBL or VEGA coding genes 948 661
Supported by UCSC, RefSeq, ENSEMBL, VEGA or EST 979 680
New predictions 8 29

Table 2.1: Summary of our analysis results

2.2.2 Comparison with other pseudogenes databases.

Figure 2.2: A Venn diagram showing the intersections
among our dataset (red, 442 genes), ENSEMBL VEGA (green,
2194 genes) and pseudogene.org pipeline dataset (blue, 1484
genes) for the chromosomes for which the VEGA annotation
has been already completed (1, 9, 10, 13, 20, X). The number
of genes in common between datasets are: REGEXP � EN-
SEMBL VEGA: 417; REGEXP � pseudogene.org: 154; EN-
SEMBL VEGA � pseudogene.org: 607. 152 genes are shared
by all three datasets.

To obtain an independent valida-
tion of our approach we compared
our results with processed pseudo-
genes reported in the human sec-
tion of the Vertebrate Genome An-
notation (VEGA) database, a central
repository of high quality, manually
curated annotations [137] and with
the pseudogene.org pipeline dataset
[131]. Overall, approximately 30% of
our predictions were contained in the
VEGA database. However, a more
detailed analysis revealed that for
chromosomes 1, 9, 10, 13, 20, X and
Y the overlap was more than 90%,
while in all the other cases it was
far below 10%, being equal to zero in
most cases, with the only exception of
chromosome 18. This is clearly due
to the fact that the present release
of the VEGA database is still incom-
plete and, as far as pseudogenes are
concerned, only a few chromosomes
have been extensively annotated.

We then compared our results with the pseudogene.org pipeline dateset [131], and also in
this case we found a signi�cant overall overlap, though not as good as in the case of VEGA.
In particular, for the chomosomes in which the VEGA database seems to be complete our
results show a much better overlap with the VEGA ones than with those of pseudogene.org
(see �ugre. 2.2).

These results strongly validate the speci�city of our procedure, indicating that it could
be used to reliably predict pseudogenes in non annotated genomes.
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regexp stable gene id pseudogene number retrotransposed genes
24030 88 SNORD102 small nucleolar RNA, C/D box 102

SNORA27 small nucleolar RNA, H/ACA box 27
RPL21 ribosomal protein L21

92497 62 KRT18 keratin 18
18623 52 RPSA ribosomal protein SA
133262 45 HNRPA1 heterogeneous nuclear ribonucleoprotein A1
84588 45 RPL7 ribosomal protein L7
178537 39 RPS3A ribosomal protein S3A
15729 38 GAPDH glyceraldehyde-3-phosphate dehydrogenase
17563 37 RPS2 ribosomal protein S2
200584 35 NPM1 nucleophosmin (nucleolar phosphoprotein B23, numatrin)
8698 32 SNORD36C small nucleolar RNA, C/D box 36C

SNORD24 small nucleolar RNA, C/D box 24
SURF4 surfeit 4
SNORD36B small nucleolar RNA, C/D box 36B
SNORD36A small nucleolar RNA, C/D box 36A

921125 32 SNORD21 small nucleolar RNA, C/D box 21
RPL5 ribosomal protein L5

200296 26 RPL12 ribosomal protein L12
12076 21 RPL7L1 ribosomal protein L7-like 1
87014 21 HMGB1 high-mobility group box 1
109645 20 KRT8 keratin 8
161788 20 RPS15A ribosomal protein S15a
18181 17 ACTG1 actin, gamma 1
237683 17 RPS4X ribosomal protein S4, X-linked
5449 17 RPL36A ribosomal protein L36a
41035 16 ACTB actin, beta
11000 15 RPL31 ribosomal protein L31
25634 15 RPL19 ribosomal protein L19
698758 15 RPL9 ribosomal protein L9
98433 15 RPL34 60S ribosomal protein L34
106898 14 SET SET translocation (myeloid leukemia-associated)
740881 13 ACTG2 actin, gamma 2, smooth muscle, enteric
27176 12 RPS18 ribosomal protein S18
296506 11 EEF1A1 eukaryotic translation elongation factor 1 alpha 1
51277 11 HMGB3 high-mobility group box 3
95436 11 LOC497661 putative NFkB activating protein

Table 2.2: Where more than one gene is reported as retrotransposed in the same family of
pseudogenes the additionals genes are snoRNA. The only exception is represented by SURF4:
its transcritps most likely didn't produce any processed pseudogene but it is reported because
its exon at the 3' end overlaps with an exon of SNORD36A.
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2.2.3 Processed pseudogenes as indicators of the transcriptional
activity of the cell.

It was recently observed that the transcribed portion of mammalian genomes [138] is much
larger than previously expected and that it is characterized by a high level of complexity,
with an impressive amount of antisense and overlapping transcripts. Moreover, it was noticed
that several of these new transcripts were processed, i.e. they underwent one or more splicing
events. However it is not clear whether these new processed transcripts are abundant and
stable products, or they should be rather considered as exceptional events (or possibly
random �junk� events). Since a clear relationship exists between transcript stability and
the frequency of retrotransposition [130] and since our approach for the identi�cation of
retrotransposition events is not biased for protein-coding transcripts, we reasoned that our
database is ideally suited to address this issue. Interestingly we found that most of the entries
in our database correspond to protein coding genes. A possible explanation for this strong
preference is that it could be due to a special a�nity of the retrotransposition machinery for
particular functional classes of mRNAs. To address this point we studied the GO annotation
of the genes in our database and weighted them with the size of the corresponding pseudogene
families. Our results revealed a clear overrepresentation of sequences derived from ribosomal
protein genes and, apparently, no other particular bias in the GO annotations (see table B.1)
in good agreement with what already observed by Yao et al. [136]. These results indicate
that the pseudogenes contained in our database (except for the ribosome related ones)
represent a reasonably unbiased sample of the cell transcriptome. Thus the fact that we
mostly �nd protein coding genes among our entries suggests that most of the non-coding
transcripts produced by mammalian genomes are rather rare or less stable than protein
coding ones.

2.2.4 Identi�cation of new putative alternative splicing events.
In several cases we �nd instances of previously unknown alternatively spliced transcripts,
in particular, for 75 human genes (out of the 965 which we could associate to ENSEMBL
transcripts), we recovered additional exons. This is consistent with the idea already discussed
in ref. [129] that PPGs can be e�ectively used to indentify alternative splicing events.

Out of these alternative exons 50% were supported by EST tracks, while the others are
completely new. Similar results were obtained for the mouse genome (51 new alternative
transcripts with 63% of the exons supported by ESTs).

2.2.5 Identi�cation and validation of putative new genes.
One of the most interesting aspects of our method is that, in principle, it should be able to
reveal the existence of functional genes independently from homology with previously iden-
ti�ed cDNAs, even when they correspond to completely species-speci�c sequences. Among
our predictions, 22 human sequences (2%) and 41 mouse sequences (6%) did not correspond
to known genes in the ENSEMBL database. Nevertheless, for most of them we could �nd
EST tracks covering the majority of the predicted exons. However, 8 human and 29 mouse
new genes identi�ed by our method did not correspond to available ESTs, and were not
predicted by other gene �nding programs. To discriminate whether these predictions cor-
respond to false positive results or to actual new genes, we directly validated a sample of
them. We reasoned that, if these sequences were produced by functional genes which are
still active in the modern genomes, the corresponding mRNAs should be expressed at least
in the germ line. To obtain direct support to this hypothesis, we designed for three of them
in human and three in mouse speci�c PCR primers, perfectly matching the nucleotides of
two di�erent exons of the gene-side sequence, and performed RT-PCR on human and mouse
testis cDNA, respectively. Remarkably, we recovered ampli�cation products of the expected
molecular weight (see �gure 2.3) for two human and two mouse genes. Moreover the obtained
products were further veri�ed by direct sequencing (see B.4). Interestingly, the confermed
transcripts appear to lack long open reading frames and may thus correspond to untraslated
sequences.
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Figure 2.3: RT-PCR ampli�cation of human (left panel) and mouse (right panel) testis
cDNA, with primers speci�c for predictions 316640 (1), 338893 (2), 128365 (3), 564151 (5),
718689 (6) and 1033649 (7). The major band in the lanes shows an ampli�cation product
corresponding to the expected molecular weight. M: molecular weight standard; A: beta-
actin positive control.

Detailed analysis of the genomic sequence revealed that one of the human candidates
(ID 128365) contains an exonized DNA transposon belonging to the so called �mariner�
family. It has been recently shown that this class of transposons had a burst of activity in
the primate lineage [139]. Indeed a careful phylogenetic analysis showed that the mariner
was transposed in the gene just before the separation of the galago (Otolemur garnettii), a
prosimian primate, from the anthropoid lineage (i.e. between 60 and 80 My ago); it was then
exonized and retrotransposed with the original gene. A copy of the original (i.e. without
the mariner insertion) gene exists in all the other mammalians.

2.3 Conclusions
We have presented REGEXP, a new highly speci�c method for the annotation of retrotrans-
position events, which revealed new exons and genes even in the very well annotated human
and mouse genomes. Since our pipeline does not require other information but the ge-
nomic sequence, we expect a similar e�ciency even in the case of genomes lacking extensive
transcriptome information.

2.4 Methods
The alignment database
We start from the full set of local alignments found by comparing the repeat masked sequence
of the human genome (build 36) with itself; we compute these alignments with the Megablast
software [140]. To avoid excessive memory occupation we split the chromosome sequences
into smaller slices and compare them all. We choose to split the sequences when we �nd
a repeat masked region longer than 1000 base pairs (usually a LINE); this way we don't
need to postprocess the alignments to merge overlapping slices. We are con�dent that no
alignment containing a masked region of 1000 bps or more can exist since its score would be
under any reasonable statistical cuto�. The alignment database contains about 12 milions
high scoring pairs (HSPs, pairs of regions sharing high sequence similarity) longer than 30
bps.

We label each HSP a using two aligned regions ra1 and ra2 which are identi�ed by
their starting and ending points in absolute chromosomal coordinates: ra1 = (a11, a12) and
ra2 = (a21, a22). This induces a natural de�nition of distance between HSPs a = (ra1, ra2)
and b = (rb1, rb2) as the length of the smallest segment joining two endpoints, i.e:

d(a, b) =
{ ∞ ri and rj on di�erent chrs

min (d(ra1, rb1), d(ra1, rb2), d(ra2, rb1), d(ra2, rb2)) otherwise

where d(rai, rbj) is the euclidean distance between two points.
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Location clusters
Since a processed pseudogene is the union of the exons of the original gene one would expect
to �nd it in the alignment database looking for clusters of nearby HSPs. On one side of the
alignment (the �pseudogene side�) we expect multiple HSPs very close to each other (ideally,
if no insertion occurred after the retrotransposition event they should be contiguous); on
the other side (the �gene side�) they will be near but separated by gaps corresponding to
the introns that are missing from the pseudogene. Even if we allow for the presence of
mutations in one or both the sequences, the scenario remains quite the same. Some of
the original HSPs may now have a lower score, some may as well have disappeared; but
the picture still consists of a number of HSPs clumped one next to the other. To extract
these HSP clusters (which we shall denote in the following as �location clusters�) from the
alignment database we developed the following clustering procedure. Each HSP can be
represented as a segment in the bidimensional plane spanned by the two sequences (in a way
that closely resembles dot-plots); we cluster together two consecutive alignments / segments
if the distance between the two segments is lower then a certain threshold (we chose 22Kbps
because only 5% of known human introns are longer than that) along both directions. If at
least three of these segments are concatenated together we consider the resulting group a
location cluster.

As a result of this de�nition each location cluster can be considered as the bidimensional
bounding box of a set of at least three nearby segments and any two location clusters are
separated both horizontally and vertically by more than 22Kbps.

These location clusters are the starting point of our analysis. The remaining part of the
computational pipeline is devoted to re�ne them and to �lter out those that do not conform
to certain requirements (described in the following sections). We consider each location
cluster surviving the entire �ltering process as a candidate gene-pseudogene pair.

Corruption gaps
In some cases processed pseudogenes may have accumulated so many mutations that only a
small portion of the original duplicated region can be retrieved using a standard alignment
algorithm. Typically this lack of homology with the original sequence shows up as a series
of gaps in the alignment cluster: we call them �corruption gaps�. Our goal is to separate
these gaps from those due to the intron splicing.

To identify the corruption gaps we use as anchors the high scoring pairs (each HSP can
have itself small gaps, as a consequence of standard alignment algorithms, but these usually
do not create problems).

As mentioned above each alignment can be represented as a segment on the cartesian
plane having as x and y axes the two genomic regions. Similarly to what happens in dot-plot
graphs, these segments lie on lines with angular coe�cent exactly ±1 if there are no gaps in
the HSP (the sign of the angular coe�cient depends on the strand of the alignment). Given
that we use a scoring system penalizing gaps, the angular coe�cient of segments representing
an HSP is always near ±1.

We join two HSPs, represented by segments a and b, with a new segment c (that we
de�ne a �corruption gap�) if the distance d(a, b) is smaller than 3000 bps and if the angular
coe�cent of c is 45± 5 degrees.

We chose the values of these parameters considering some exemplar cases; the �nal results
are only slightly in�uenced by such values.

We call a set of high scoring pairs joined by corruption gaps a �diagonal�: its projections
on the two axes de�ne two regions that are a candidate exon or pseudoexon (homologous of
an exon in a pseudogene).

Splicing gaps
The other class of gaps that we expect to �nd in the alignments clusters are those due
to the splicing of introns in the processed pseudogenes. These are of great importance
for our identi�cation process since they allow us to distinguish the original gene from its
retrotransposed copy.
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Introns in the mRNA of a gene are expected to be spliced before the retrotransposi-
tion event, so we expect to see candidate pseudoexons that are close together while the
corresponding candidate exons are separated by gaps that we call �splicing gaps�.

A splicing gap is found by looking at the geometrical distribution of diagonals: if the
segment joining two diagonals has a projection on one of the two axes that is less than σ
bps in length while on the other axis the projection is larger than β bps, then we add this
segment to the location cluster as a splicing gap.

We set the threshold β looking at the intron length distribution and choosing a value
such that only the 5% of all introns are smaller than β bps; i.e. we expect to loose only a
5% of true introns because of this cuto�. In the human case the threshold turns out to be
β = 74. The parameter σ accounts for the fuzziness of diagonals that may not be precise at
the extremes; for this parameter we use a value of 15.

We can project a splicing gap on both axes of the cartesian plane: we consider the longest
projection as a candidate intron.

Another reason for which the identi�cation of the splicing gaps is of crucial importance is
that it allows us to separete the �true� processed pseudogenes from alignments (and possibly
unprocessed pseudogens) deriving from duplications of a portion of the genome. To this end
we discard all location clusters without splicing gaps; to further reduce the number of false
positives we actually require the presence of at least three splicing gaps in each location
cluster to continue its processing along the pipeline (in fact only the 4% of the human genes
contain only one intron).

In some cases it may happen that splicing gaps are found on both sides of a location
cluster, for instance due to large repeat insertions on the pseudogene side. To avoid misclas-
si�cation we eliminate these location clusters from our dataset (669 out of 22123 location
clusters with splicing gaps).

For all the remaining location clusters we can unambiguously recognize which of the
two axes holds a candidate exon (we call that side b) or a candidate pseudoexon (side s).
The segments associated with the splicing gaps (which have projections only on the b side)
denote our putative introns.

Trimming
Once we have identi�ed the two sides (gene and pseudogene) of the location cluster we can
perform a further re�nement of our candidate. Indeed it often happens that the central
alignment core, the signal of a retrotransposition event, is �anked by spurious alignments
having no relation with the gene-pseudogene couple. We may eliminate them imposing the
constraint that the pseudoexons on the pseudogene side should be �close enough� to each
other.

To implement this constraint we evaluate the median µ of the gaps gi between consecutive
pseudoexons and the median s of their square variance de�ned as

s = mediani

{
(µ− gi)

2
}

We then removed recursively alignments at the extremes of location clusters if the gap
they open on the pseudogene side is larger than µ+ 2

√
s.

Analysis of the repeat content of candidate introns.
A possible source of misclassi�cation in our analysis is the presence in a duplicated genomic
region of one or more transposons inserted after the duplication. These inserted sequences
could be erroneously interpreted as spliced introns by the pipeline described above thus
leading to a wrong classi�cation of the location cluster.

To avoid this problem we look at the transposon content of all the candidate introns and
discard those whose sequence was composed for more than 90% by transposons. We then
discard all the location clusters with less than two surviving introns.

Out of the initial 1588810 location clusters only 2288 survived all the steps of the above
pipeline; they represent our database.
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Description of our database
For each candidate gene-pseudogene pair we report in our database (see http://to444xl.to.infn.it/regexp2/
or tables B.2 and B.3) the genomic coordinates and further information which allow to better
characterize the gene-pseudogene pair.

For both the gene and the pseudogene we report an annotation vector with seven entries
correspondig to the seven possible annotations:

1. coding exon

2. non-coding exon

3. 5'UTR exon

4. 3'UTR exon

5. intron

6. upstream

7. intergenic

The category of non-coding exons includes all exons sequences that do not code for
protein portions and are not marked as 5' or 3' UTRs (belonging to RNA genes for example).
We get all these annotations from ENSEMBL with the only exception of upstreams: we
de�ne an upstream as the region ranging from 15 Kbps upstream of an annotated translation
start site (TSS) to the TSS itself. Obviously a single nucleotide can belong to di�erent
categories: for example a 3' UTR can be within 15 Kbps from the TSS of another gene or
an exon of a gene can fall inside an intron of another gene. In such cases we report, for each
nucleotide, only the �stronger� category; we assume the strength of a category as indicated
in the previous list (the coding exon being the strongest). We report in each entry of the
annotation vector the number of nucleotides of the gene (or pseudogene) which belong to the
corresponding category. For each intron of the gene we report also the fraction of nucleotides
annotated as transposons.

For each gene we also report the fraction of its exons overlapping UCSC gene annotations
tracks.

Retrieval of external datasets.
We obtained the lists of previously annotated genes from ENSEMBL [127] release 40 (August
2006), VEGA [137] release 40 (August 2006) and UCSC releases hg18 and mm8 (downloaded
in September 2006). We obtained the lists of VEGA PPGs �ltering the full VEGA gene
dataset for the biotype �processed pseudogene�. We also downloaded the full pseudogene
set provided as the pseudogene.org pipeline output [131] (September 2006) and we later
extracted all the processed pseudogenes linked to a valid ENSEMBL gene ID.

Identi�cation of pseudogene families.
A relevant number of location clusters match with more than one other location cluster. This
happens in two cases: either when a single gene produced many pseudogenes, or when a single
processed pseudogene shares high sequence similarity with more than one gene belonging
to the same family. In the �rst case we can de�ne pseudogene families and associate them
with a single original gene; in this way we classify 2288 total pseudogenes in 987 families.
In the second case we report all the putative genes associated with the pseudogene and do
not perform any further analysis. One or more of the candidate genes associated with a
single PPG could be unprocessed pseudogenes; in principle one could distinguish them from
the gene which originated the retrotransposition event looking in details at the alignments.
Suppose that a single gene gives rise to both a processed and an unprocessed pseudogene: if
the pseudogenes are free from selective pressure and therefore mutate randomly, the mutation
events are independent and one could expect to �nd a better sequence homology between
the PPG and the gene than between the PPG and the unprocessed pseudogene.
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Experimental validation of the new candidate genes.
The ampli�cation primers were designed on two consecutive exons on the gene side of our
predictions. To ensure their speci�city, all the sequences di�ered from the corresponding
pseudogene sequences at least on their 3' end nucleotide. The sequence of primers was as
follows:
Pred. 128365 (human) = TGATCAAATAAATATGACAAATG, TTTCACCCATTCTG-
GCACAATCT
Pred. 338893 (human) = AACGCCATAGGCCTGGGGCGGGT; CACAGCCCAGGGATCA-
GAAAAG
Pred. 316640 (human) = GACCCCAGTACTCATTTGCCAGG; GGAGCCACATCTATTCAC-
CTATT
Pred. 718689 (mouse) = AGAAAGAGTATGATTTCATAATAGG; TTGATTAAAGTG-
GTATTTGGTGA
Pred. 1033649(mouse) = TTTTACAGGAGTGGAGTCCCTCA; TGTAGTCCATCTTC-
TAAGCCCAG
Pred. 564151 (mouse) = ACCAGCTGGTACTTAATGTGAAT; GGCTCACCAAGGTATTTCT-
GAAGA

Human testis cDNA was commercially obtained (Clontech). Mouse cDNA was obtained
by reverse transcribing testis total RNA with MMLV reverse transcriptase (Promega), ac-
cording to manufacturers speci�cations. In this case, negative controls lacking the reverse
transcriptase were included. B-actin primers were used as positive control in both human
and mouse samples.



Chapter 3

Genomic symbols

3.1 Introduction
Many known languages are structured so that the used words are only few of the possible
combinations of characters; moreover a word, when used in a text, is often present many
times. Looking at the genome like an usual language we may ask ourself which the �words�
are. In order to �nd the equivalent of words in the genomic context, our �rst step was
to search for nucleotide sequences occurring many times. Aiming at this result, we used
paralogous alignments and we managed them with graph theory concepts. Within the
found words, that we call �genomic symbols�, there are several well known sequences, like
protein domains, but also previously uncharacterized sequences.

Figure 3.1: Local paralogous alignments. Inside the
same sequence (chr1) there are four regions producing
suboptimal alignments: the region 1 shares sequence
similarity with region 3, the region 2 shares sequence
similarity with the region 4. Are shown only the align-
ments which concern distinct regions.

A local sequence alignment algorithm is
able to determine similar regions between
two sequences. When a single sequence is
aligned with itself, the best local alignment
is obviously the one in which the two aligned
subsequences both correspond to the en-
tire sequence. However it is also possible
to �nd suboptimal alignments, i.e. pairs
of distinct regions (inside the same origi-
nal sequence) that share sequence similar-
ity (see �gure 3.1). If the suboptimal align-
ment score [141, 142] cannot be statistically
given by chance, a biological reason should
be probably claimed in order to explain the
presence of the similar (duplicated) sub-
sequences producing the suboptimal align-
ment.

These observations imply that it is possible to use paralogous alignments (i.e. the align-
ments of a genome with itself) in order to mine biologically signi�cant subsequences: not
every meaningful sequences in a genome are duplicated but duplicated sequences need a
reason to be duplicated.

The so called �repeats� are a well known class of duplicated sequences, whose function
is not well understood; a possibility is that repeats do not have any useful function for the
organism hosting them. Good hypotheses about the mechanism of duplication for some sub-
classes of repeats are discussed in the literature (more details in section 1.5). The protein
domains are other well known classes of duplicated genomic subsequences. Precise biological
functions are often associated with protein domains. Both these two kinds of sequences (re-
peats and protein domains) have a biological reason to be duplicated, but they are duplicated
according to two very di�erent biological reasons. The repeats are sequences whose principal
function is the duplication of themselves and they have a peculiar duplication mechanism.
Instead there is not a mechanism that duplicates and inserts the sequence of a protein do-
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main in several genomic locations. Most probably the proliferation of these domains is due
to random events that duplicate entire genes or entire genomic regions. When such a du-
plication occurs a protein domain in the new genomic sequence may maintain a detectable
sequence similarity with the ancestor, while the surrounding sequences drift neutrally; this
happens when a duplicated gene that host the domain is still functional: therefore there is
a selective pressure on the domain in order to maintain its sequence unchanged.

In this introduction we discussed the protein domains because they are the most famous
duplicated functional sequences example. However our tool is not particularly suitable to
�nd those protein domains whose function depends strictly from the 3D protein structure
(and only indirectly from the nucleotide sequence). We are interested mainly in studing
symbols with a regulatory role which occur in the non coding portion of genes or in intronic
and intergenic regions.

3.2 Results and Discussion
At the end of our analysis we found 234 repeated sequences that we call genomic symbols
(further details about symbols de�nition and retrival in section 3.4). Each symbol occurs
many times in the human genome, with an average of about 100 occurrences for each symbol.
Taking into account the characteristics of the genomic region in which a symbol preferentially
occurs we could collect some information in order to establish if the given symbol is functional
or not and which is its possible function.

annotation number of n. of symbols
category symbols with GO assoc.

C 33 18
5 5 2
3 9 4
E 48 11
I 37 25
U 38 10
N 15 2

Table 3.1: For each annotation label (see section 3.4.3) the
table reports the number of symbols that fall preferentially
in this category (a single symbol may occur preferentially in
more than one category) and the number of such symbols that
are also associated with a Gene Ontology term.

We associated to each symbol oc-
currence one or more of the following
labels:

• coding exon

• 5'UTR exon

• 3'UTR exon

• non-coding exon

• intron

• upstream (15 Kbps from the
TSS)

• intergenic

Figure 3.2: We found 234 symbols some of them (72, green
set) have a Gene Ontology association and some (161, violet
set) have other annotations anomalies (for example occours
preferentially in UTR exons).

(see section 3.4.3 for details about
the label association with the occur-
rences). We observed that 173 sym-
bols occur preferentially in a speci�c
category, for example 9 of them oc-
cur preferentially in 3'UTR exons of
genes and this is a strong evidence of
some kind of function (see table 3.1
for the full report).

We associated to each symbol the
set of genes in which the symbol oc-
curs (see section 3.4.3 for details).
Given a set of genes associated with
a symbol we can look for overrep-
resented Gene Ontology [143] terms.
To assess the statistical relevance of a
symbol/term association we used the
hypergeometrical model and we ap-
plied standard Bonferroni correction for multiple testing. In this way we can attribute a
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speci�c function to 72 symbols (see �gure 3.2). The table 3.2 shows the GO terms associated
to some symbols.

The KRAB domain example
There are biological meaningful repeated sequences that we do not expect to �nd; among all,
those protein domains whose function depends strictly on the 3D structure. In this case there
is a selective pressure to maintain the tertiary protein structure and not directly the primary
structure, moreover we expect synonimous changes at the nucleotide level (for example in
the third codon positions). Nevertheless we found 33 symbols that occour preferentially in
the coding part of genes. An hypothesis may be that those protein coding symbols (besides
some function depeding on the protein structure) have a further function that requires the
conservation of the precise nucleotide sequence.

A typical example is given by the symbols c1239 (see section B.5 for the sequence) which
occurs preferentially in the coding part of zinc �nger proteins. Using the procedure described
in the section 3.4.3 we associated this symbol with the KRAB domain (see �gure 3.3).

The Krueppel-associated box (KRAB) is a domain of around 75 amino acids that is found
in the N-terminal part of about one third of eukaryotic Krueppel-type C2H21 zinc �nger
proteins [145]. It is enriched in charged amino acids and can be divided into subregions A
and B, which are predicted to fold into two amphipathic alpha-helices. The KRAB A and
B boxes can be separated by variable spacer segments and many KRAB proteins contain
only the A box [146] (further details in �gure 3.5).

Figure 3.3: The symbol c1239 corresponds to the KRAB protein domain.

Figure 3.4: The symbol c804 comprises an intronic portion.

Surprisingly we found another symbols (c804) associated with the KRAB domain, this
symbol shows no nucleotide sequence similarity with the previous symbols c1239. If those
symbols have a double function, it may be that the c804 proteic structural function is the
same of the c1239 one, while the functions based on the nucleotide level are di�erent.

The symbols c804 is longer than the KRAB domains and contains an intronic region (see
�gure 3.4).

There are other symbols (c1359, c690, c417, c307) associated with zinc �nger proteins
that occur both in the coding regions and in the introns of the genes. Among them only the
symbol c417 corresponds to a known protein domain (DUF12202).

1The C2H2 zinc �nger is the classical zinc �nger domain. The two conserved cysteines and histidines
co-ordinate a zinc ion. The following pattern describes the zinc �nger: ] −X − C −X(1 − 5) − C −X3 −
]−X5− ]−X2−H −X(3− 6)− [H/C] where X can be any amino acid, and numbers in brackets indicate
the number of residues. The positions marked ] are those that are important for the stable fold of the zinc
�nger. The �nal position can be either his or cys. The C2H2 zinc �nger is composed of two short beta
strands followed by an alpha helix. The amino terminal part of the helix binds the major groove in DNA
binding zinc �ngers. The accepted consensus binding sequence for Sp1 is usually de�ned by the asymmetric
hexanucleotide core GGGCGG but this sequence does not include, among others, the GAG (=CTC) repeat
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Figure 3.5: Structure and function of the KRAB domain. The functions currently
known for members of the KRAB-containing protein family include transcriptional repres-
sion of RNA polymerase I, II, and III promoters, binding and splicing of RNA, and control of
nucleolus function. The KRAB domain acts as a transcriptional repressor when tethered to
the template DNA by a DNA-binding domain. A sequence of 45 amino acids in the KRAB
A subdomain has been shown to be necessary and su�cient for transcriptional repression
[146]. The B box does not repress by itself but does potentiate the repression exerted by
the KRAB A subdomain. Gene silencing requires the binding of the KRAB domain to the
RING-B box-coiled coil (RBCC) domain of the KAP-1/TIF1-beta corepressor [147, 148]. As
KAP-1 binds to the heterochromatin proteins HP1, it has been proposed that the KRAB-
ZFP-bound target gene could be silenced following recruitment to heterochromatin [146].
KRAB-ZFPs probably constitute the single largest class of transcription factors within the
human genome. Although the function of KRAB-ZFPs is largely unknown, they appear to
play important roles during development, cell di�erentiation, proliferation, apoptosis and
neoplastic transformation [149].

number of symbols Gene Ontology term association
31 regulation of transcription, DNA-dependent
6 positive regulation of translational initiation
5 gonadal mesoderm development
4 response to stimulus
3 organismal physiological process
2 ectoderm development
2 epidermis development
2 immune response
1 RNA processing
1 biopolymer metabolism
1 protein folding
1 G-protein coupled receptor protein signaling pathway
1 sensory perception of smell
1 fertilization (sensu Metazoa)

Table 3.2: The table reports the number of symbols associated to each relevant Gene Ontology term in
the biological process ontology.
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3.3 Conclusions
We found 234 genomic symbols, we have some statistical evidence of function for 173 of
them. Genomes most probably contain many other nucleotide �words� that we are actually
not able to �nd. Although we probably lost many interesting symbols, with our work we
demonstrated that paralogous alignments are useful to extract previously unknown infor-
mation form raw genomic sequences.

3.4 Methods
The pipeline used in this work is divided in four principal tasks.

Genomic alignments: in which a genome wide local paralogous alignment database is
built and regions with high coverage (see later) are identi�ed.

Symbol retrieval: in which the high coverage regions with similar sequences are clustered
and the consensus sequence (the symbol) for each cluster is built.

Symbols remapping: in which we collected all the genomic occurrences of each symbol.

Symbols analysis: in which, for each symbol, various statistical observation are made and
those symbols that seem to behave non randomly are identi�ed.

In the following we describe in details each step of the pipeline.

3.4.1 Genomic alignments
Genome Sequence
We retrieved the complete, repeat masked, human genomic sequence from the ENSEMBL
database (version 40) [42]. We used repeat masked sequences because we aren't interested
in retrieving already known repeats.

Genome Alignments
We performed a local alignment search in the entire genome using the Washington University
implementation of BLAST [44, 150] with the PAM10 [151] scoring scheme.

Figure 3.7: Alignment length distribution. The x-
axis shows the alignment length, the y-axis shows the
number of alignments with the given length.

We retained each sobouptimal alignment
longer than 30 base pairs. To chose this
threshold we reasoned that the number of
randomly occurring alignment is exponen-
tially decreasing with the length (the longer
is an alignment the less probability there is
to �nd it by chance). Looking at the local
alignments length distribution in the human
genome, we have seen that this distribution
is exponentially decreasing up to 30 base
pairs. Then the distribution slope becomes
weaker (approximately a power law): this
means that the majority of the alignments
that are shorter than 30 base pairs proba-
bly arise by chance. Instead the fraction of
random alignments becomes negligible for
alignments longer than this threshold. This
is the �rst �lter that we used to assess sta-
tistical signi�cance of our results.

that constitutes a high-a�nity site for Sp1 binding to the wt1 promoter [144]
2The DUF1220 is a mammalian speci�c repeat of around 65 residues in length and is found in multiple

copies in several human proteins. The function of this domain is unknown.
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Figure 3.6: Genomic symbols pipeline.
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Alignment database
We stored the computed alignments in an optimized data structure based on location clusters
(see section 2.4) in order to speedup the following steps of the pipeline.

High coverage regions
An alignment in our framework may be seen as a couple of genomic regions (A,B) charac-
terized by a detectable sequence similarity.

The coverage is a function associating each base in a genome to the number of alignments
which overlap such base (see �gure 3.8).

Figure 3.8: The alignment coverage level counts the number of alignments covering each base of a given
region.

Suppose that a symbol s is present in three distinct places A, B and C in the genome;
each occurrence of the symbol may have a slightly di�erent sequence (for example due to
mutations that do not in�uence the symbol functionality). Suppose also that the alignment
algorithm could detect the sequence similarity between the three instances of s; in this case
among the alignments present in the alignment database, there were 3 alignments: (A,B),
(A,C), (B,C). We �ltered out auto-alignments like (A,A) and we taken only one of the
two symmetric alignments like (A,B) and (B,A).

If we have n distinct occurrences of a symbol s in the genome we �nd n(n−1)
2 alignments

in the alignment database and each occurrence is involved in n − 1 alignments. So the
coverage of each symbol occurrence is n− 1 (for each nucleotide of the occurrence).

Figure 3.9: We require a minimum coverage level of 50.

To improve statistical signi�cance
of the observations we concentrated
our attention on symbols with 50 oc-
currences or more (see �gure 3.9).

In the simpli�ed perspective ex-
empli�ed before (symbol s with n oc-
currences), scanning the genome one
could expect to see a coverage func-
tion in general equal to 0 and with in-
stantaneous jumps to a value of n−1
at the edges of s occurrences. Actu-
ally this is not the case: the cover-
age landscape is complex and in par-
ticular the peaks are often �fuzzy�,
i.e. there are not sharp jumps from
0 to a great value and viceversa but
a smoother curve. Nevertheless we
de�ned an initial set of putative symbol occurrences selecting each genomic region whose
coverage is greater than 50 for the entire length of the region.
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Before proceeding to the next step of the pipeline some further considerations about the
coverage cuto� are needed.

We are interested in two types of duplicated sequences: those that have a peculiar
(maybe unknown) mechanism of duplication (like known repeats), and those that have a
peculiar biological function (like protein domains). During the evolution large fractions
of the genome have been duplicated, therefore it may happen that we �nd something that
looks like a genomic symbol occurrence but it is actually only a non-functional region (nested
inside a big duplicated genomic stretch) that didn't accumulate su�cient mutation to lose
sequence similarity with the original region. The request of a minimum coverage level of 50
allows us to exclude this type of events: dozen of duplications of the same stretch should
be required and all of them should be so recent that a random non-functional region should
show sequence similarity with all the paralogous.

3.4.2 Symbol retrieval
The symbol retrieval is an iterative process: starting from a set of putative symbols they are
re�ned by a circular pipeline. The output of this re�nement process is then used as input
for the next iteration of the pipeline. The same re�nement process is made until the output
of a cycle is the same of the previous one.

The initial input is the set of all the putative symbols occurrences (genomic regions with
coverage greater than 50 ) i.e. we associate each occurrence with an initial putative distinct
symbol.

Alignment network
The alignment network is a graph in which each sequence (i.e. symbol) is a vertex. Each
possible pair of sequences is aligned: when a good sequence similarity is found we put a link
between the two associated vertices.

In this context we use a score sab as a measure of sequence similarity between two
sequences a and b. The score is given by the formula:

sab =
maxα∈A(lα)
max (la, lb)

where A is the set of all the local alignments between a and b, α is an arbitrary local
alignment in A, lα is the length of the alignment, la and lb are the lengths of the sequences.
In other words sab is the length of the best local alignment between the two sequences
divided by the length of the longest sequence.

We put a link between two vertices i and j if sij is greater than 0.9 .

Clustering

Figure 3.10: Small network
with strong community struc-
ture: the network breaks into
three distinct communities.

Given three symbol occurrences A, B and C if A is linked to
B and B is linked to C not necessarily A is linked to C: the
linkage propriety is not transitive. Nevertheless, since we use
a stringent cuto�, the transitive property is �almost always�
veri�ed. If this property would be always valid, the network
would be a set of distinct cliques. Instead the real network
appears to be made of many connected components each one
composed by di�erent �communities�. A community is a sub-
set of nodes within which the node-node connections are dense,
and the edges among communities are less dense. To separate
each community we applied a clustering algorithm that max-
imize the modularity [152] (the modularity is the number of
edges falling within groups minus the expected number in an
equivalent network with edges placed at random).

At each cycle of the pipeline each community is associated
with a distinct putative symbol.
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Multialignments and patterns
A community is a set of sequences. In order to associate to each community a single sequence,
we performed a multiple alignment (using ClustalW with the standard scoring scheme [153])
of the sequences which belong to a community. Then we postprocessed the results in order
to �nd stretch of highly conserved nucleotides that we call �patterns�.

For each community it is possible to �nd zero, one or more than one patterns. The
simplest situation is when there is only one pattern: in this case its sequence is the sequence
of the symbol associated with the community. When it was not possible to �nd any pattern,
we discarded the entire community: this way we lose the putative symbol whose occurrences
share a low level of sequence similarity. When we found two or more distinct patterns
it means that the community contains the occurrences of more than one symbol and we
reported each pattern as a distinct symbol.

At the end of this process we have a set of putative symbols with their own sequences.
This output is given as input for a new cycle of the pipeline. This iterative process

continue until there is no di�erence between the input symbol set and the output symbol
set of a cycle.

3.4.3 Symbols analysis
Remapping
When a symbol set is de�ned, we remap it into the genome, looking for all the statistically
signi�cant alignments (found with the Washington University implementation of BLAST [44,
150]). We taken each of such alignment as a symbol occurrence.

Gene associations
We associated each symbol with a set of genes: a gene is associated with a symbol if a symbol
occurrence falls inside the gene (in the exonic or intronic portion) or in the intergenic gene
upstream or downstream region. We use gene annotations downloaded from the ENSEMBL
database version 40 [42].

Gene Ontology analysis
Given a set of genes associated with a symbol we can look for overrepresented Gene Ontology
[143] keywords.

To assess the statistical relevance of a symbol/keyword association we used the hyper-
geometrical model and we apply standard Bonferroni correction for multiple testing.

For each symbol σ and associated gene set S(σ) we computed the prevalence of all Gene
Ontology (GO) terms among the annotated genes in the set, and the probability that such
prevalence would occur in a randomly chosen genes set of the same size. We always consider
a gene annotated to a GO term if it is directly annotated to it or to any of its descendants
in the GO graph. For a given GO term t let M(t) be the total number of genes annotated
to t in the genome, and x(σ, t) the number of genes annotated to t in the set S(σ). If N and
n(σ) denote the number of genes in the genome and in S(σ) respectively, such probability
is given by the right tail of the appropriate hypergeometric distribution [154]:

P (N,M(t), n(σ), x(σ, t)) =
min(n(σ),M(t))∑

h=x(σ,t)

F (N,M(t), n(σ), h)(3.1)

where

F (N,M,n, x) =

(
M
x

)(
N−M
n−x

)
(

N
n

)(3.2)

In this way a P-value can be associated with each pair made of a symbol and a Gene
Ontology term. A low P-value indicates that the symbol is correlated to the functional
characterization described by the GO term.
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The number B of indipendent statistical tests computed is B = TS where T is the
number of terms in Gene Ontology and S is the total number of symbols.

We apply a standard Bonferroni correction to P-values and we consider as signi�cant
only those P-value P so that P < 0.1

B .

Annotation analysis
In order to identify symbols which show an uneven distribution in the genes (for instance
those which always occur in the coding exons or in the UTRs) we reported for each symbol
occurrence an annotation vector with seven entries corresponding to the seven possible
annotation labels:

1. coding exon

2. non-coding exon

3. 5'UTR exon

4. 3'UTR exon

5. intron

6. upstream

7. intergenic

The category of non-coding exons includes all exons sequences that do not code for
protein portions and are not marked as 5' or 3' UTRs (for example belonging to RNA
genes); this category also comprises the pseudogenes. We get all these annotations from
ENSEMBL version 40 [42] with the only exception of upstreams: we de�ne an �upstream�
as the region ranging from 15Kbps upstream of an annotated translation start site (TSS)
to the TSS itself. Obviously a single nucleotide can belong to di�erent categories, for
example an exon of a gene can fall inside an intron of another gene (see section 1.2.3). In
such cases we reported, for each nucleotide, only the �strongest� category; we assumed the
strength of a category as indicated in the previous list (the coding exon being the strongest).

We associated each symbol occurrence with a 7 entries vector −→v . We reported in each
entry of −→v the fraction of nucleotides of the occurrence that belong to the corresponding
annotation category of the previous list. We associated also a boolean vector−→b characterized
by the following formula:

bi =
{

1 if vi ≥ 0.15
0 otherwise

The index i (with 1 ≤ i ≤ 7) indicates an annotations category in the previous list.
For each symbol and each entries bi we associated a P-value with a procedure similar to

that described in the previous section (hypergeometrical model and Bonferroni correction).
A low P-value associated with a symbol and an bi indicates that the symbol tends to

occur preferentially in the genomic region indicated by i.

Protein domain analysis
In order to associate a protein domain with a symbol we searched the best alignment of
the symbol in the database �Non-redundant protein sequences� (nr) using blastx at the
NCBI [155].

Then we take the proteinic sequence that produces the best high scoring pair. Then,
using this sequence as a query, we searched for a domain in Pfam [156] using the �Conserved
Domain Database Search Service� at NCBI [157].

In this task all programs are used with standard parameters and the database versions
are the latest published online at november 2007.
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Conclusions

The interpretation in biological signi�cant terms of the genomic sequence of an organism
is one of the most ambitious challenges of the post-genomic era. Even the more studied
genomic structures, like genes, appear to be much more complex than expected and are still
not completely understood.

In this thesis, after a short introduction on genomic sequences (chapter 1) and on our
present understanding of the notion of gene (in particular on the implications of the results
of the recent ENCODE and FANTOM projects), I discussed two main issues.

First I described a novel methodology to identify genes based on paralogous alignements
(i.e. the alignments of a genome with itself) (chapter 2). This tool is not a general purpose
gene predictor because it can only �nd genes with at least one processed pseudogene. Nev-
ertheless our methodology provides novel information which can be integrated with those
provided by other methodologies, in order to develop gene predictions pipelines. Our tool is
completely unbiased because it does not require other information but the genomic sequence.
Instead almost all other gene predictors use some kind of prior knowledge about genes, this
infomation can be in the form of sequences (like ESTs) or models (like the Hidden Markov
Model used in GENESCAN). We found about 1000 genes in the human genome and 8 of
them where previously unknown. We tested 3 of them experimentally and we validated 2 of
them as transcribed. Besides this results we could also identify 75 new alternative transcripts
which correspond to known human genes but contain previously unknown exons.

The second research project discussed in this thesis deals with the identi�cation of func-
tional sequences (especially in intronic and intergenic regions) based again on paralogous
alignements. We used these alignments to �nd duplicated sequences in the genome. We
also elaborated a set of �lters in order to select duplications with a statistically signi�cant
degree of conservation (see chapter 3). We call the resulting sequences �genomic symbols�
because we think that they can be used in the genome like words in a text and that they
can be combined in order to construct phrases or more complex structures. We found 234
of such sequences and we have some statistical evidence of function for 173 of them.

Even if probably we lose many interesting symbols, with our work we demonstrated that
paralogous alignments are useful to extract information form raw genomic sequences.
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Appendix A

A new computational approach to
analyze human protein complexes
and predict novel protein
interactions

We propose a new approach to identify interacting proteins based on gene expression data.
By using hypergeometric distribution and extensive Monte-Carlo simulations, we demon-
strated that looking at synchronous expression peaks (in single time interval) is a high
sensitivity approach to detect co-regulation among interacting proteins. Combining gene
expression and GO similarity analyses resulted striking to extract novel interactors from
microarray datasets. Applying this approach to PAK1, we validated α-tubulin and EEA1
as its novel interactors.

The cell is a complex system composed by a heterogeneous and highly dynamic set of
proteins whose ability to interact and form complexes is critical for cellular activity regu-
lation [158]. Therefore, the complete identi�cation of the interactome is one of the major
goals to be achieved. Di�erent high-throughput experimental approaches have been de-
veloped to characterize the interactome of several organisms. Up to now, data have been
mostly generated by studying simple organisms such as S. cerevisiae, C. elegans and D.
melanogaster [159, 160]. For human cells, published experimental results are collected in
databases like MINT and HPRD [161, 162] but the amount of information is still quite
limited. Moreover data have been obtained from di�erent cellular models and using dif-
ferent techniques, thus rendering it di�cult to build a global network of interactions or to
extrapolate information about the composition of multiprotein complexes. Computational
approaches may help to address these crucial issues [163, 164, 165, 166, 167, 168, 169, 170].
The current idea is that proteins forming a supra-molecular complex are simultaneously
transcribed and standard Pearson's analysis has been extensively applied on gene expres-
sion datasets to support this concept [165, 167, 168, 170, 171]. In general good results are
obtained with this method when applied to protein interactions of stable protein complexes,
but it is less e�cient in other cases [165, 167]. A paradigmatic example is the applica-
tion of Pearson's analysis on gene expression datasets of the yeast cell-cycle. A strong and
signi�cant correlation can be obtained for permanent protein complexes, but only weak
correlations are seen for the transient ones [167]. A similar conclusion resulted from the
analysis of some human gene pro�les [165]. We present a new approach for the detection of
putative protein interactions based on expression data. Besides the identi�cation of perma-
nent complexes, it is also capable (at least for well synchronized samples) to reliably identify
interactions among proteins belonging to transient complexes. This approach is based on
two observations. Firstly, protein-protein interactions are more easily identi�ed if the in-
teracting protein pair belongs to a multi-protein complex. This is a direct consequence of
the fact that the features used to identify the interactions (i.e. correlations in expression
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data) displayed a much higher signal to noise ratio if multiple correlations were simultane-
ously looked for. Therefore, we focused on tracking interactions within protein complexes,
even though our algorithm can in principle identify any type of protein-protein interaction.
The second observation is that while Pearson's correlators are very e�ective for permanent
complexes, which are assembled in most of the experimental time-points, they were found
less suitable for transient complexes which are assembled only in few or unique time-points.
To overcome this problem we propose a new method to extract putative human interacting
proteins from microarray gene expression data looking at the presence of synchronous ex-
pression peaks in time course experiments of synchronized HeLa cells [172]. This is further
supported by the recent observation in yeast that the timing of transcription during the cell-
cycle is indicative of the timing of protein complex assembly [173]. This approach allowed us
to address interactions characterized by low but not negligible statistical signi�cance, which
would instead be completely �ltered out in the Pearson-based analysis. To further enhance
the signal to noise ratio we combined this analytical procedure with a standard Gene On-
tology [143] search. This �lter turns out to be very e�ective, since it is based on input
information completely independent from those exploited in the previous analysis step. To
test the performances of our approach and compare it with the standard Pearson-based one,
we established and tested a set of 32 permanent and transient complexes. The application
of our method shows its e�ectiveness in detecting protein interactions in permanent and
transient complexes. We also observed that, as expected, the proposed technique performs
better as the synchronization of the dataset improves. To speci�cally test the applicability
of our method in a precise biological context we applied it to explore novel putative inter-
acting partners for the serine/threonine p21-activated kinase 1 (PAK1). PAK1 is a kinase
downstream the Rho family of small GTPases, which participates in the formation of several
dynamic and transient transductosomes [174]. We also provide experimental evidences con-
�rming the interactions predicted by our algorithm between PAK1 and α-tubulin as well as
PAK1 and early endosome antigen 1 (EEA1), a coiled coil dimer that is crucial for endosome
fusion in vitro [175].



Appendix B

Supplementary data

B.1 Gene Ontology association of retrotransposed genes

Table B.1: Each GO terms with a signi�cative p-value is reported, N is the number
of genes associated with the given GO terms, M is the number of such genes that
have also a more speci�c signi�cative annotation.

GO key N M P-value ontology description

GO:0051169 15 2 4.07e-03 biological process nuclear transport
GO:0008104 62 60 4.89e-05 biological process protein localization
GO:0051188 13 0 9.13e-03 biological process cofactor biosynthesis
GO:0006260 19 0 4.93e-03 biological process DNA replication
GO:0006177 2 0 8.30e-03 biological process GMP biosynthesis
GO:0043285 34 25 9.77e-05 biological process biopolymer catabolism
GO:0006445 21 9 1.66e-07 biological process regulation of translation
GO:0006446 8 0 1.29e-03 biological process regulation of translational initiation
GO:0006605 26 2 3.01e-05 biological process protein targeting
GO:0030049 2 0 2.87e-03 biological process muscle �lament sliding
GO:0030163 25 20 1.44e-03 biological process protein catabolism
GO:0006839 6 0 1.07e-03 biological process mitochondrial transport
GO:0000398 12 0 6.74e-04 biological process nuclear mRNA splicing, via spliceosome
GO:0016567 10 0 4.37e-03 biological process protein ubiquitination
GO:0006259 54 20 9.96e-03 biological process DNA metabolism
GO:0000050 3 0 7.00e-03 biological process urea cycle
GO:0043037 34 31 1.09e-09 biological process translation
GO:0006457 33 0 4.72e-06 biological process protein folding
GO:0009060 11 9 4.46e-07 biological process aerobic respiration
GO:0009064 7 0 8.32e-03 biological process glutamine family amino acid metabolism
GO:0007067 23 6 5.61e-05 biological process mitosis
GO:0044267 259 206 1.45e-17 biological process cellular protein metabolism
GO:0044265 41 35 3.66e-06 biological process cellular macromolecule catabolism
GO:0006888 10 0 3.94e-03 biological process ER to Golgi vesicle-mediated transport
GO:0044260 261 259 3.22e-17 biological process cellular macromolecule metabolism
GO:0006886 41 26 2.57e-06 biological process intracellular protein transport
GO:0006880 2 0 2.87e-03 biological process intracellular sequestering of iron ion
GO:0042254 17 15 1.52e-06 biological process ribosome biogenesis and assembly
GO:0016043 156 147 3.44e-08 biological process cell organization and biogenesis
GO:0006360 4 3 1.99e-03 biological process transcription from RNA polymerase I promoter
GO:0042255 3 0 7.00e-03 biological process ribosome assembly
GO:0007183 2 1 2.87e-03 biological process SMAD protein heteromerization
GO:0007181 2 1 8.30e-03 biological process transforming growth factor beta receptor complex as-

sembly
GO:0007184 2 1 2.87e-03 biological process SMAD protein nuclear translocation
GO:0019318 16 14 6.59e-03 biological process hexose metabolism
GO:0006810 154 93 5.52e-03 biological process transport
GO:0009889 25 23 1.41e-04 biological process regulation of biosynthesis
GO:0009152 10 2 8.51e-03 biological process purine ribonucleotide biosynthesis
GO:0009150 11 10 5.05e-03 biological process purine ribonucleotide metabolism
GO:0009260 12 10 2.04e-03 biological process ribonucleotide biosynthesis
GO:0008152 563 560 1.32e-22 biological process metabolism
GO:0007059 9 6 1.60e-03 biological process chromosome segregation
GO:0016070 67 61 1.32e-11 biological process RNA metabolism
GO:0016071 39 33 4.52e-08 biological process mRNA metabolism
GO:0050658 11 9 4.65e-04 biological process RNA transport
GO:0015980 26 23 6.95e-07 biological process energy derivation by oxidation of organic compounds
GO:0046907 77 64 1.36e-10 biological process intracellular transport
GO:0006512 49 26 8.75e-06 biological process ubiquitin cycle
GO:0006104 2 0 8.30e-03 biological process succinyl-CoA metabolism
Continued on Next Page. . .
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Table B.1 � Continued
GO key N M P-value ontology description
GO:0006356 3 0 5.89e-04 biological process regulation of transcription from RNA polymerase I

promoter
GO:0006100 7 2 1.04e-04 biological process tricarboxylic acid cycle intermediate metabolism
GO:0006417 23 21 1.57e-04 biological process regulation of protein biosynthesis
GO:0006732 23 10 2.39e-05 biological process coenzyme metabolism
GO:0030261 4 0 8.86e-03 biological process chromosome condensation
GO:0007046 13 0 1.02e-04 biological process ribosome biogenesis
GO:0050875 707 689 3.73e-29 biological process cellular physiological process
GO:0009259 14 13 4.60e-04 biological process ribonucleotide metabolism
GO:0007049 78 63 3.15e-07 biological process cell cycle
GO:0000723 5 0 7.91e-03 biological process telomere maintenance
GO:0006139 235 135 1.11e-04 biological process nucleobase, nucleoside, nucleotide and nucleic acid

metabolism
GO:0043161 6 0 2.12e-03 biological process proteasomal ubiquitin-dependent protein catabolism
GO:0051246 28 23 3.07e-03 biological process regulation of protein metabolism
GO:0008380 35 12 3.16e-09 biological process RNA splicing
GO:0006996 87 54 3.48e-05 biological process organelle organization and biogenesis
GO:0009987 743 707 4.18e-11 biological process cellular process
GO:0006084 10 9 2.07e-06 biological process acetyl-CoA metabolism
GO:0000051 4 0 8.86e-03 biological process urea cycle intermediate metabolism
GO:0006337 3 0 2.72e-03 biological process nucleosome disassembly
GO:0043170 402 397 1.07e-33 biological process macromolecule metabolism
GO:0006007 14 11 6.81e-06 biological process glucose catabolism
GO:0046365 15 14 1.00e-05 biological process monosaccharide catabolism
GO:0006099 9 0 1.44e-06 biological process tricarboxylic acid cycle
GO:0006092 21 19 2.31e-07 biological process main pathways of carbohydrate metabolism
GO:0006096 11 0 1.12e-04 biological process glycolysis
GO:0051301 23 0 8.42e-04 biological process cell division
GO:0006511 20 7 5.76e-04 biological process ubiquitin-dependent protein catabolism
GO:0000279 28 23 5.33e-05 biological process M phase
GO:0000278 32 23 1.57e-05 biological process mitotic cell cycle
GO:0007582 727 720 2.35e-13 biological process physiological process
GO:0006913 18 2 5.35e-04 biological process nucleocytoplasmic transport
GO:0009058 176 167 1.73e-29 biological process biosynthesis
GO:0009059 134 127 1.80e-33 biological process macromolecule biosynthesis
GO:0044262 33 25 1.48e-03 biological process cellular carbohydrate metabolism
GO:0009056 68 64 1.43e-07 biological process catabolism
GO:0006497 7 2 8.32e-03 biological process protein amino acid lipidation
GO:0044238 540 501 1.32e-26 biological process primary metabolism
GO:0000070 6 0 1.71e-03 biological process mitotic sister chromatid segregation
GO:0051276 35 12 2.99e-03 biological process chromosome organization and biogenesis
GO:0051028 9 0 1.39e-03 biological process mRNA transport
GO:0000074 44 0 1.30e-03 biological process regulation of progression through cell cycle
GO:0018348 2 0 8.30e-03 biological process protein amino acid geranylgeranylation
GO:0044237 543 508 1.32e-24 biological process cellular metabolism
GO:0015031 60 41 2.61e-06 biological process protein transport
GO:0006415 3 0 4.56e-03 biological process translational termination
GO:0006414 6 0 1.71e-03 biological process translational elongation
GO:0006413 15 8 1.92e-06 biological process translational initiation
GO:0006412 127 43 1.95e-34 biological process protein biosynthesis
GO:0006396 56 39 1.16e-10 biological process RNA processing
GO:0006397 33 12 6.07e-07 biological process mRNA processing
GO:0043231 474 412 3.82e-24 cellular component intracellular membrane-bound organelle
GO:0005784 2 0 8.30e-03 cellular component translocon complex
GO:0015934 20 16 1.15e-12 cellular component large ribosomal subunit
GO:0015935 29 26 1.16e-20 cellular component small ribosomal subunit
GO:0030867 3 2 2.72e-03 cellular component rough endoplasmic reticulum membrane
GO:0043232 183 166 6.05e-21 cellular component intracellular non-membrane-bound organelle
GO:0005789 15 3 1.86e-03 cellular component endoplasmic reticulum membrane
GO:0008043 2 0 2.87e-03 cellular component ferritin complex
GO:0005832 4 0 1.13e-04 cellular component chaperonin-containing T-complex
GO:0000228 12 9 5.11e-03 cellular component nuclear chromosome
GO:0005737 409 317 1.26e-44 cellular component cytoplasm
GO:0005819 9 0 6.77e-03 cellular component spindle
GO:0005838 4 0 4.81e-04 cellular component proteasome regulatory particle (sensu Eukaryota)
GO:0031090 65 48 6.70e-07 cellular component organelle membrane
GO:0031981 54 52 3.92e-06 cellular component nuclear lumen
GO:0005730 18 0 5.84e-04 cellular component nucleolus
GO:0016282 31 26 6.56e-27 cellular component eukaryotic 43S preinitiation complex
GO:0005634 299 100 1.61e-09 cellular component nucleus
GO:0043233 70 67 3.15e-08 cellular component organelle lumen
GO:0044444 315 232 2.08e-40 cellular component cytoplasmic part
GO:0005739 105 45 2.04e-17 cellular component mitochondrion
GO:0030529 111 99 1.50e-41 cellular component ribonucleoprotein complex
GO:0005654 38 3 3.49e-04 cellular component nucleoplasm
GO:0044432 17 15 1.23e-03 cellular component endoplasmic reticulum part
GO:0044430 47 11 9.47e-03 cellular component cytoskeletal part
GO:0005759 13 7 7.02e-04 cellular component mitochondrial matrix
GO:0005694 40 36 8.76e-05 cellular component chromosome
GO:0015630 30 9 3.77e-03 cellular component microtubule cytoskeleton
GO:0031967 43 34 6.89e-06 cellular component organelle envelope
GO:0031966 33 29 7.34e-07 cellular component mitochondrial membrane
Continued on Next Page. . .
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Table B.1 � Continued
GO key N M P-value ontology description
GO:0012505 37 15 2.23e-03 cellular component endomembrane system
GO:0000502 11 4 4.36e-05 cellular component proteasome complex (sensu Eukaryota)
GO:0001674 2 0 8.30e-03 cellular component female germ cell nucleus
GO:0005862 2 0 8.30e-03 cellular component muscle thin �lament tropomyosin
GO:0030530 4 0 6.93e-03 cellular component heterogeneous nuclear ribonucleoprotein complex
GO:0043234 247 141 1.03e-35 cellular component protein complex
GO:0005840 75 52 6.10e-37 cellular component ribosome
GO:0005843 26 0 3.04e-25 cellular component cytosolic small ribosomal subunit (sensu Eukaryota)
GO:0005842 16 0 1.29e-14 cellular component cytosolic large ribosomal subunit (sensu Eukaryota)
GO:0005829 80 50 2.48e-22 cellular component cytosol
GO:0044446 269 268 2.68e-32 cellular component intracellular organelle part
GO:0005743 29 0 2.17e-06 cellular component mitochondrial inner membrane
GO:0005740 34 33 1.89e-06 cellular component mitochondrial envelope
GO:0044445 50 46 6.05e-32 cellular component cytosolic part
GO:0044428 97 84 1.26e-11 cellular component nuclear part
GO:0005761 7 0 9.41e-03 cellular component mitochondrial ribosome
GO:0005666 3 0 7.00e-03 cellular component DNA-directed RNA polymerase III complex
GO:0044427 33 9 1.01e-03 cellular component chromosomal part
GO:0016281 4 0 8.30e-04 cellular component eukaryotic translation initiation factor 4F complex
GO:0005681 22 0 1.66e-06 cellular component spliceosome complex
GO:0044454 9 0 8.28e-03 cellular component nuclear chromosome part
GO:0005200 11 0 9.96e-03 molecular function structural constituent of cytoskeleton
GO:0008143 3 0 4.56e-03 molecular function poly(A) binding
GO:0030508 3 0 2.72e-03 molecular function thiol-disul�de exchange intermediate activity
GO:0048487 3 0 7.00e-03 molecular function beta-tubulin binding
GO:0005488 656 561 5.27e-07 molecular function binding
GO:0003676 251 137 6.94e-11 molecular function nucleic acid binding
GO:0005485 2 0 8.30e-03 molecular function v-SNARE activity
GO:0008168 14 0 6.10e-03 molecular function methyltransferase activity
GO:0005198 97 84 4.52e-17 molecular function structural molecule activity
GO:0005504 5 0 9.46e-03 molecular function fatty acid binding
GO:0043566 10 9 3.18e-03 molecular function structure-speci�c DNA binding
GO:0004659 4 3 5.30e-03 molecular function prenyltransferase activity
GO:0016874 35 25 8.08e-05 molecular function ligase activity
GO:0030911 2 0 2.87e-03 molecular function TPR domain binding
GO:0051087 4 0 2.86e-03 molecular function chaperone binding
GO:0051082 20 0 5.50e-06 molecular function unfolded protein binding
GO:0000166 158 124 5.37e-07 molecular function nucleotide binding
GO:0003735 73 0 6.66e-38 molecular function structural constituent of ribosome
GO:0031202 6 0 8.26e-04 molecular function RNA splicing factor activity, transesteri�cation mech-

anism
GO:0004774 2 0 8.30e-03 molecular function succinate-CoA ligase activity
GO:0017076 123 43 8.07e-04 molecular function purine nucleotide binding
GO:0016491 55 37 7.50e-03 molecular function oxidoreductase activity
GO:0003697 9 0 4.52e-04 molecular function single-stranded DNA binding
GO:0005525 43 1 3.73e-07 molecular function GTP binding
GO:0019144 2 0 2.87e-03 molecular function ADP-sugar diphosphatase activity
GO:0015631 10 3 1.78e-03 molecular function tubulin binding
GO:0016149 2 0 8.30e-03 molecular function translation release factor activity, codon speci�c
GO:0008134 33 3 6.39e-03 molecular function transcription factor binding
GO:0008135 24 22 1.99e-09 molecular function translation factor activity, nucleic acid binding
GO:0003924 22 0 7.76e-05 molecular function GTPase activity
GO:0017111 50 29 1.04e-04 molecular function nucleoside-triphosphatase activity
GO:0004488 2 0 8.30e-03 molecular function methylenetetrahydrofolate dehydrogenase (NADP+)

activity
GO:0003824 317 162 1.49e-03 molecular function catalytic activity
GO:0004004 7 0 1.04e-04 molecular function ATP-dependent RNA helicase activity
GO:0045182 27 24 2.63e-10 molecular function translation regulator activity
GO:0003865 2 0 8.30e-03 molecular function 3-oxo-5-alpha-steroid 4-dehydrogenase activity
GO:0047631 2 0 8.30e-03 molecular function ADP-ribose diphosphatase activity
GO:0009055 20 0 3.20e-03 molecular function electron carrier activity
GO:0043022 4 0 8.30e-04 molecular function ribosome binding
GO:0016614 13 12 4.67e-03 molecular function oxidoreductase activity, acting on CH-OH group of

donors
GO:0016616 12 0 5.11e-03 molecular function oxidoreductase activity, acting on the CH-OH group

of donors, NAD or NADP as acceptor
GO:0016879 22 0 1.16e-03 molecular function ligase activity, forming carbon-nitrogen bonds
GO:0051920 3 0 2.72e-03 molecular function peroxiredoxin activity
GO:0004477 2 0 8.30e-03 molecular function methenyltetrahydrofolate cyclohydrolase activity
GO:0019843 11 0 7.30e-09 molecular function rRNA binding
GO:0016462 55 52 1.17e-05 molecular function pyrophosphatase activity
GO:0004662 2 0 2.87e-03 molecular function CAAX-protein geranylgeranyltransferase activity
GO:0003723 115 21 1.74e-30 molecular function RNA binding
GO:0005515 368 64 2.87e-05 molecular function protein binding
GO:0004661 3 2 2.72e-03 molecular function protein geranylgeranyltransferase activity
GO:0043014 2 0 8.30e-03 molecular function alpha-tubulin binding
GO:0003746 5 0 6.55e-03 molecular function translation elongation factor activity
GO:0051059 3 0 4.56e-03 molecular function NF-kappaB binding
GO:0003743 15 0 1.03e-06 molecular function translation initiation factor activity
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B.2 Retrotrasposed genes (human)

Table B.2: Coordinates of found retrotransposed gene in the human genome (ENSEMBL version
40).

chr start stop chr start stop chr start stop chr start stop
chr1 100468795 100487984 chr1 10382273 10402777 chr1 10995325 11006681
chr1 111236517 111244055 chr1 111784403 111787540 chr1 111798354 111805472 chr1 112035483 112057251
chr1 112997743 113015757 chr1 114911837 114925710 chr1 115062156 115064757 chr1 11688940 11702712
chr1 117758862 117810569 chr1 144218974 144222800 chr1 1469112 1499792 chr1 148161834 148165811
chr1 148726985 148746370 chr1 148937545 148958637 chr1 149257565 149268016 chr1 149998762 150002222
chr1 150113159 150148570 chr1 151901134 151907658 chr1 152187598 152197639 chr1 152395466 152422287
chr1 152511723 152514975 chr1 153408509 153411993 chr1 153514174 153521707 chr1 153546455 153557080
chr1 153965551 153974937 chr1 154828211 154830537 chr1 158154524 158156952 chr1 158459089 158476425
chr1 159390399 159395267 chr1 159399331 159402116 chr1 159560026 159599607 chr1 160802435 160825227
chr1 165092371 165112096 chr1 166001444 166025131 chr1 167342563 167368582 chr1 173235784 173246030
chr1 174263333 174282084 chr1 174352386 174442834 chr1 17612157 17628282 chr1 176242584 176273724
chr1 177279472 177308295 chr1 180620053 180627548 chr1 181115072 181123500 chr1 183323307 183336812
chr1 19453861 19458058 chr1 201243523 201259136 chr1 209902738 209915586 chr1 210018882 210033139
chr1 220907980 220952436 chr1 222614820 222630210 chr1 22277507 22291472 chr1 224318652 224326106
chr1 229567401 229576468 chr1 231152988 231181118 chr1 23891685 23895498 chr1 24168185 24179499
chr1 24861737 24871338 chr1 27925188 27934742 chr1 28029910 28049640 chr1 28090638 28113267
chr1 28399657 28432123 chr1 31505276 31542197 chr1 31611091 31618499 chr1 31868059 31873711
chr1 32144609 32176482 chr1 32460733 32469760 chr1 32530324 32571813 chr1 33248111 33275064
chr1 36527850 36543076 chr1 3765171 3791849 chr1 37806469 37834023 chr1 37930911 37943755
chr1 39799094 39802002 chr1 40427312 40479179 chr1 40991411 41009857 chr1 41374088 41390926
chr1 42896680 42915012 chr1 42920685 42940600 chr1 45014292 45016996 chr1 45272570 45278798
chr1 45749310 45757314 chr1 45926491 45932691 chr1 47606726 47616126 chr1 52010348 52026187
chr1 52294459 52324431 chr1 52506782 52542185 chr1 52571026 52584892 chr1 53465195 53476778
chr1 54438782 54454594 chr1 54465188 54496413 chr1 54849867 54861770 chr1 6301144 6332488
chr1 6607827 6616208 chr1 67649548 67668666 chr1 68716079 68735407 chr1 71307547 71316824
chr1 76025786 76030537 chr1 84888674 84909579 chr1 92232302 92252566 chr1 93070193 93080069
chr1 9522115 9565175 chr1 9954663 9967452 chr10 100183125 100195161 chr10 102097842 102114570
chr10 102273490 102279608 chr10 103360412 103374560 chr10 103417633 103444695 chr10 104150412 104151260
chr10 104231744 104238885 chr10 105052563 105100820 chr10 105632444 105648748 chr10 105871914 105875510
chr10 1076850 1080113 chr10 112351745 112354380 chr10 118384392 118392749 chr10 120059252 120085923
chr10 120918680 120924093 chr10 12254769 12277893 chr10 124907233 124914845 chr10 126079429 126092995
chr10 126666891 126682053 chr10 13400074 13427035 chr10 14963503 14983253 chr10 27033614 27049383
chr10 27443455 27448291 chr10 33230398 33240529 chr10 42974187 43000743 chr10 5847199 5895311
chr10 59623353 59667582 chr10 59815183 59825728 chr10 6183273 6197669 chr10 69768338 69772956
chr10 70074453 70116448 chr10 70586768 70598372 chr10 71579964 71591689 chr10 71636026 71663154
chr10 73764276 73784673 chr10 74604451 74665211 chr10 7879025 7884369 chr10 79465115 79470465
chr10 82158284 82182729 chr10 88801110 88809010 chr10 90684961 90697125 chr10 96987324 97040708
chr10 97793309 97810610 chr10 99176008 99183187 chr10 99390772 99416316 chr11 100847140 100855016
chr11 106880235 106932933 chr11 109982591 110006690 chr11 111462807 111471710 chr11 113776638 113781731
chr11 116528367 116539824 chr11 118391759 118394262 chr11 122433411 122438054 chr11 124050342 124069723
chr11 124947565 124959781 chr11 125335614 125398642 chr11 13366120 13399963 chr11 13690050 13710431
chr11 14256047 14273979 chr11 14483001 14496102 chr11 16716801 16734014 chr11 17052516 17055369
chr11 18434846 18457093 chr11 30301265 30316350 chr11 32069118 32082855 chr11 33719875 33728760
chr11 3377001 3386785 chr11 36611408 36637375 chr11 47596842 47620594 chr11 50324789 50336409
chr11 57261656 57265018 chr11 58135016 58141310 chr11 59171837 59191013 chr11 59462466 59473066
chr11 59541399 59555141 chr11 60366146 60374996 chr11 61488614 61491682 chr11 62083650 62096791
chr11 62139347 62146032 chr11 63274041 63283916 chr11 63435304 63440605 chr11 63476455 63479162
chr11 63840770 63841586 chr11 65378884 65382224 chr11 65416271 65424435 chr11 65792655 65801537
chr11 65959887 65962815 chr11 67289421 67316547 chr11 69848154 69850567 chr11 71189207 71193336
chr11 73096113 73119517 chr11 73214398 73253289 chr11 74337954 74366427 chr11 74789384 74794381
chr11 74955005 74961444 chr11 75749648 75769593 chr11 77008299 77026517 chr11 7965654 7974292
chr11 82213058 82239197 chr11 82650150 82668949 chr11 8413639 8440036 chr11 8661324 8663967
chr11 8890574 8897631 chr11 89574295 89588048 chr11 95172074 95203927 chr11 9554608 9567888
chr12 100392384 100406442 chr12 100957777 100979942 chr12 10256766 10266966 chr12 103804245 103827661
chr12 10649879 10657435 chr12 108020694 108032575 chr12 108773132 108802658 chr12 109357091 109367740
chr12 111327374 111330845 chr12 115639938 115660053 chr12 117058291 117067770 chr12 119118895 119123019
chr12 122439930 122459850 chr12 122659179 122671432 chr12 14833255 14843932 chr12 15926719 15947670
chr12 21679537 21702011 chr12 23578126 23620042 chr12 25249450 25295056 chr12 26982628 27010844
chr12 2799496 2802339 chr12 40765990 40799236 chr12 4255430 4282565 chr12 4628539 4666633
chr12 47807837 47811445 chr12 48670223 48672399 chr12 51577242 51585109 chr12 51629172 51632961
chr12 51696521 51722258 chr12 52135934 52159819 chr12 52345222 52352700 chr12 52960777 52965543
chr12 54722475 54724762 chr12 54784704 54791360 chr12 54835104 54841623 chr12 54904913 54909904
chr12 54954837 54966076 chr12 55343403 55368295 chr12 55392482 55404574 chr12 55411251 55432338
chr12 55949433 55976596 chr12 56448689 56452158 chr12 61069668 61081322 chr12 63105862 63114630
chr12 6505555 6510937 chr12 6515918 6517795 chr12 67328744 67340070 chr12 6846959 6850250
chr12 6945862 6948986 chr12 74179698 74191664 chr12 74733252 74749041 chr12 75776626 75796930
chr12 7833298 7839862 chr12 7856380 7876679 chr12 7963095 7977767 chr12 8271596 8275775
chr12 8793724 8818264 chr12 892276 910751 chr12 8985304 8990225 chr12 97445811 97465987
chr13 113008835 113024026 chr13 114065512 114089379 chr13 18902609 18910290 chr13 24053803 24061484
chr13 24431871 24439593 chr13 26538293 26588730 chr13 26725896 26729315 chr13 29931994 29938097
chr13 40265346 40280733 chr13 40384650 40393874 chr13 44411383 44461606 chr13 44809021 44813286
chr13 47415192 47469161 chr13 49515648 49554167 chr13 51699157 51707414 chr13 51933042 51946029
chr13 52124976 52159988 chr13 97456413 97465888 chr13 97902881 97932578 chr14 101619655 101620995
chr14 19846254 19867373 chr14 20748559 20772233 chr14 22461490 22463114 chr14 22486658 22496120
chr14 22860652 22865208 chr14 23682425 23684198 chr14 30605105 30635284 chr14 31685218 31695324
chr14 34831414 34856424 chr14 38653272 38675869 chr14 49645103 49653005 chr14 50776738 50792507
chr14 57784220 57808429 chr14 59031498 59040532 chr14 67126044 67136735 chr14 67156473 67211081
chr14 72478209 72496093 chr14 74030221 74031815 chr14 74252407 74273170 chr14 88692287 88726548
chr14 89796208 89808713 chr14 92239914 92268916 chr14 92369340 92375900 chr14 96057093 96103177
chr14 99798422 99813565 chr15 22770579 22774822 chr15 23134732 23168054 chr15 32221080 32226785
chr15 36543613 36564167 chr15 38115536 38118654 chr15 39310822 39358382 chr15 40530631 40570598
chr15 40622076 40626984 chr15 41710109 41728258 chr15 41806589 41825679 chr15 42408188 42417807
chr15 46410925 46421858 chr15 48503893 48538632 chr15 50125319 50145746 chr15 53260813 53276427
chr15 55786207 55796494 chr15 57186842 57204535 chr15 61233109 61236739 chr15 62474649 62534520
chr15 64561145 64568668 chr15 64578712 64584238 chr15 67532211 67534937 chr15 70278428 70298507
chr15 71403253 71423198 chr15 72999672 73017490 chr15 73933782 73976456 chr15 76959907 76977126
chr15 78199724 78217757 chr15 80608216 80611596 chr15 81002559 81005939 chr15 98029246 98049055
chr15 99639238 99652939 chr16 11843058 11852828 chr16 15062857 15093971 chr16 18701782 18707942
chr16 18710519 18717658 chr16 1952056 1954630 chr16 19625350 19633797 chr16 21718470 21737582
chr16 21876251 21890938 chr16 23476771 23489679 chr16 23499874 23506135 chr16 23560289 23588683
chr16 28995479 29022985 chr16 48617810 48628490 chr16 5067909 5075045 chr16 52082793 52094717
chr16 55836642 55844916 chr16 57298540 57325669 chr16 66247870 66248957 chr16 66456503 66462724
chr16 671463 672744 chr16 67931415 67933266 chr16 68333286 68346444 chr16 72888278 72897023
chr16 79608437 79620384 chr16 79627051 79636280 chr16 79673432 79687455 chr16 82399131 82402773
chr16 84392309 84398109 chr16 85983518 85994474 chr16 87861543 87879349 chr16 8799201 8814456
chr16 88517310 88530000 chr17 10525113 10539874 chr17 11925398 11973329 chr17 1194621 1215104
chr17 15381031 15407557 chr17 18634946 18650343 chr17 20588983 20598117 chr17 20850804 20856821
chr17 24071850 24075500 chr17 2517037 2531991 chr17 25523684 25537584 chr17 26143587 26175787
chr17 27439295 27446065 chr17 28282604 28292773 chr17 31001663 31033935 chr17 33706643 33732362
chr17 34162543 34173965 chr17 34259894 34262886 chr17 34610990 34614508 chr17 36038533 36052337
chr17 37098666 37101403 chr17 37382805 37406115 chr17 37530541 37536134 chr17 37974018 37978257
chr17 38404286 38408490 chr17 39629823 39631010 chr17 39642253 39651235 chr17 39753565 39755446
chr17 42355496 42364564 chr17 43258999 43263900 chr17 43405883 43414118 chr17 44365566 44373426
Continued on Next Page. . .
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chr start stop chr start stop chr start stop chr start stop
chr17 44836423 44845654 chr17 45507962 45509400 chr17 4799963 4801140 chr17 50393574 50401055
chr17 52370562 52393402 chr17 5276824 5283169 chr17 55386207 55395032 chr17 59259227 59262887
chr17 60176249 60185208 chr17 62767379 62793181 chr17 628645 642105 chr17 63463686 63473421
chr17 70675420 70690720 chr17 71354584 71362974 chr17 7153656 7156496 chr17 7156745 7159459
chr17 71592194 71611105 chr17 72065464 72071318 chr17 73676332 73680395 chr17 7418586 7421953
chr17 77091600 77093978 chr17 8288304 8304163 chr18 11883471 11898316 chr18 22120158 22161102
chr18 41939180 41958857 chr18 45268856 45271297 chr18 53367578 53391597 chr18 53418907 53424938
chr18 54737256 54772010 chr18 9092747 9124340 chr19 10362809 10375193 chr19 12768643 12773610
chr19 1389366 1391496 chr19 14069170 14078686 chr19 14380851 14385058 chr19 14535612 14536670
chr19 15326582 15345769 chr19 16048376 16074813 chr19 16522808 16544046 chr19 1771302 1776944
chr19 17833102 17835124 chr19 18503677 18513807 chr19 18545097 18547047 chr19 20897898 20928430
chr19 21116683 21159426 chr19 21266559 21304002 chr19 21444148 21449262 chr19 2194380 2199597
chr19 21949115 21985533 chr19 22155894 22190364 chr19 22261122 22288638 chr19 22733989 22758732
chr19 22806949 22832113 chr19 23091719 23122204 chr19 23195833 23224983 chr19 23337047 23370079
chr19 23729465 23733502 chr19 24061865 24103522 chr19 3045647 3074991 chr19 37767694 37770165
chr19 39377254 39410836 chr19 41325809 41329039 chr19 4314737 4317993 chr19 43557309 43566299
chr19 43801686 43819430 chr19 43900455 43910494 chr19 45017181 45021655 chr19 47480652 47490959
chr19 52325965 52365020 chr19 53810408 53812947 chr19 541121 568150 chr19 54160378 54161947
chr19 54684916 54687357 chr19 54691535 54694752 chr19 5641274 5642678 chr19 56517129 56525415
chr19 59396838 59403323 chr19 60589528 60591555 chr19 60604465 60610963 chr19 62354906 62370665
chr19 63590448 63597971 chr19 977635 990064 chr19 9807011 9821358 chr2 100549394 100559626
chr2 100985596 100989317 chr2 10180405 10184549 chr2 10499095 10502808 chr2 109660916 109728781
chr2 114390952 114431822 chr2 11503073 11511299 chr2 118295241 118305040 chr2 119841041 119846580
chr2 122201723 122210905 chr2 128321706 128332129 chr2 131821715 131832198 chr2 150134399 150151908
chr2 152367612 152379076 chr2 157040854 157078252 chr2 170168942 170202484 chr2 170363756 170389398
chr2 173936218 173941860 chr2 174647981 174655036 chr2 174796004 174821532 chr2 176902273 176914682
chr2 177788513 177793084 chr2 183515046 183554297 chr2 183701290 183734652 chr2 190817853 190834204
chr2 198059559 198071803 chr2 198073322 198076419 chr2 198089043 198125360 chr2 202779459 202811549
chr2 203453613 203484573 chr2 206732865 206735896 chr2 208809423 208828040 chr2 210575579 210589612
chr2 223481701 223507617 chr2 233129370 233142161 chr2 24047649 24076635 chr2 24144115 24152645
chr2 25310406 25321027 chr2 27758644 27765138 chr2 31946400 31970710 chr2 31996499 32021958
chr2 3570204 3583761 chr2 3601055 3606384 chr2 42720815 42740505 chr2 46661939 46695830
chr2 47240831 47243308 chr2 55313447 55316245 chr2 55317291 55334737 chr2 55645554 55679568
chr2 61259624 61268149 chr2 61953100 61964189 chr2 63675125 63687800 chr2 65168513 65185444
chr2 65308473 65351875 chr2 68122842 68143699 chr2 69476778 69512601 chr2 73308665 73313881
chr2 73325180 73332068 chr2 73810001 73815150 chr2 73981980 74000209 chr2 74216052 74228545
chr2 74286339 74295919 chr2 74635370 74638181 chr2 85676378 85678215 chr2 86224585 86276082
chr2 86559252 86573350 chr2 9465035 9471838 chr2 95116424 95151285 chr2 9641849 9649096
chr2 99169071 99180328 chr2 99304432 99319226 chr20 13688400 13704891 chr20 1372184 1395486
chr20 17542509 17550419 chr20 1843742 1853523 chr20 30871414 30901871 chr20 31899933 31905297
chr20 32140954 32163681 chr20 32331587 32354810 chr20 32667506 32728566 chr20 35794692 35841152
chr20 35901918 35933931 chr20 3683043 3696403 chr20 39177425 39186535 chr20 41519949 41523823
chr20 42947864 42970554 chr20 43876444 43878986 chr20 44412805 44417917 chr20 50133961 50148536
chr20 5043633 5048573 chr20 52257807 52269147 chr20 54378129 54391639 chr20 57041595 57051250
chr20 60395781 60396970 chr21 17841223 17855664 chr21 29170318 29179484 chr21 33744897 33763104
chr21 33872510 33876182 chr21 45188035 45222267 chr21 9936235 9943864 chr22 16454838 16491513
chr22 17543095 17545532 chr22 17817435 17846674 chr22 18486534 18494583 chr22 28206209 28215170
chr22 29302619 29315257 chr22 30129013 30160162 chr22 35193042 35207622 chr22 36533873 36542849
chr22 36601792 36614583 chr22 37393966 37399788 chr22 38038836 38044544 chr22 39552203 39582577
chr22 39679515 39699482 chr22 40250794 40254929 chr22 45018582 45022846 chr3 101540621 101554032
chr3 101911138 101950495 chr3 10266158 10296250 chr3 102775730 102795971 chr3 102882625 102888270
chr3 10317617 10332114 chr3 110527924 110535524 chr3 121028238 121078047 chr3 123561125 123584773
chr3 127130807 127136079 chr3 129253991 129261723 chr3 130749099 130752991 chr3 134775431 134790324
chr3 143105151 143127698 chr3 143877751 143899592 chr3 144238726 144256593 chr3 14462254 14501502
chr3 150192060 150228014 chr3 151768381 151782153 chr3 151803863 151830913 chr3 157132245 157138193
chr3 157743549 157755660 chr3 161556495 161585130 chr3 161700683 161732041 chr3 162441540 162452487
chr3 180552380 180586186 chr3 182185035 182188580 chr3 184143337 184166236 chr3 185029877 185085355
chr3 185442905 185446097 chr3 186844222 186893246 chr3 187985045 187990377 chr3 196724338 196751465
chr3 19967300 20001662 chr3 38514125 38523449 chr3 39405987 39413682 chr3 39424105 39428933
chr3 42800797 42821012 chr3 44949422 44975954 chr3 46543920 46561675 chr3 46595579 46598833
chr3 48456671 48460609 chr3 48869406 48911302 chr3 48974047 48996113 chr3 5187187 5195867
chr3 53894140 53897551 chr3 57532695 57558172 chr3 67628910 67662300 chr3 72924757 72976267
chr3 73179027 73198705 chr3 75530342 75554124 chr4 100020123 100042158 chr4 100179547 100201696
chr4 100212341 100225393 chr4 101021438 101027536 chr4 101039740 101063366 chr4 101088271 101090455
chr4 103936375 103968418 chr4 104218220 104236880 chr4 109150362 109175703 chr4 109761217 109765855
chr4 109791236 109808425 chr4 110854886 110870615 chr4 121200069 121207436 chr4 13071421 13094898
chr4 139287076 139300804 chr4 140198478 140224987 chr4 148758521 148775322 chr4 152240229 152245241
chr4 166220000 166243699 chr4 170887248 170911545 chr4 17225369 17236333 chr4 17423685 17429093
chr4 174528661 174535218 chr4 1785438 1804460 chr4 184807598 184817301 chr4 185789199 185796617
chr4 186405441 186425305 chr4 20315466 20338466 chr4 22043318 22084564 chr4 2440675 2484123
chr4 26035377 26043648 chr4 38358603 38375584 chr4 39132143 39136325 chr4 3985736 3995340
chr4 48582189 48601382 chr4 55920277 55934012 chr4 56997131 57020618 chr4 57032683 57062810
chr4 83563416 83568284 chr4 84035871 84040713 chr4 84230864 84248059 chr4 84598522 84612467
chr4 88575239 88591845 chr4 89235711 89298748 chr4 9314307 9341249 chr5 102483985 102511614
chr5 10303447 10318126 chr5 10671444 10705638 chr5 111092901 111120822 chr5 114580473 114605202
chr5 115195079 115205165 chr5 125908389 125913886 chr5 125964541 125989906 chr5 133335507 133354745
chr5 133520470 133540537 chr5 134061492 134087237 chr5 137871056 137881224 chr5 141333338 141348894
chr5 147754474 147799548 chr5 148705256 148711463 chr5 148855811 148884927 chr5 149803997 149807494
chr5 150050587 150058324 chr5 151131708 151160623 chr5 159781887 159788323 chr5 16506121 16516665
chr5 167917010 167939153 chr5 170747459 170770508 chr5 171250680 171270279 chr5 175705710 175707968
chr5 176663388 176666346 chr5 177509074 177513458 chr5 178054176 178057358 chr5 180596558 180603407
chr5 32391201 32455970 chr5 32624375 32637168 chr5 34951593 34961192 chr5 37733513 37758789
chr5 40868318 40871113 chr5 43157909 43209269 chr5 43571403 43591859 chr5 529135 541588
chr5 56545658 56581141 chr5 61678722 61694904 chr5 6686624 6722561 chr5 68549389 68561628
chr5 68713489 68746213 chr5 71653753 71690597 chr5 72830020 72837244 chr5 74098822 74109149
chr5 76362238 76395677 chr5 77747098 77753541 chr5 79315309 79320224 chr5 79957805 79981071
chr5 80636660 80644380 chr5 86725966 86736564 chr5 89805670 89845968 chr6 107126542 107184023
chr6 107184145 107220599 chr6 111302885 111322206 chr6 111386628 111395892 chr6 112498690 112509100
chr6 116528739 116545801 chr6 116648909 116673503 chr6 116999367 117021113 chr6 126361422 126401935
chr6 133177395 133180401 chr6 135398730 135417597 chr6 136594127 136605806 chr6 13899002 13915245
chr6 142510154 142561439 chr6 150099313 150108892 chr6 151377707 151399939 chr6 153357341 153365500
chr6 157639694 157664517 chr6 160119977 160129166 chr6 167263191 167290931 chr6 17649195 17665644
chr6 17708601 17716968 chr6 20588053 20601909 chr6 24517667 24532412 chr6 30796108 30800245
chr6 31240101 31246418 chr6 31606538 31612416 chr6 31806376 31812101 chr6 32255416 32256531
chr6 33348382 33352264 chr6 33648308 33655987 chr6 34312628 34318547 chr6 34497485 34501781
chr6 34838354 34849787 chr6 35544552 35546534 chr6 37043905 37054366 chr6 42282580 42290062
chr6 42955302 42965599 chr6 43553253 43579407 chr6 43651876 43665676 chr6 44324343 44329600
chr6 64344303 64349304 chr6 74172121 74182755 chr6 74283925 74286503 chr6 7806715 7826752
chr6 86443446 86444455 chr6 88441363 88448142 chr7 100007788 100009426 chr7 100651683 100654181
chr7 102502928 102527445 chr7 102782551 102795810 chr7 107899307 107930322 chr7 10939609 10946276
chr7 127819578 127828407 chr7 128382422 128407320 chr7 133777657 133787046 chr7 133900732 133913064
chr7 139799329 139825749 chr7 140961738 140999962 chr7 141065343 141077022 chr7 141085389 141096724
chr7 149614404 149623370 chr7 150794729 150819034 chr7 152128557 152151518 chr7 156822520 156871296
chr7 23316354 23325400 chr7 23348208 23357718 chr7 23513572 23538127 chr7 26212552 26219495
chr7 30628484 30639960 chr7 33100951 33105575 chr7 35869710 35911440 chr7 35952429 35980823
chr7 39846273 39874609 chr7 44207100 44217247 chr7 44578698 44580058 chr7 44802807 44807737
chr7 44840434 44849475 chr7 45734302 45771934 chr7 51207648 51228782 chr7 5533308 5536759
chr7 55829097 55854410 chr7 5598973 5612808 chr7 56136758 56141663 chr7 6030837 6065206
chr7 6380696 6409334 chr7 64001079 64028508 chr7 64162811 64171931 chr7 64856948 64866049
chr7 65963947 65980736 chr7 6915150 6937156 chr7 73226624 73249365 chr7 7642894 7646593
chr7 87345332 87375624 chr7 87673537 87677322 chr7 89722675 89741346 chr7 91579409 91601731
Continued on Next Page. . .
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chr start stop chr start stop chr start stop chr start stop
chr7 91996045 92004334 chr7 92044352 92057632 chr7 94067914 94097082 chr7 97319519 97336407
chr7 98609131 98638797 chr7 98831546 98840514 chr7 98996096 99000262 chr8 101232103 101234806
chr8 101784320 101803488 chr8 101999980 102006444 chr8 10715112 10729688 chr8 11664574 11682258
chr8 12073629 12077777 chr8 12258021 12261339 chr8 12322912 12327022 chr8 125569933 125600305
chr8 125620631 125631399 chr8 130922966 130952924 chr8 145211141 145212600 chr8 145985961 145988100
chr8 17131108 17148724 chr8 20112373 20122138 chr8 25341466 25371892 chr8 26252338 26277302
chr8 30762679 30776815 chr8 38087417 38116376 chr8 39432016 39451320 chr8 41467516 41487650
chr8 42131146 42144010 chr8 43030644 43060080 chr8 47610125 47645293 chr8 55042916 55075164
chr8 55121492 55137438 chr8 57148167 57149616 chr8 59486487 59526604 chr8 66744671 66782790
chr8 68117874 68136844 chr8 74083699 74122538 chr8 74365428 74367586 chr8 74657559 74692242
chr8 74865403 74905257 chr8 76618605 76641598 chr8 7844062 7847387 chr8 82355325 82359568
chr8 87512750 87529563 chr8 99183758 99190158 chr9 101024384 101032716 chr9 109085664 109132985
chr9 112046123 112058595 chr9 115058212 115066590 chr9 122566272 122578296 chr9 127038336 127043290
chr9 129249977 129253505 chr9 130485929 130498485 chr9 131629473 131635614 chr9 132342077 132366461
chr9 135205597 135208102 chr9 138416200 138424722 chr9 139077828 139084802 chr9 19105775 19116308
chr9 19365782 19370267 chr9 19398917 19442486 chr9 33016476 33029897 chr9 33246799 33252828
chr9 35094221 35098737 chr9 35649074 35651177 chr9 35672022 35675138 chr9 35802963 35803777
chr9 37753631 37766402 chr9 4701158 4731061 chr9 70851135 70879606 chr9 720140 736101
chr9 72120182 72128878 chr9 74160604 74165524 chr9 80101880 80134827 chr9 85773644 85782993
chr9 88069285 88087274 chr9 96287521 96289971 chr9 98441673 98453597 chr9 99785462 99807256
chrX 100160941 100193718 chrX 100532630 100537443 chrX 103094029 103109802 chrX 106758501 106780844
chrX 107217573 107221424 chrX 107255959 107284259 chrX 11690189 11700736 chrX 116916462 116938361
chrX 118486436 118489303 chrX 119227722 119230652 chrX 119621918 119626240 chrX 129301546 129335006
chrX 135116230 135120623 chrX 135783286 135789251 chrX 13640301 13662623 chrX 149902417 149907894
chrX 152506580 152517780 chrX 152705449 152706553 chrX 153194126 153211195 chrX 153280872 153282447
chrX 153908283 153936574 chrX 153954844 153972310 chrX 15758106 15780488 chrX 19279356 19287064
chrX 21905099 21922876 chrX 23761410 23808992 chrX 30581568 30655588 chrX 40333221 40350774
chrX 48318508 48321613 chrX 48635678 48639086 chrX 48819151 48824439 chrX 54573340 54603888
chrX 55774526 55801482 chrX 56276342 56328267 chrX 69270509 69302854 chrX 69426548 69438976
chrX 70430808 70434032 chrX 70590744 70600464 chrX 71318333 71334120 chrX 71409179 71413673
chrX 77255911 77267580 chrX 77271921 77281787 chrX 99963171 99979999 chrY 18431080 18444810
chrY 18703743 18717478 chrY 19077364 19092148 chrY 19470799 19485581 chrY 24326976 24353681
chrY 24528313 24548828 chrY 26232378 26252883 chrY 26427466 26454179 chrY 2770205 2794955
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B.3 Retrotrasposed genes (mouse)

Table B.3: Coordinates of found retrotransposed gene in the mouse genome (ENSEMBL version
40).

chr start stop chr start stop chr start stop chr start stop
chr1 100468795 100487984 chr1 10382273 10402777 chr1 10995325 11006681
chr1 111236517 111244055 chr1 111784403 111787540 chr1 111798354 111805472 chr1 112035483 112057251
chr1 112997743 113015757 chr1 114911837 114925710 chr1 115062156 115064757 chr1 11688940 11702712
chr1 117758862 117810569 chr1 144218974 144222800 chr1 1469112 1499792 chr1 148161834 148165811
chr1 148726985 148746370 chr1 148937545 148958637 chr1 149257565 149268016 chr1 149998762 150002222
chr1 150113159 150148570 chr1 151901134 151907658 chr1 152187598 152197639 chr1 152395466 152422287
chr1 152511723 152514975 chr1 153408509 153411993 chr1 153514174 153521707 chr1 153546455 153557080
chr1 153965551 153974937 chr1 154828211 154830537 chr1 158154524 158156952 chr1 158459089 158476425
chr1 159390399 159395267 chr1 159399331 159402116 chr1 159560026 159599607 chr1 160802435 160825227
chr1 165092371 165112096 chr1 166001444 166025131 chr1 167342563 167368582 chr1 173235784 173246030
chr1 174263333 174282084 chr1 174352386 174442834 chr1 17612157 17628282 chr1 176242584 176273724
chr1 177279472 177308295 chr1 180620053 180627548 chr1 181115072 181123500 chr1 183323307 183336812
chr1 19453861 19458058 chr1 201243523 201259136 chr1 209902738 209915586 chr1 210018882 210033139
chr1 220907980 220952436 chr1 222614820 222630210 chr1 22277507 22291472 chr1 224318652 224326106
chr1 229567401 229576468 chr1 231152988 231181118 chr1 23891685 23895498 chr1 24168185 24179499
chr1 24861737 24871338 chr1 27925188 27934742 chr1 28029910 28049640 chr1 28090638 28113267
chr1 28399657 28432123 chr1 31505276 31542197 chr1 31611091 31618499 chr1 31868059 31873711
chr1 32144609 32176482 chr1 32460733 32469760 chr1 32530324 32571813 chr1 33248111 33275064
chr1 36527850 36543076 chr1 3765171 3791849 chr1 37806469 37834023 chr1 37930911 37943755
chr1 39799094 39802002 chr1 40427312 40479179 chr1 40991411 41009857 chr1 41374088 41390926
chr1 42896680 42915012 chr1 42920685 42940600 chr1 45014292 45016996 chr1 45272570 45278798
chr1 45749310 45757314 chr1 45926491 45932691 chr1 47606726 47616126 chr1 52010348 52026187
chr1 52294459 52324431 chr1 52506782 52542185 chr1 52571026 52584892 chr1 53465195 53476778
chr1 54438782 54454594 chr1 54465188 54496413 chr1 54849867 54861770 chr1 6301144 6332488
chr1 6607827 6616208 chr1 67649548 67668666 chr1 68716079 68735407 chr1 71307547 71316824
chr1 76025786 76030537 chr1 84888674 84909579 chr1 92232302 92252566 chr1 93070193 93080069
chr1 9522115 9565175 chr1 9954663 9967452 chr10 100183125 100195161 chr10 102097842 102114570
chr10 102273490 102279608 chr10 103360412 103374560 chr10 103417633 103444695 chr10 104150412 104151260
chr10 104231744 104238885 chr10 105052563 105100820 chr10 105632444 105648748 chr10 105871914 105875510
chr10 1076850 1080113 chr10 112351745 112354380 chr10 118384392 118392749 chr10 120059252 120085923
chr10 120918680 120924093 chr10 12254769 12277893 chr10 124907233 124914845 chr10 126079429 126092995
chr10 126666891 126682053 chr10 13400074 13427035 chr10 14963503 14983253 chr10 27033614 27049383
chr10 27443455 27448291 chr10 33230398 33240529 chr10 42974187 43000743 chr10 5847199 5895311
chr10 59623353 59667582 chr10 59815183 59825728 chr10 6183273 6197669 chr10 69768338 69772956
chr10 70074453 70116448 chr10 70586768 70598372 chr10 71579964 71591689 chr10 71636026 71663154
chr10 73764276 73784673 chr10 74604451 74665211 chr10 7879025 7884369 chr10 79465115 79470465
chr10 82158284 82182729 chr10 88801110 88809010 chr10 90684961 90697125 chr10 96987324 97040708
chr10 97793309 97810610 chr10 99176008 99183187 chr10 99390772 99416316 chr11 100847140 100855016
chr11 106880235 106932933 chr11 109982591 110006690 chr11 111462807 111471710 chr11 113776638 113781731
chr11 116528367 116539824 chr11 118391759 118394262 chr11 122433411 122438054 chr11 124050342 124069723
chr11 124947565 124959781 chr11 125335614 125398642 chr11 13366120 13399963 chr11 13690050 13710431
chr11 14256047 14273979 chr11 14483001 14496102 chr11 16716801 16734014 chr11 17052516 17055369
chr11 18434846 18457093 chr11 30301265 30316350 chr11 32069118 32082855 chr11 33719875 33728760
chr11 3377001 3386785 chr11 36611408 36637375 chr11 47596842 47620594 chr11 50324789 50336409
chr11 57261656 57265018 chr11 58135016 58141310 chr11 59171837 59191013 chr11 59462466 59473066
chr11 59541399 59555141 chr11 60366146 60374996 chr11 61488614 61491682 chr11 62083650 62096791
chr11 62139347 62146032 chr11 63274041 63283916 chr11 63435304 63440605 chr11 63476455 63479162
chr11 63840770 63841586 chr11 65378884 65382224 chr11 65416271 65424435 chr11 65792655 65801537
chr11 65959887 65962815 chr11 67289421 67316547 chr11 69848154 69850567 chr11 71189207 71193336
chr11 73096113 73119517 chr11 73214398 73253289 chr11 74337954 74366427 chr11 74789384 74794381
chr11 74955005 74961444 chr11 75749648 75769593 chr11 77008299 77026517 chr11 7965654 7974292
chr11 82213058 82239197 chr11 82650150 82668949 chr11 8413639 8440036 chr11 8661324 8663967
chr11 8890574 8897631 chr11 89574295 89588048 chr11 95172074 95203927 chr11 9554608 9567888
chr12 100392384 100406442 chr12 100957777 100979942 chr12 10256766 10266966 chr12 103804245 103827661
chr12 10649879 10657435 chr12 108020694 108032575 chr12 108773132 108802658 chr12 109357091 109367740
chr12 111327374 111330845 chr12 115639938 115660053 chr12 117058291 117067770 chr12 119118895 119123019
chr12 122439930 122459850 chr12 122659179 122671432 chr12 14833255 14843932 chr12 15926719 15947670
chr12 21679537 21702011 chr12 23578126 23620042 chr12 25249450 25295056 chr12 26982628 27010844
chr12 2799496 2802339 chr12 40765990 40799236 chr12 4255430 4282565 chr12 4628539 4666633
chr12 47807837 47811445 chr12 48670223 48672399 chr12 51577242 51585109 chr12 51629172 51632961
chr12 51696521 51722258 chr12 52135934 52159819 chr12 52345222 52352700 chr12 52960777 52965543
chr12 54722475 54724762 chr12 54784704 54791360 chr12 54835104 54841623 chr12 54904913 54909904
chr12 54954837 54966076 chr12 55343403 55368295 chr12 55392482 55404574 chr12 55411251 55432338
chr12 55949433 55976596 chr12 56448689 56452158 chr12 61069668 61081322 chr12 63105862 63114630
chr12 6505555 6510937 chr12 6515918 6517795 chr12 67328744 67340070 chr12 6846959 6850250
chr12 6945862 6948986 chr12 74179698 74191664 chr12 74733252 74749041 chr12 75776626 75796930
chr12 7833298 7839862 chr12 7856380 7876679 chr12 7963095 7977767 chr12 8271596 8275775
chr12 8793724 8818264 chr12 892276 910751 chr12 8985304 8990225 chr12 97445811 97465987
chr13 113008835 113024026 chr13 114065512 114089379 chr13 18902609 18910290 chr13 24053803 24061484
chr13 24431871 24439593 chr13 26538293 26588730 chr13 26725896 26729315 chr13 29931994 29938097
chr13 40265346 40280733 chr13 40384650 40393874 chr13 44411383 44461606 chr13 44809021 44813286
chr13 47415192 47469161 chr13 49515648 49554167 chr13 51699157 51707414 chr13 51933042 51946029
chr13 52124976 52159988 chr13 97456413 97465888 chr13 97902881 97932578 chr14 101619655 101620995
chr14 19846254 19867373 chr14 20748559 20772233 chr14 22461490 22463114 chr14 22486658 22496120
chr14 22860652 22865208 chr14 23682425 23684198 chr14 30605105 30635284 chr14 31685218 31695324
chr14 34831414 34856424 chr14 38653272 38675869 chr14 49645103 49653005 chr14 50776738 50792507
chr14 57784220 57808429 chr14 59031498 59040532 chr14 67126044 67136735 chr14 67156473 67211081
chr14 72478209 72496093 chr14 74030221 74031815 chr14 74252407 74273170 chr14 88692287 88726548
chr14 89796208 89808713 chr14 92239914 92268916 chr14 92369340 92375900 chr14 96057093 96103177
chr14 99798422 99813565 chr15 22770579 22774822 chr15 23134732 23168054 chr15 32221080 32226785
chr15 36543613 36564167 chr15 38115536 38118654 chr15 39310822 39358382 chr15 40530631 40570598
chr15 40622076 40626984 chr15 41710109 41728258 chr15 41806589 41825679 chr15 42408188 42417807
chr15 46410925 46421858 chr15 48503893 48538632 chr15 50125319 50145746 chr15 53260813 53276427
chr15 55786207 55796494 chr15 57186842 57204535 chr15 61233109 61236739 chr15 62474649 62534520
chr15 64561145 64568668 chr15 64578712 64584238 chr15 67532211 67534937 chr15 70278428 70298507
chr15 71403253 71423198 chr15 72999672 73017490 chr15 73933782 73976456 chr15 76959907 76977126
chr15 78199724 78217757 chr15 80608216 80611596 chr15 81002559 81005939 chr15 98029246 98049055
chr15 99639238 99652939 chr16 11843058 11852828 chr16 15062857 15093971 chr16 18701782 18707942
chr16 18710519 18717658 chr16 1952056 1954630 chr16 19625350 19633797 chr16 21718470 21737582
chr16 21876251 21890938 chr16 23476771 23489679 chr16 23499874 23506135 chr16 23560289 23588683
chr16 28995479 29022985 chr16 48617810 48628490 chr16 5067909 5075045 chr16 52082793 52094717
chr16 55836642 55844916 chr16 57298540 57325669 chr16 66247870 66248957 chr16 66456503 66462724
chr16 671463 672744 chr16 67931415 67933266 chr16 68333286 68346444 chr16 72888278 72897023
chr16 79608437 79620384 chr16 79627051 79636280 chr16 79673432 79687455 chr16 82399131 82402773
chr16 84392309 84398109 chr16 85983518 85994474 chr16 87861543 87879349 chr16 8799201 8814456
chr16 88517310 88530000 chr17 10525113 10539874 chr17 11925398 11973329 chr17 1194621 1215104
chr17 15381031 15407557 chr17 18634946 18650343 chr17 20588983 20598117 chr17 20850804 20856821
chr17 24071850 24075500 chr17 2517037 2531991 chr17 25523684 25537584 chr17 26143587 26175787
chr17 27439295 27446065 chr17 28282604 28292773 chr17 31001663 31033935 chr17 33706643 33732362
chr17 34162543 34173965 chr17 34259894 34262886 chr17 34610990 34614508 chr17 36038533 36052337
chr17 37098666 37101403 chr17 37382805 37406115 chr17 37530541 37536134 chr17 37974018 37978257
chr17 38404286 38408490 chr17 39629823 39631010 chr17 39642253 39651235 chr17 39753565 39755446
chr17 42355496 42364564 chr17 43258999 43263900 chr17 43405883 43414118 chr17 44365566 44373426
Continued on Next Page. . .
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chr start stop chr start stop chr start stop chr start stop
chr17 44836423 44845654 chr17 45507962 45509400 chr17 4799963 4801140 chr17 50393574 50401055
chr17 52370562 52393402 chr17 5276824 5283169 chr17 55386207 55395032 chr17 59259227 59262887
chr17 60176249 60185208 chr17 62767379 62793181 chr17 628645 642105 chr17 63463686 63473421
chr17 70675420 70690720 chr17 71354584 71362974 chr17 7153656 7156496 chr17 7156745 7159459
chr17 71592194 71611105 chr17 72065464 72071318 chr17 73676332 73680395 chr17 7418586 7421953
chr17 77091600 77093978 chr17 8288304 8304163 chr18 11883471 11898316 chr18 22120158 22161102
chr18 41939180 41958857 chr18 45268856 45271297 chr18 53367578 53391597 chr18 53418907 53424938
chr18 54737256 54772010 chr18 9092747 9124340 chr19 10362809 10375193 chr19 12768643 12773610
chr19 1389366 1391496 chr19 14069170 14078686 chr19 14380851 14385058 chr19 14535612 14536670
chr19 15326582 15345769 chr19 16048376 16074813 chr19 16522808 16544046 chr19 1771302 1776944
chr19 17833102 17835124 chr19 18503677 18513807 chr19 18545097 18547047 chr19 20897898 20928430
chr19 21116683 21159426 chr19 21266559 21304002 chr19 21444148 21449262 chr19 2194380 2199597
chr19 21949115 21985533 chr19 22155894 22190364 chr19 22261122 22288638 chr19 22733989 22758732
chr19 22806949 22832113 chr19 23091719 23122204 chr19 23195833 23224983 chr19 23337047 23370079
chr19 23729465 23733502 chr19 24061865 24103522 chr19 3045647 3074991 chr19 37767694 37770165
chr19 39377254 39410836 chr19 41325809 41329039 chr19 4314737 4317993 chr19 43557309 43566299
chr19 43801686 43819430 chr19 43900455 43910494 chr19 45017181 45021655 chr19 47480652 47490959
chr19 52325965 52365020 chr19 53810408 53812947 chr19 541121 568150 chr19 54160378 54161947
chr19 54684916 54687357 chr19 54691535 54694752 chr19 5641274 5642678 chr19 56517129 56525415
chr19 59396838 59403323 chr19 60589528 60591555 chr19 60604465 60610963 chr19 62354906 62370665
chr19 63590448 63597971 chr19 977635 990064 chr19 9807011 9821358 chr2 100549394 100559626
chr2 100985596 100989317 chr2 10180405 10184549 chr2 10499095 10502808 chr2 109660916 109728781
chr2 114390952 114431822 chr2 11503073 11511299 chr2 118295241 118305040 chr2 119841041 119846580
chr2 122201723 122210905 chr2 128321706 128332129 chr2 131821715 131832198 chr2 150134399 150151908
chr2 152367612 152379076 chr2 157040854 157078252 chr2 170168942 170202484 chr2 170363756 170389398
chr2 173936218 173941860 chr2 174647981 174655036 chr2 174796004 174821532 chr2 176902273 176914682
chr2 177788513 177793084 chr2 183515046 183554297 chr2 183701290 183734652 chr2 190817853 190834204
chr2 198059559 198071803 chr2 198073322 198076419 chr2 198089043 198125360 chr2 202779459 202811549
chr2 203453613 203484573 chr2 206732865 206735896 chr2 208809423 208828040 chr2 210575579 210589612
chr2 223481701 223507617 chr2 233129370 233142161 chr2 24047649 24076635 chr2 24144115 24152645
chr2 25310406 25321027 chr2 27758644 27765138 chr2 31946400 31970710 chr2 31996499 32021958
chr2 3570204 3583761 chr2 3601055 3606384 chr2 42720815 42740505 chr2 46661939 46695830
chr2 47240831 47243308 chr2 55313447 55316245 chr2 55317291 55334737 chr2 55645554 55679568
chr2 61259624 61268149 chr2 61953100 61964189 chr2 63675125 63687800 chr2 65168513 65185444
chr2 65308473 65351875 chr2 68122842 68143699 chr2 69476778 69512601 chr2 73308665 73313881
chr2 73325180 73332068 chr2 73810001 73815150 chr2 73981980 74000209 chr2 74216052 74228545
chr2 74286339 74295919 chr2 74635370 74638181 chr2 85676378 85678215 chr2 86224585 86276082
chr2 86559252 86573350 chr2 9465035 9471838 chr2 95116424 95151285 chr2 9641849 9649096
chr2 99169071 99180328 chr2 99304432 99319226 chr20 13688400 13704891 chr20 1372184 1395486
chr20 17542509 17550419 chr20 1843742 1853523 chr20 30871414 30901871 chr20 31899933 31905297
chr20 32140954 32163681 chr20 32331587 32354810 chr20 32667506 32728566 chr20 35794692 35841152
chr20 35901918 35933931 chr20 3683043 3696403 chr20 39177425 39186535 chr20 41519949 41523823
chr20 42947864 42970554 chr20 43876444 43878986 chr20 44412805 44417917 chr20 50133961 50148536
chr20 5043633 5048573 chr20 52257807 52269147 chr20 54378129 54391639 chr20 57041595 57051250
chr20 60395781 60396970 chr21 17841223 17855664 chr21 29170318 29179484 chr21 33744897 33763104
chr21 33872510 33876182 chr21 45188035 45222267 chr21 9936235 9943864 chr22 16454838 16491513
chr22 17543095 17545532 chr22 17817435 17846674 chr22 18486534 18494583 chr22 28206209 28215170
chr22 29302619 29315257 chr22 30129013 30160162 chr22 35193042 35207622 chr22 36533873 36542849
chr22 36601792 36614583 chr22 37393966 37399788 chr22 38038836 38044544 chr22 39552203 39582577
chr22 39679515 39699482 chr22 40250794 40254929 chr22 45018582 45022846 chr3 101540621 101554032
chr3 101911138 101950495 chr3 10266158 10296250 chr3 102775730 102795971 chr3 102882625 102888270
chr3 10317617 10332114 chr3 110527924 110535524 chr3 121028238 121078047 chr3 123561125 123584773
chr3 127130807 127136079 chr3 129253991 129261723 chr3 130749099 130752991 chr3 134775431 134790324
chr3 143105151 143127698 chr3 143877751 143899592 chr3 144238726 144256593 chr3 14462254 14501502
chr3 150192060 150228014 chr3 151768381 151782153 chr3 151803863 151830913 chr3 157132245 157138193
chr3 157743549 157755660 chr3 161556495 161585130 chr3 161700683 161732041 chr3 162441540 162452487
chr3 180552380 180586186 chr3 182185035 182188580 chr3 184143337 184166236 chr3 185029877 185085355
chr3 185442905 185446097 chr3 186844222 186893246 chr3 187985045 187990377 chr3 196724338 196751465
chr3 19967300 20001662 chr3 38514125 38523449 chr3 39405987 39413682 chr3 39424105 39428933
chr3 42800797 42821012 chr3 44949422 44975954 chr3 46543920 46561675 chr3 46595579 46598833
chr3 48456671 48460609 chr3 48869406 48911302 chr3 48974047 48996113 chr3 5187187 5195867
chr3 53894140 53897551 chr3 57532695 57558172 chr3 67628910 67662300 chr3 72924757 72976267
chr3 73179027 73198705 chr3 75530342 75554124 chr4 100020123 100042158 chr4 100179547 100201696
chr4 100212341 100225393 chr4 101021438 101027536 chr4 101039740 101063366 chr4 101088271 101090455
chr4 103936375 103968418 chr4 104218220 104236880 chr4 109150362 109175703 chr4 109761217 109765855
chr4 109791236 109808425 chr4 110854886 110870615 chr4 121200069 121207436 chr4 13071421 13094898
chr4 139287076 139300804 chr4 140198478 140224987 chr4 148758521 148775322 chr4 152240229 152245241
chr4 166220000 166243699 chr4 170887248 170911545 chr4 17225369 17236333 chr4 17423685 17429093
chr4 174528661 174535218 chr4 1785438 1804460 chr4 184807598 184817301 chr4 185789199 185796617
chr4 186405441 186425305 chr4 20315466 20338466 chr4 22043318 22084564 chr4 2440675 2484123
chr4 26035377 26043648 chr4 38358603 38375584 chr4 39132143 39136325 chr4 3985736 3995340
chr4 48582189 48601382 chr4 55920277 55934012 chr4 56997131 57020618 chr4 57032683 57062810
chr4 83563416 83568284 chr4 84035871 84040713 chr4 84230864 84248059 chr4 84598522 84612467
chr4 88575239 88591845 chr4 89235711 89298748 chr4 9314307 9341249 chr5 102483985 102511614
chr5 10303447 10318126 chr5 10671444 10705638 chr5 111092901 111120822 chr5 114580473 114605202
chr5 115195079 115205165 chr5 125908389 125913886 chr5 125964541 125989906 chr5 133335507 133354745
chr5 133520470 133540537 chr5 134061492 134087237 chr5 137871056 137881224 chr5 141333338 141348894
chr5 147754474 147799548 chr5 148705256 148711463 chr5 148855811 148884927 chr5 149803997 149807494
chr5 150050587 150058324 chr5 151131708 151160623 chr5 159781887 159788323 chr5 16506121 16516665
chr5 167917010 167939153 chr5 170747459 170770508 chr5 171250680 171270279 chr5 175705710 175707968
chr5 176663388 176666346 chr5 177509074 177513458 chr5 178054176 178057358 chr5 180596558 180603407
chr5 32391201 32455970 chr5 32624375 32637168 chr5 34951593 34961192 chr5 37733513 37758789
chr5 40868318 40871113 chr5 43157909 43209269 chr5 43571403 43591859 chr5 529135 541588
chr5 56545658 56581141 chr5 61678722 61694904 chr5 6686624 6722561 chr5 68549389 68561628
chr5 68713489 68746213 chr5 71653753 71690597 chr5 72830020 72837244 chr5 74098822 74109149
chr5 76362238 76395677 chr5 77747098 77753541 chr5 79315309 79320224 chr5 79957805 79981071
chr5 80636660 80644380 chr5 86725966 86736564 chr5 89805670 89845968 chr6 107126542 107184023
chr6 107184145 107220599 chr6 111302885 111322206 chr6 111386628 111395892 chr6 112498690 112509100
chr6 116528739 116545801 chr6 116648909 116673503 chr6 116999367 117021113 chr6 126361422 126401935
chr6 133177395 133180401 chr6 135398730 135417597 chr6 136594127 136605806 chr6 13899002 13915245
chr6 142510154 142561439 chr6 150099313 150108892 chr6 151377707 151399939 chr6 153357341 153365500
chr6 157639694 157664517 chr6 160119977 160129166 chr6 167263191 167290931 chr6 17649195 17665644
chr6 17708601 17716968 chr6 20588053 20601909 chr6 24517667 24532412 chr6 30796108 30800245
chr6 31240101 31246418 chr6 31606538 31612416 chr6 31806376 31812101 chr6 32255416 32256531
chr6 33348382 33352264 chr6 33648308 33655987 chr6 34312628 34318547 chr6 34497485 34501781
chr6 34838354 34849787 chr6 35544552 35546534 chr6 37043905 37054366 chr6 42282580 42290062
chr6 42955302 42965599 chr6 43553253 43579407 chr6 43651876 43665676 chr6 44324343 44329600
chr6 64344303 64349304 chr6 74172121 74182755 chr6 74283925 74286503 chr6 7806715 7826752
chr6 86443446 86444455 chr6 88441363 88448142 chr7 100007788 100009426 chr7 100651683 100654181
chr7 102502928 102527445 chr7 102782551 102795810 chr7 107899307 107930322 chr7 10939609 10946276
chr7 127819578 127828407 chr7 128382422 128407320 chr7 133777657 133787046 chr7 133900732 133913064
chr7 139799329 139825749 chr7 140961738 140999962 chr7 141065343 141077022 chr7 141085389 141096724
chr7 149614404 149623370 chr7 150794729 150819034 chr7 152128557 152151518 chr7 156822520 156871296
chr7 23316354 23325400 chr7 23348208 23357718 chr7 23513572 23538127 chr7 26212552 26219495
chr7 30628484 30639960 chr7 33100951 33105575 chr7 35869710 35911440 chr7 35952429 35980823
chr7 39846273 39874609 chr7 44207100 44217247 chr7 44578698 44580058 chr7 44802807 44807737
chr7 44840434 44849475 chr7 45734302 45771934 chr7 51207648 51228782 chr7 5533308 5536759
chr7 55829097 55854410 chr7 5598973 5612808 chr7 56136758 56141663 chr7 6030837 6065206
chr7 6380696 6409334 chr7 64001079 64028508 chr7 64162811 64171931 chr7 64856948 64866049
chr7 65963947 65980736 chr7 6915150 6937156 chr7 73226624 73249365 chr7 7642894 7646593
chr7 87345332 87375624 chr7 87673537 87677322 chr7 89722675 89741346 chr7 91579409 91601731
Continued on Next Page. . .
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chr start stop chr start stop chr start stop chr start stop
chr7 91996045 92004334 chr7 92044352 92057632 chr7 94067914 94097082 chr7 97319519 97336407
chr7 98609131 98638797 chr7 98831546 98840514 chr7 98996096 99000262 chr8 101232103 101234806
chr8 101784320 101803488 chr8 101999980 102006444 chr8 10715112 10729688 chr8 11664574 11682258
chr8 12073629 12077777 chr8 12258021 12261339 chr8 12322912 12327022 chr8 125569933 125600305
chr8 125620631 125631399 chr8 130922966 130952924 chr8 145211141 145212600 chr8 145985961 145988100
chr8 17131108 17148724 chr8 20112373 20122138 chr8 25341466 25371892 chr8 26252338 26277302
chr8 30762679 30776815 chr8 38087417 38116376 chr8 39432016 39451320 chr8 41467516 41487650
chr8 42131146 42144010 chr8 43030644 43060080 chr8 47610125 47645293 chr8 55042916 55075164
chr8 55121492 55137438 chr8 57148167 57149616 chr8 59486487 59526604 chr8 66744671 66782790
chr8 68117874 68136844 chr8 74083699 74122538 chr8 74365428 74367586 chr8 74657559 74692242
chr8 74865403 74905257 chr8 76618605 76641598 chr8 7844062 7847387 chr8 82355325 82359568
chr8 87512750 87529563 chr8 99183758 99190158 chr9 101024384 101032716 chr9 109085664 109132985
chr9 112046123 112058595 chr9 115058212 115066590 chr9 122566272 122578296 chr9 127038336 127043290
chr9 129249977 129253505 chr9 130485929 130498485 chr9 131629473 131635614 chr9 132342077 132366461
chr9 135205597 135208102 chr9 138416200 138424722 chr9 139077828 139084802 chr9 19105775 19116308
chr9 19365782 19370267 chr9 19398917 19442486 chr9 33016476 33029897 chr9 33246799 33252828
chr9 35094221 35098737 chr9 35649074 35651177 chr9 35672022 35675138 chr9 35802963 35803777
chr9 37753631 37766402 chr9 4701158 4731061 chr9 70851135 70879606 chr9 720140 736101
chr9 72120182 72128878 chr9 74160604 74165524 chr9 80101880 80134827 chr9 85773644 85782993
chr9 88069285 88087274 chr9 96287521 96289971 chr9 98441673 98453597 chr9 99785462 99807256
chrX 100160941 100193718 chrX 100532630 100537443 chrX 103094029 103109802 chrX 106758501 106780844
chrX 107217573 107221424 chrX 107255959 107284259 chrX 11690189 11700736 chrX 116916462 116938361
chrX 118486436 118489303 chrX 119227722 119230652 chrX 119621918 119626240 chrX 129301546 129335006
chrX 135116230 135120623 chrX 135783286 135789251 chrX 13640301 13662623 chrX 149902417 149907894
chrX 152506580 152517780 chrX 152705449 152706553 chrX 153194126 153211195 chrX 153280872 153282447
chrX 153908283 153936574 chrX 153954844 153972310 chrX 15758106 15780488 chrX 19279356 19287064
chrX 21905099 21922876 chrX 23761410 23808992 chrX 30581568 30655588 chrX 40333221 40350774
chrX 48318508 48321613 chrX 48635678 48639086 chrX 48819151 48824439 chrX 54573340 54603888
chrX 55774526 55801482 chrX 56276342 56328267 chrX 69270509 69302854 chrX 69426548 69438976
chrX 70430808 70434032 chrX 70590744 70600464 chrX 71318333 71334120 chrX 71409179 71413673
chrX 77255911 77267580 chrX 77271921 77281787 chrX 99963171 99979999 chrY 18431080 18444810
chrY 18703743 18717478 chrY 19077364 19092148 chrY 19470799 19485581 chrY 24326976 24353681
chrY 24528313 24548828 chrY 26232378 26252883 chrY 26427466 26454179 chrY 2770205 2794955
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B.4 Validated genes sequences
Predicted genes sequences.
>718689 (M.musculus)
TCCAGCCTCAACATGAGTTGGGAATCCTCAAGGACAAGGGATACCTGGTAGGTGAATAAGAAAACGAATAATTTAGATAA
AATGCTGGCAGACTGTTCTTGCAGTGAAATCTCCTAAACTCAGGAGTCAGAGTGCTTTACAGACTTGACTCAGCCCCAGT
CTGTTATTGAAATCATACTAGGAAGTTAGTTACAAAGTTTATGGTGGGGAGGGGCAGTAAATACTTCTCCATTTTCCTGT
GCCAATATTTTCTTGTGATTCAGAGTAGTATAGATTTAGAACAGAAAAGAAAGTAACTGTAAAATCTCAAACATAAAAGT
TTTGTAGCAAGCACAGGTTTGTTTGTTTGTTTATCTTCCAGGCACCAGTCTCTGGTGAGGTTGAGGGCAGCAGCATTGTG
CTTACAAAGTCAATATCATTCAGACATGTGAGAAAGAGTATGATTTCATAATAGGGCAAAAATGAGGTCATACTGCTAAC
CCTGCACTCT-GATCCTATATGTCTGTCTATAAAAACATGCTCATGTAATCTGTATGGAGAGTTCGTGGGGAGCTGCCAT
TATTGTTACTGAACTCAATGAACCCTTGCTGACTTTCTGGAAAATATCTGTATGTTATTCCATCCTCAGTTTTGTAATTA
AAATGCCCTATTTTCATTATGCAGAATTGAGACTAAGACTGGGGGGAACAGCTTCAGATTTACTCATCTCTACCCATGGC
TCTAGGTTACTTTCATTTTCACCTCAAGAGAGTGATTGTAACATAC-ACATTTCTCTTGAGTTCATGAATAGCTTTCACT
TTAATATTATAGGTAACATCTAGTTCTTGGATATCAAGCAGACTCCTATTAGGTGGTGCCAGATCACCAAATACCACTTT
AATCAAGGAAGAAGGAAAGAGAA-TAAATAGAACAGAAGAATAATAAGTTTTAAGAATAGTTGCAGAAATGACATCATGA
GGTGCTTATGCCAAAGAAGCAGACCTTGGGGCCTCTCAGTACTCATACTAGGGCCCACAAGAACCCATAGCCT

>1033649 (M.musculus)
GGTCCTTTTACAGGAGTGGAGTCCCTCACTCCAAGAGAGGTTAGCAACTGCTCAGACATTCAGGCCATTTTCCTCTGCTA
GCCTGTGCTTCTTTGAGTAGGTCCAATTCAGTGCTACTAGGTAT-TTCTAGGGAACGCTAACAAATCTGCATACTGCTAT
GTTCCAGAGGATGATAAAAGGTGCTGCAGTTGGCATGACTGCTGACAAGAGACACTCAGAGGTTCACTTCAAATTCAATA
TTCAGATCGTCTTCATGGTCTTTTCTTAGTCTCCCCTTAGAGACAGAACTGAAATTCACCATGGACCACATCTTTTACAT
GAAG-AGAGTTCATCCCAAAATTTATCATCATTCATAAGCTTTCCAACCAGCTCTGAGAATTAATTTCCCAGAAAACAGA
ATATCCTTGGATGGGAATAACATCTGTGGGCTCTCATAAGCCAATCCTAGTGGATGGTATTGCTCTGCCAGTAATTGGAA
CAATGAGTCTCTGCTGGTCCGTGATGAGCAGATTCCAGGCACCTTCGATCAAAATGTAATGAGATGATCTTGACCCGTAA
AATGTTAAGTAAGTATTCAAAATGGTTCTTGGACACCCATTTGCACAAAGGAG-TTCAGTCTCATGATACTGAACAGACT
GTTCTAGCTGATGAGGCTGGGCTTAGAAGATGGACTACAGCCAAGAACCCTGGCCACCATAACAACAAGTCACACCTTTA
GGAAACACTTGAAAAGCACTTATGCACAGTAGAAAAGTACAAGGATTAAAGTCTCCTCAGGCATTCCAGCATAGAGAGAG
TCTGACAGACTCAGGTCAGAGGTTACCTCCAAATAATAGAAGAGGAAGAAGGTCCTGCTTGACAGAAGAAGCCTGTGGCT
GAGGCCATTGCAACAAGGACTATGATTGTGAAACTTGTTTCTCCGTGGATACCGGTTTCAGAAATCTTGTGCCCAGGTAC
CCACAGTCCTCCTCACATACCTCATTTTATAGAACTTTGCAAGTCCTGACATTCTGTCATGTGCTTTGTTATCCCACATA
GGGTAACAAAGATTTTTACCCATTTAAGAGTCTGGAAATAGGCTGGACCCACTGTTGACATTAAAGGTGCATTTCT

>338893 (H.sapiens)
CATTCATTTATTTCACATTTATTCTCATTGCACCAGGTGAGGAGAGGAAGGAGTCATTCACTAACACACACAGATTGTGC
TGTTTTTCAGTCTTTCTGATGAATCAGGATCCAGATTCTAAATGTCTTCAAGACCTGGATCAGTCAGTAGAGATGGCCCA
CTGTGTCAGGGGGCCTGGGGCTGCCGGAGGCAAAGCAGGATACATATATGGAACATGACCATTCATGTTCCAGGGCTCCC
ATCCGGGTACCTGAGGATTTTCCACATAGATCACAGGTGTTGGGGCCCACATCGGCTCCTGAAAGACTATGGGAACGCCA
TAGGCCTGGGGCGGGTGCTCGGGAGGTGCGAGGTTAACCACATCTGCACAGGGAGGACCTGAGA-CCTGAGAAGACGCTG
ATCTTCCATCTGTACCCCAGAATCCTGTGCAGGGCCTCACCATAAGGACATGGCAAGGGTTGGCACCTTGGCCTCTGGTT
GGCCTCCTGAATAGTGAAGTATAAGTCCTGCAAGCTTATTAGCATCTGGAGACATTCCTTCCAGCTCTTGTTGATACCCC
TCTGCTTGAGACGCTGAGCAATTGCTTTTGATACTATGTGATACTTCTTCTTCACCCTGTACACCTCACGTTCAAGAAAT
TCCCATTCTTGCAGGAAACTCCGGATTTCCTGGTCACTCCAAGGTTTAACTGACTGGACTG-TGAGGGCTTTTCTGATCC
CTGGGCTGTGTTTTCCTGCTCCATTTTCTGGATGTTTATGGTAGTTTCAGTGGGAAGTAT-TCCATTTTTACTCCTGAGT
TTTCTCCCGGGAGTCTTCTCACTGTGCCTGCAGGGTCTGGTCAGTTCCTGAGTTGGCGGAACACTGGCACTTACTCTCCT
CTAGTGGAACCTAGGAGAGTCAGGAGGAACCCGAGTGTGGAAATGTGCTTGCTTCTGTCGGCTTCT

>128365 (H.sapiens)
ATTATATAAATCTTCAACTTCTTGATCAAATAAATATGACAAATGATGTTCTCTAAGAAAAACACCCTTCAATTTTATTC
CT-CTTCCCTGCATATTTTGAGTAATTATCTTCCAAGACCCATGTATCTTTTCTCAACATCTCTGAGAGTACAATTCCT-
CTTATTTCCTTCATTGTGGCAAAGTGTTTCAGAAAAGGGTTCCTTGAATTAAAAGTCGGCGTATCCTATTTGACTCCTGC
TCCTCCGGTATCACATACCTACAGCCAACCATGCCAAGAGCTTCCCCATTATCTCCGCATCGGAGAGC-CTTTCCTCCCG
ATATCCTCCAGTTTCAGAGACCGCACCCGGAGACCCATTGGCAGGTTCCTGGATTCGCCTCAATTTTGGTCCTGCCTCTC
TGCTTCGCATTTTCAGGCTTGGCCTCACAAGAAGGACGATGGCGCCAGATTGTGCCAGAATGGGTGAAAACAGAAGGAAA
ATAAACCGGTTGCAGCAAAACCCACTATTCC
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All the predicted gene sequences are avaliable on the web-site
http://to444xl.to.infn.it/regexp2/

Sequence obtained by PCR ampli�cation products direct sequencing.
>718689 (M.musculus)
CNNNCNNGTATAGGAGTCTGCTTGATATCCAGAACTAGATGTTACCTATAATATTAAAGTGAAAGCTATTCATGAACTCA
AGAGAAATGTAACTATAGAGGAAACTCTACAAATTTGTAAAATTGCACACAATATAAAATTGGATATGTTGATAGTTACA
TCATCTTGGGGAAATTTGGTATGTTACAATCACTCTCTTGAGGTGAAAATGAAAGTAACCTAGAGCCATGGGTAGAGATG
AGTAAATCTGAAGCTGTTCCCCCCAGTCTTAGTCTCAATTCTGCATAATGAAAATAGGGCATTTTAATTACAAAACTGAG
GATGGAATAACATACAGATATTTTCCAGAAAGTCAGCAAGGGTTCATTGAGTTCAGTAACAATAATGGCAGCTCCCCACG
AACTCTCCATACAGATTACATGAGCATGTTTTTATAGACAGACATATAGGATCCCTGGCTGTTTTACATGGACTGGAGAT
GTTGTGGGATTAGGGTATAGGACTCAGTACTAGAAAGGGATATTGGTAAAAGAATGTACCGTTTACTATATTTTTAGGAT
CACCTTGGCACACATTGCCATGGGACTGTATTCTCAAAGAAAAGAGAATTAAGTTTCTACAAGAAAAATTGAAATGTAGA
AAATTAGGACAGCCAGGAGAATTAAATACATGGTGTGCAGGTCAGACCCAGGAAGAATTGCAGAGTGCAGGGTTAGCAGT
ATGACCTCATTTTTGCCCTATTATGAACN

>1033649 (M.musculus)
CNCCCTTAGCATNAAANGTTCTGTTAGTATCATGAGACTGTTATCCATGTACAGAAGGCAAACAAAGAGACTCGCATATA
GATCCTGTAGCAACTCCACCAAAAGTTTTCCCCTGGAGACTCAAAAGCTCGAGGCCTGGGACACAAATATGAACTCATGC
AGGCTTGAAGATGATGGCCAAAAGATTCTTCCTCCATAGCTTCATGTAAAAGATGTGGTCCATGGTGAATTTCAGTTCTG
TCTCTAAGGGGAGACTAAGAAAAGACCATGAAGACGATCTGAATATTGAATTTGAAGTGAACCTCTGAGTGTCTCTTGTC
AGCAGTCATGCCAACTGCAGCACCTTTTATCATCCTCTGGTTTTCATCACAGCAAAGGTTGTTGGTTATGTACAGCAGAT
GAAGATCCCACTGGAAAGTCAAGTTTTTCCCAGAACATCAGTGGTCTTGCTCAGACTCTCTGATAAAATCCAGAGCTTGA
CCTTCATTCCTTTGACACTTGGTCCAACCTCCTCACTGAGTTCAGGATACTGGAACAGGCATGACCTAGTAGCACTGAAT
TGGACCTACTCAAAGAAGCACAGGCTAGCAGAGGAAAATGGCCTGAATGTCTGAGCAGTTGCTAACCTCTCTTGGAGTGA
GGGACTCCACTCCTGTAAAAA

>338893 (H.sapiens)
CCNNNNNNNTCAGTTAACCTTGGAGTGACCAGGAATCCGGAGTTTCCTGCAAGAATGGGAATTTCTTGAACGTGAGGTGT
ACAGGGTGAAGAAGAAGTATCACATAGTATCAAAAGCAATTGCTCAGCGTCTCAAGCAGAGGGGTATCAACAAGAGCTGG
AAGGAATGTCTCCAGATGCTAATAAGCTTGCAGGACTTATACTTCACTATTCAGGAGGCCAACCAGAGGCCAAGGTGCCA
ACCCTTGCCATGTCCTTATGGTGAGGCCCTGCACAGGATTCTGGGGTACAGATGGAAGATCAGCGTCTTCTCAGGTCCTC
CCTGTGCAGATGTGGTTAACCTCGCACCTCCCGAGCACCCGCCCCAGGCCTATGGCGTAAAA

>128365 (H.sapiens)
GNNANNTNTGAAANACCCTTCATTTTATTCCTTCCCTGCATATTTTGAGTAATTATCTTCCAAGACCCATGTATCTTTTC
TCAACATCTCTGAGAGTACAATTCCTTATTTCCTTCATTGTGGCAAAGTGTTTCAGAAAAGGGTTCCTTGAATTAAAAGT
CGGCGTATCCTATTTGACTCCTGCTCCTCCGGTATCACATACCTACAGCCAACCATGCCAAGAGCTTCCCCATTATCTCC
GCATCGGAGAGCCTTTCCTCCCGATATCCTCCAGTTTCAGAGACCGCACCCGGAGACCCATTGGCAGGTTCCTGGATTCG
CCTCAATTTTGGTCCTGCCTCTCTGCTTCGCATTTTCAGGCTTGGCCTCACAAGAAGGACGATGGCGCCAGATTGTGCCA
GAAGGGGTGAAAAA
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B.5 Sequence of symbols discussed in the text
>c1239
CCAGAGAGACCAGGTTTCTGTAGTTCTCTAACATCGGATGCTAATACAAATTCTGCTGTGCAGTGCCCAGGCATTGCCAC
CCCTCTGGAGAGAATTCTATGGCTACATCCCTGAATGTCAACAGTTCCATTTCTAGGCTTGCAGCAGGTTCTGGTGTCTT
AGCTATGGATCTCCCAATACCTGCTGGTC

>c804
AATAAAACAGGTATTGCTGTCTCTAAGCCAGACTTGATCACCTGTCTGGAGCAAAAAAAAGAGCCCTGGAATATAAAGAG
ACATGAGATGGTAGCCAAACCCCCAGGTAGGTGAGAGTGAATGAAGCAGATGACACAGATGAGAGGTACAAAAGTCAAAG
AGGAAGCCAGTCCTTAAAATGTGGTTTGGGAAGCTGTGCTCCAATGGAAATAGTTTCTG

>c307
TCTATCTTGAACGAACATCACATTAAATGTGTTTGCAAAATTACCTGTCCCAGATAGTTGTCCATCCTTTATTTCTGTGG
CCATATTCGAAACAGAATCTTCCTCGTCACTTGTAGCCTGAATGGAATTTGAAACAAAACAATCAATAAATAAAGTAGGT
TTCATAGACTATACAGTTAATAGTTCAAAATATAAATGAGACTTTAATTACCTTCAAAGCTGGTTGTTTATGAGAAGACA
CTGAAAAGCAAAAGGGATACATAATCACTCATACGTAAATATGATAAAGTTATCCATACATTCATACAGTGTTAGCATCA
AACTCTATCCTCCTGCCTGTAATAGTGTAGGCTTTGATGGCTTCTACTTTGTGTCTGGAGACAAGAACATGACAGAAATA
CACT

>c417
AAACTCTTCCTTACGTTAGCCATGAAATCTAGCTGGGGCTGTGTGGTTTCTGATTCCCCCTGGCTTATTCTTTACTTTTT
CCCACTTTTCCAGGCTCAGCAGGGAGCTGCTGGATGAGAAAGGGCCTGAAGTCTTGCAGGACTCACTGGATAGATGTTAT
TCAACTCCTTCAGGTTGTCTTGAACTGACTGACTCATGCCAGCCCTACAGAAGTGCCTTTTACGTATTGGAGCAACAGCG
TGTTGGCTTGGCTGTTGACATGGATGGTGAGTACCTTTCTATGAAGGTGATAAGGATCCACTGAGTCTTCTGGTTAGGGT
CATATTCCTACTGCAAGTGGCCCTTACTGAGCTGAGAGATGTCATTGCCACAGGGAGGACCTATAGGCACATGTAGGTTG
AATGAAACTCTAGTTCCACTTGGAAGCCCAGACAAGGGATGGGTCAGTGAGCAAGGCTCTCTTCCTAGTCTCAGGCCATG
CCTGTGGCGCCCTAATCCTACTCTCATGACGTTGGACCTGGGCAGATGTGACAAATTCACACAACTCTGATTTTGTCTCA
ATTTTGTAGATCTTGTAGATTTCATCCTTCACTCTAATTTCAGCGTCTAAAATCCTCGCTACCATGAACAATCTGAGTAT
TTGATGAGACAGGGCTGAATAGTGCAGTTTTTCTCCTAGCAACCATTTGGGGGCATTTGCTTTAAATCGATTGGAAAAAT
ATGGCATAACCATTTGCACAAACTTGGGACAAATGATATTGGGATAACGATCTACCAGAATAGGGAATTTTACCCACAGT
TTCTGGGACAAAAACCAAGGAATCTCTATGGTGATCAGCCTTCAGGCCTCCTGAAGACTATCTCTCACAGTGTCCTATTC
TCATGCTGAGGAGCCTGAAGTCCCTGTGTGAGGATTAGACAGTGGATTGTTATGTGTGTAGGAGAACCAGCTTAATATGT
CTGTCCATGTCTGAACTTATTGCAGAAATTGAAAAGTACCAAGAAGTGGAAGAAGACCAAGACCCATCATGCCCCAGGTA
ACTTTGAGCAATTATGGATGCTTAATTCTGTGTTGACACCTGGAGATGCCAGGTCCAGGGAAAACAAGAGTGTGTTCAAT
TTCATGTTTTCAACGAAGGTTGAATTACTCCTACTGACATTGCTGTTGGTTTTCATTGCAGTAGATGTTTAGGTTTCCAT
TTCTTCCTCCCCTTATCATTTACTAACTTACTATAGGTTGACCATACCTCAAAGGCTGTATGGCAACTGCATGGAATCTT
GAGCAAGTTTATGGAAAATTATTGAGCCCACTCTTTTCATGATCACTGTTCGCTGTGTGTCCCGAGGGCACTAACTCAGA
GTGTCCTTTGACCCCTTCATCAGTGTGTCACCCGGCCAATTCGCTGAGCTCAC

>c1359
TACCTATATCCTCTAGAGGAATGTTCATCCCAACTAGAATGACCATAATCACGGTATGCATAGCCTCTAGATGGTGGAGC
ATAATCCCTAGTTTCTCGGGAACTTGGATGATTTCTGTGTGCATAAGTTTAAGCAA

>c690
ACCTTTCTTTTCAGGCATTTCCTGCTTATCCAAGTTCACCATTTCAGGTCACCACTGGATATCAGTTGCCTGTATATAAT
TATCAGGTAATGTAAGAAGGAGTAAAATTATTTGCTTTCAGGTATTATTGAGGCCTTTAACTTGTTTATACAAATTTCCG
GAATAGTTGGTCATTTTAAACTAGTGAAGTGTACCTAAAATTTAAGGAAACACTTAGAATTAGTGTAGAATGAAGACCTC
TGTCTTATTGAGAAGTAATGAAGTCGAATTTTGACAGGAATATACTTGGGAATAACTTTCCTGTAGAACAGATTTCTGAG
ATTTGGTGTCCCATTCTTCATTTCTGGATGTAGTTTTCATCTTTACTGTCAAATAACTGAATGAAACATCCAAACTGACT
TTCATGAATTTTCTTAGGGAGATAGAGT

All the symbols sequences are avaliable on the web-site
http://www.to.infn.it/∼molineri/tesi/additional-�les/symbols.grouped.fa
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