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Abstract 
 
The ability to reliably predict in vivo toxicity through in vitro models is increasing. The use of 

human cultured cell lines seems to be especially promising both for acute and chronic toxicity 

evaluation. However the techniques currently used, some of which based on the measurement 

of  protein and ATP content and cell morphology, suffer of the restriction of this simplified 

end-point data evaluation which proves to be inadequate for prediction of organ-specific 

toxicity and toxicity of substances that do not induce cell death.  

 

The goal of computational toxicity prediction is to describe possible relationships between 

chemical properties of the drug as well as biological and toxicological process or mechanism. 

In many cases the important points of interaction between a drug and its target can be 

represented by a 3D arrangement of a small number of atoms. Such a group of atoms is called 

pharmacophore. A pharmacophore can be used to search 3D databases of drugs and  

compounds sharing the pharmacophore can belong to different chemical classes. 

 

In this thesis I’m searching for correlation between  drug toxicity and pharmacophores using a 

3D library of compounds, and their toxicity index on different cell lines. Here, with 

pharmacophore (toxiphore) searching I’m interested to detect local similarity, i.e. based on a 

limited number of atoms (e.g. 3,4 atoms) within high toxic compounds. My hypothesis is that 

such similarities could be dealt  with their high toxicity. The final aim of this study is the 

definition of a Drug Toxicological Index (DTI). This index should be able to predict the 
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toxicity strength of new compounds before they are going into practical experimentation. DTI 

will be defined upon identification of pharmacophores (toxicophores) associated to toxicity, 

and the most important part of the study is finding the toxicophores related with toxicity . 

 

 This work is based on meta-analysis of public available data,  The used databases are NCI 

DIS 3D database (http://129.43.27.140/), and Corina dataset 

(http://129.43.27.140/ncidb2/download) which are a collection of 3D structures for over 

500,000 drugs, each which was built and is maintained by the Developmental Therapeutics 

Program “DTP”, Division of Cancer Treatment, National Cancer Institute, Rockville ,MD. At 

NCI 3,000 compounds per year are screened for their potential anticancer activity. The DTP 

Human Tumor Cell Line Screen has checked tens of thousands of  screened compounds for 

evidence of the ability to inhibit the growth of human tumor cell lines. This screen utilizes 60 

different human tumor cell lines, representing leukemia, melanoma and cancers of the lung, 

colon, brain, ovary, breast, prostate, and kidney. 

 

Screened drugs are saved in MOL format, and I have converted them into a tabular form and 

loaded into MYSQL relational database. I stored the structure information together with 

toxicity index and I used this data to search for drugs that share three atoms pharmacophore.  

 

To detect “high toxic” pharmacophores,  I collected the compounds that shows high toxicity 

index over all cell lines, then I extracted all possible toxicophores. Those toxicophores were 

then  scanned  across all  very low toxic  compounds and I  found that these suspected 

toxicophores were under represented. 

  

Out of a total of twenty six toxicophores found, six of them are found in compounds with 

toxicity index greater than 6, the other in compounds with toxicity index between 5 And  6. 
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Introduction: 
 
 
Toxicity is a measure of the degree to which something is toxic or poisonous. The study of 

poisons is known as toxicology. Toxicity can refer to the effect on a whole organism, such as 

a human or a bacterium or a plant, or to a substructure, such as a cell (cytotoxicity), or an 

organ (organotoxicity) such as the liver (hepatotoxicity). There are generally three types of 

toxic entities; chemical, biological, and physical:  1) Chemicals include inorganic substances 

such as lead, hydrofluoric acid, and chlorine gas, organic compounds such as ethyl alcohol, 

most medications, and poisons from living things.  2) Biological toxic entities include those 

bacteria and viruses that are able to induce disease in living organisms. Biological toxicity can 

be complicated to measure because the "threshold dose" may be a single organism.                

3) Physically toxic entities include things not usually thought of under the heading of "toxic" 

by many people: for example non-ionizing electromagnetic radiation, and ionizing radiation. 

Toxicity can be measured by the effects on the target (organism, organ, tissue or cell). 

Because individuals typically have different levels of response to the same dose of a toxin, a 

population-level measure of toxicity is often used which relates the probability of an outcome 

for a given individual in a population. One such measure is the LC50. "LC50" standing for 

"Lethal Concentration", which is a concentration measure for a toxin at which fifty-percent of 

treated cells are killed. Biological activity is an expression describing the beneficial or 



 10

adverse effects of a drug on living matter. When the drug is a complex chemical mixture, this 

activity is exerted by the substance's active ingredient but can be modified by the other 

constituents. The main kind of biological activity is a substance's toxicity [26]. 

 

Anticancer drugs has a factor of toxicity with different effect on different cell lines. Under 

normal circumstances, human cells have a limited lifespan. They die when they are damaged, 

worn out or no longer needed by the body. When they die, these cells are replaced by new 

ones. The body depends on a normal and healthy process called programmed cell death  or 

apoptosis to ensure that unwanted cells die on cue. If this process fails, then the damaged cells 

live on and multiply indefinitely and uncontrollably. This uncontrolled multiplication of rogue 

cells can lead to cancer. Conventional chemotherapeutic  anticancer drugs target and attempt 

to kill rapidly dividing cancer cells. This is sometimes successful in halting the disease, but 

these drugs inevitably damage many normal tissues. Hence, even when the chemotherapy 

works, the side effects for the patient can be very serious, and this could be called toxicity, i.e. 

toxic is poisonous or harmful to the body, and drugs used to kill cancer cells can also have 

toxic effects on normal tissue [27].  

Chemotherapy drugs, are sometimes feared because of a patient's concern about toxic effects. 

Their role is to slow and hopefully halt the growth and spread of a cancer. There are three 

goals associated with the use of the most commonly-used anticancer agents. 1) Damage the 

DNA of the affected cancer cells. 2) Inhibit the synthesis of new DNA strands to stop the cell 

from replicating, because the replication of the cell is what allows the tumor to grow. 3) Stop 

mitosis or the actual splitting of the original cell into two new cells. Stopping mitosis stops 

cell division (replication) of the cancer and may ultimately halt the progression of the cancer. 

Unfortunately, the majority of drugs currently on the market are not specific, which leads to 

the many common side effects associated with cancer chemotherapy. Because the common 

approach of all chemotherapy is to decrease the growth rate (cell division) of the cancer cells, 

the side effects are seen in bodily systems that naturally have a rapid turnover of cells 
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including skin, hair, gastrointestinal, and bone marrow. These healthy, normal cells, also end 

up damaged by the chemotherapy program.  

The ability to reliably predict in vivo toxicity through in vitro models is increasing. The use of 

human cultured cell lines seems to be especially promising both for acute and chronic toxicity 

evaluation. However the techniques currently used, some of which based on the measurement 

of  protein and ATP content and cell   morphology, suffer of  the restriction  of this simplified 

end-point  data evaluation  which proves to be  inadequate for prediction of   organ-specific 

toxicity and toxicity of substances that do not induce cell death.  

For these reasons, the model complexity has been increased based on gene expression 

analysis, that permits to correlate chemical toxic effects with the activation of specific 

metabolic pathways and molecular markers predictive of toxicity effects even in the absence 

of cell death. This is done through the use of “DNA chips” technology. DNA chips, or 

microarrays, give a measure of the transcription activity of thousands of genes, at the same 

time, starting from one biological sample. Toxicogenomics founds its bases on the postulate 

that the toxic effect of a compound determines an alteration of the cellular homeostasis thus 

modifying one or more cellular metabolic processes. This alteration in its initial phase leads 

back to a change in the expression of specific gene sequences, expression measurable by the 

mRNA population present in the cell. Thus it is possible to investigate the process in its initial 

multiple genetic effects enabling, among other, the evaluation of different levels of toxicity as 

well as the identification of pathologies with slow manifestation and organ-specific 

pathologies [28]. 

 

The compounds submitted to the cancer screen are generally tested at five different 

concentrations for the ability to inhibit sixty different human tumor cell lines. The dose 

response data is used to calculate three concentration parameters GI (Growth Inhibitor), TGI 

(Total Growth Inhibitor), LC (Lethal Concentration). The compounds screened for anticancer 

drugs used in this paper is  “In Vitro Cell Line Screening Project “ (IVCLSP) is a dedicated 
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service providing direct support to the anticancer drug discovery program. In vitro 60 human 

tumor cell line screen stressed to testing drug and screened, the cell lines are grown in 

artificial media under conditions that are mimic in vivo situation. 

This work will be mainly based on meta-analysis of public available data. The majority of the 

work will be done on the DTP dataset (http://dtp.nci.nih.gov/branches/btb/ivclsp.html) and 

NCI database. At NCI 3,000 compounds per year were screened for their potential anticancer 

activity. This screen utilizes 60 different human tumor cell lines, representing leukemia, 

melanoma and cancers of the lung, colon, brain, ovary, breast, prostate, and kidney. This 

screen is unique in that the complexity of a 59 cell line dose response produced by a given 

compound results in a biological response pattern which can be utilized in pattern recognition 

algorithms.  

Chemical databases are becoming a powerful tool in drug discovery. Database searches based 

on possible requirements for biological activity can identify compounds that might be suitable 

for further analysis or indicate novel ways to achieve the desired activity, Chemical databases 

have progressed over the past 15 years from being a mere repository of the compounds 

synthesized within an organization, to being a powerful research tool for discovering new lead 

compounds [5]. 

 

The screened anticancer drugs 3D molecular modeling representation is download from two 

web sites, the first is the Developmental Therapeutics Program (DTP) Division of Cancer 

Treatment, National Cancer Institute, Rockville ,MD database of Corina datasets, and the 

other is NCI DIS 3D database which is a collection of 3D structures for over 500,000 drugs, 

and the structural information stored in the huge library of drug informations, atoms positions 

in 3D coordinates and the connection table is a part of these information, and it is list of 

which atoms are connected and how they are connected, and I used two databases to get the 

complete library of drugs used. This final library is 3D arrangement of molecular structure 
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representing the drug in 3D space centered to zero position. This library is in SDF format 

contains MOL format of drugs 3D structure of atoms in space and how toms are connected. 

This information can be searched to find drugs that share similar patterns of connections, 

which can correlate with similar biological activity, like in our case toxicity. To search for a 

common 3D  three points(atoms) molecular structure of drugs for a common structure that 

could be dealt  with toxicity, but have very different patterns of atomic connections, first is to 

convert the SDF file format of all drugs to a computer readable form, then comes how to look 

for this structure?. This unknown structure could be named as Pharmacophore or more 

specific to my research is Toxicophores. 

 

The term “Pharmacophore”, introduced by Ehrlich in the early 1900s, refers to the molecular 

framework that carries (phoros) the essential features responsible for a drug's (pharmacon) 

biological activity. Pharmapcophore are used to define essential feature of more than one 

molecules with same biological activity. A Database of diverse chemical compounds can then 

be searched for more molecules which share same feature and where these feature are a 

similar distance apart from each other.  

Due to stereochemical considerations (i.e., three-point attachments), many pharmacophores 

are defined simply in terms of three atoms and three distances. If more information is 

available, other geometric objects and constraints can be added, including constraints on data 

associated with atoms and bonds. Presently, most pharmacophores are defined in terms of the 

atoms and bonds of the ligand structures. This ligand based definition has advantages for 

input and searching purposes; in the case where the structure of the receptor is completely 

unknown, it is the only way one can effectively define a pharmacophore model [29]. 

 

The interested pharmacophores that is may responsible for the toxicity factor of drugs were 

found after a long processing programs and calculations time due to the complexity and 

talking in mind all possible considerations of pharmacophores, and removing the ones that 

shows us lower score of occurrences in the pharmacophore database.  
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Actually pharmacophores searching is processing time and memory size consuming, specially 

when the drug compound contains high number of atoms and atom connections, so to achieve 

optimum and fast result, it’s better to use a clusters computer with huge Random Access 

Memory (RAM), and high speed processing time as parallel processing in background mode. 

The Biocluster computer that I work on it is eight workstation SUN V20Z, double processor, 

single core Opteron 252 – 4Gbyte RAM, 72GB hard disk, of Unix operating system, 2 layers 

of Network 100Mbyte, and firewall protection network.  

 

The present work focuses on  three-points pharmacophores, composed of three atoms whose 

arrangement therefore forms a triangle in the 3D space, we refer as pharmacophore to any 

possible configuration of three atoms or classes of atoms arranged as a triangle and present in 

a molecule, representing therefore a putative configuration responsible for the biological 

property of interest. . The pharmacophore can be used to search 3D databases and drugs that 

match the pharmacophore could have similar biological activity, but have very different 

patterns of atomic connections. 
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Chapter 1 
  

3D molecular modeling 
 

 

There are two ways to generate 3D molecular structure, either using experimental methods 

like X-ray crystallography, microwave spectroscopy, and NMR spectroscopy, or using 

computational methods like Concord, Corina, and Cobra programs.  

The advantage of using experimental method is the accuracy of the output 3D structure, but it 

has also disadvantages which is the time consuming specially when manipulating complicated 

structures. 

In this paper, I will use the computational method as a source of 3D structure because I’m 

manipulating a big library of compounds, and computational method is the only way to 

accommodate this big library, also with high factor of accuracy when compared with other 

computational methods. 

There are different computational methods of automatic 3D conversion in the market like 

CONCORD, ALCOGEN, Chem-X, MOLGEO, COBRA, and CORINA. In addition, I will 

use CORINA as source of 3D molecular structure for the benefits that explained below.  
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The three dimensional structure of a molecule is closely related to a large variety of 

chemicals, physicals and biological properties. The need for computer generated 3D 

molecular structures has clearly been recognized in drug design and in many other areas. 

 

Since the number of experimentally determined molecular geometries is limited, therefore 

there is a need for methods to predict 3D coordinates directly from the constitution of 

molecule. As a consequence, in the last  three decades a number of programs for automatic 

2D to 3D conversion have been reported. Among them is the program CORINA 

(COoRdINAtes) of different updated versions and enhancement from version 1.0 to 3.4 that 

automatically generates three dimensional atomic coordinates from the constitution of a 

molecule (see Figure 1.1) as expressed by a connection table or linear code, and which is 

powerful and reliable to convert large databases of several hundreds of thousand or even 

millions of compounds. The program scope, its reliability and speed as well as some special 

features for handling large rings and metal complexes make it  extremely useful for any study 

or modeling purpose that requires 3D information of the molecules under investigation [16]. 

 

 

Figure 1.1 Generating a 3D model from the constitution of a molecule. 

 

1.1 The major benefits of CORINA conversion program: 

 

- CORINA is applicable to the entire range of organic chemistry. Structures which can 

be expressed in a valence bond notation can be processed. 
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- CORINA does not provide any upper limit to the size of the molecule or the size of 

ring systems. 

- CORINA fully considers stereochemical information and generates the defined 

stereoisomer. 

- CORINA processes structures containing atoms with up to six neighbors. Thus even 

metal complexes can be processed. 

- CORINA automatically detects stereo centers (tetrahedral center) and is able to 

generate all possible isomers. 

- CORINA can process a variety of standard file formats for the structure input and 

output (e.g. MDL SD/RDFile, SMILES, SYBYL MOLFILE and MOL2, PDB, CIF). 

- CORINA delivers structures of high quality. The RMS deviation of CORINA built 

models from published X-ray structures is among the best of all commercially 

available conversion programs. 

- CORINA is fast (less than 0.1 sec for small and medium sized organic molecules on a 

common x86 Linux workstation), robust and provides excellent conversion rates 

(99.5%) for the 250,251 structures of the National Cancer Institute (NCI) open 

database without intervention or program crash. 

- CORINA is general. A database with more than six million compounds has been 

converted with conversion rate of more than 99%. 

 

They are six automatic 3D structure generators (CONCORD, ALCOGEN, Chem-X, 

MOLGEO, COBRA, and CORINA). To compare all of these automatic 3D structure 

conversion in performance and reliability, a 639 X-ray structure taken as a reference from 

Cambridge Crystallographic Database. For all programs a set of quality criteria was 

determined: the conversion rate, the number of program crashes, the number of stereo 

errors, the average computation time per molecule, the percentage of reproduced X-ray 

geometries, the percent of reproduced ring geometries, the percent of reproduced chain 
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geometries, and percent of structures without crowded atoms, and these are more 

described in figure 1.2. 

 

1.2  Technical details of the programs comparison run [16]: 
 

                                                       CONCORD   ALCOGEN   Chem-X   MOLGEO   COBRA   
CORINA 
 

 

Conversion rate %                               84              79              74            79                  75         
100 
Generated 3D models                         534            503             473          502               479        
639 
Conversion rate                                   84              79                74            79                75         
100 
Program crash                                      1                2                  0             0                  0            0 
CPU time(s)                                         75             433            1431         41856          1830       401 
Machine type                            VAX6600 Sun SPARC VAX3800 VAX3800  Sun SPARC Sun SPARC 
CPU time(s) VAX6600                     75            397                154      4508              1672       368 
CPU time(s) per molecule VAX6600 0.14          0.79            0.33         8.98              3.49         0.58      

 

 

Also, there is sensitive relationship between quantity (conversion rate), and quality (the 

degree of reproduction of the X-ray structure), i.e. the efficiency of different programs. For 

each program the ordered RMSXYZ value of the non-hydrogen atoms are plotted versus the 

number of converted structures. Thus, the ends of the curves mark the number of totally 

converted structures and the ascent of the curves characterize the quality of the structures in 

term of similarity to the X-ray structures. These quantity-quality characteristics shows again 

the different suitability of the seven programs for automatic 2D-to-3D conversion [16].   
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Figure1.2  Quantity-quality characteristics of the seven 3D structure generators: Conversion 

rate vs. RMSXYZ value of the non-hydrogen atoms 

 

 

 

 

 

 

1.3  3D molecular modeling output formats: 

 

There are different types of output format to express the molecular structure, how the atoms 

located in XYZ plane, how the atoms are connected, and the distances between them [5]. All 

of this informations are expressed in different standard formats like (Protein databank PDB, 

MOPAC, MDL MOL, SDF, MSC(XMOL) XYZ, CIF, and SYBYL MOL2). 
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The output formats used by Corina is SDF (Structure Data Files) format to express the 3D 

molecular structure of the compounds, and inside of it is MOL (MOLecule) format to express 

each compound structure separately [17]. 

 

1.3.1 overview over SDF format: 

        An SDFile contains the structural information and associated data items for one or more 

compounds. The format is expressed as follow: 

 

                                                            [MOL file] 

                                                      
                                                                                     [Data Header] 

                                                     

                       *c                       *d        *l                                     [Data] 

                                                    
                                                                                    [Blank line] 
                                                   
                                       $$$ 
 
 

Where:  

                                *l   :is repeated for each line of data 

                                *d  :is repeated for each data item 

                                *c  :is repeated for each compound 

 

A [MOLfile]  block has molfile format as will be described in next. 

A [DataHeader] (one line) precedes each item of data, starts with greater than (>) sign, and 

contains at least one of the following:  

-The field name enclosed in angle brackets. 
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- The field number. 

- The compound internal  and external registry numbers most be enclosed in 

parentheses. 

A [Data]  value may extend over multiple lines containing up to 200 characters each. 

A line beginning with four dollar signs ($$$$) terminates each complete data block describing 

a compound. 

 

1.3.2 MOL formats structure: 

    A molfile consists of a header block and a connection table. For example the molfile of 

alanine compound corresponding to the following structure: 

 

 

 

 

 

L-Alanine  (13C) 

GSMACCS-II101691153662D  1    0.00366     0.00000       0       Header Block    

 

    6   5   0   0   1   0                                  3      V2000                  Counts line         
    -0.6622     0.5342   0.0000   C    0   0   2   0   0   0 
     0.6622    -0.3000   0.0000   C    0   0   0   0   0   0 
    -0.7202     2.0817   0.0000   C    1   0   0   0   0   0            Atom Block                         Ctab 
    -1.8622   -0.3695   0.0000    N    0  3   0   0   0   0                                                                                                                       
     0.6220    -1.8037   0.0000    O    0  0  0   0   0   0 
     1.9464     0.4244   0.0000    O    0  5  0   0   0   0                                                                                                                                           

      1   2    1   0   0   0 
      1   3    1   1   0   0 
       1   4    1   0   0   0                                                                   Bond block 
      2  5   2    0   0   0 
      2  6   1   0   0   0 
M CHG  2    4   1   6   -1 
M  ISO   1   3    13                                                                                             Properties Block 
 M  END 
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Where,   Header Block: Identifies the molfile: molecule name, user’s name, program, date, 

NSC number of compound, CAS-RN (Chemical Abstract Service Registration Number), and 

other miscellaneous information and comments.  And Ctab Block is the Connection table 

contains  structural relationships and properties of a collection of atoms. The atoms may be 

wholly or partially connected by bonds. The atoms numbers on the structure correspond to 

atom numbers in the Ctab. An atom number is assigned according to the order of the atom in 

the Atom Block [17]. 

 

1.3.3 Ctab format structure: 

The connection table (Ctab) is the most valuable information that is describing the 

compound, therefore it contains a multi-blocks to describe the compound, and it’s as follow: 

 

♦ Counts line: Important specifications here relate the number of atoms, bonds, and      

              atom lists, the chiral flag setting, and Ctab version. 

♦ Atom block: Specifies the atomic symbol and mass difference, charge,                       

              stereochemistry, and associated hydrogens for each atom. 

♦ Bond block: Specifies the two atoms connected by the bond, bond type, and any        

             bond stereochemistry and topology (chain or ring properties) for each bond. 

♦ Properties block: Provides for further expandability of Ctab features. 

 

- The Count line: 

The structure of Counts line could be represented using a set of characters: 

 

             aaabbblllfffcccsssxxxrrrpppiiimmmvvvvv 

             

          Where: 
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            aaa  = number of atoms (current max 255)       [Generic] 

            bbb  =  number of bonds (current max 255)       [Generic] 

            lll    = number of atoms lists (max 30)        [Query] 

            fff  = (obsolete) 

            ccc  = chiral flag: 0=not chiral, 1=chiral      [Generic] 

            sss = number of stext entries 

            xxx  = (obsolete) 

            rrr  = (obsolete) 

            iii  = (obsolete) 

           mmm = number of lines of additional properties    [Generic] 

 

- The Atom Block:  

The Atom Block is made up of atoms lines, one line per atom with following format: 

 

    xxxxx.xxxx.yyyy.yyyyzzzzz.zzzz aaaddcccsshhhbbbvvvHHHrrriiimmmnnneee 

 

where, the values are described as follow: 

 

xyz = atom coordinates     [Generic] 

aaa = atom symbol from periodic table      [Generic] 

dd = mass difference (-3,-2,-1,0,1,2,3,4) or 0 if beyond these limits [Generic] 

ccc = charge, 1=+3,2=+2,3=+1     [Generic] 

sss =  atom stereo parity,0=non stereo,1=odd,2=even,3=unmasked [Generic] 

bbb = stereo care box, 0=ignore stereo,1=stereo of double bond   

vvv = valence, 0=no marking, 1-14 =zero valence   [Generic] 

HHH  = H0 designator, 0=not specified, 1=no H atoms allowed 

rrr  = not used  
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iii  = not used 

mmm = atom-atom mapping number, 1 – number of atoms [Reaction] 

nnn = inversion/retention flag, 0,1,2 

eee = exact change flag, 0,1 

 

 

- The Bond Block: 

 

The Bond Block is made up of bond lines, one line per bond, with following format: 

 

            111222tttsssxxxrrrccc 

 

Where, the values are described as follow: 

 

111 = first atom number   [Generic] 

222 = second atom number  [Generic] 

ttt  = bond type,1=single,2double,3=triple,4=aromatic 

sss = bond stereo,0=not stereo,1=up,4=either,6=down  [Generic] 

xxx = not used 

rrr  = bond topology, 0=either,1=ring,2=chain 

ccc = reacting center status,1=center,-1=not a center,0=unmarked 

 

 

- The Properties Block: 

 

The Properties Block is made up of mmm lines of additional properties, where mmm 

is the number in the counts line. It also includes Charge, Radical, or Isotope lines. 
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1.4 Adapting the 3D molecular structure data: 

 

  The 3D SDF format of molecular structure of compounds composed of sub MOL file 

format to express each compound independently. The problem arises how to store this 

data in accessible format, and each compound is different from the other in number of 

atoms and number of bond. It means that the MOL file is shrinking and decompressing 

according to number of atoms and bonds, also the output format of SDF that represent the 

3D molecular structure is not organized in the form to read it by R program. Therefore a 

program is implemented to convert the data to tabular form to read it by mysql or R 

program. 

The program will do the following, first the all, SDF file of all compounds which 

contains around half million compound is read into Biocluster memory as text file, then a 

program of error correction will manipulate the correction any error deals with read data, 

like mixed number of number of atoms and number of bonds, this specially happened 

when the compound contains number of atoms more than 150 atoms, some times the 

number of atoms and bonds is mixed, or bond atom connection block table in the values 

beyond 100 the bond number of first and second atom is mixed which will let the program 

to run in “run time error”. 

 

Next the data is fed  in program to read  each item, and store it in related variable of the     

        compound, while the program  will automatically shrink or  compress the MOL  file        

        according to read value of number of atoms and number of bonds, and will generate a      

        table comparable to Figure1.4. 
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NSC   CAS-RN  noa   nob   Atom block Bond block

# of bonds

# of atoms

Chemical Abstract Service Reg. No.

Unique drug identifier

X    Y     Z X    Y     Z asas dd    cc    ss   hh    vv

 

 

 

 

 

 

 

 

 

 

                                   Figure 1.4     “Matrix format of molecular 3D data structure” 

 

The fields of the table that will describe the compound 3D molecular structure is organized 

as: 

1) NSC 

2) CAS-RN 

3) Number of atoms (noa). 

4) Number of bonds (nob).             Ctab (Connection table) 

5) Atom Block 

6) Bond Block. 

 

The Atom Block is composed of the following fields: 
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1 st atom     2 nd atom  b t bs    bg     cc

 

X = atom coordinate 

Y = atom coordinate 

Z = atom coordinate 

as = atom symbol 

dd = mass difference 

cc = charge 

ss = stereo parity 

hh = hydrogen count 

vv = valence 

 

while the Bond Block is composed of the following fields: 

 

 

 

 

1st atom = First atom number 

2nd atom= Second atom number 

bt = bond type 

bs = bond stereo 

bg = bond topology 

cc = reacting center status 

The data of all compounds are read, then spilt into words instead of paragraph for each line, 

then another Perl program is generated to truncate the double and triple spaces, to minimize 

the overhead of program processing, next comes error correction program to correct miss 

attached number due to errors generated by Corina software while calculating the 3D 

molecular structure positions. 
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All the data of compounds are stored in matrix, each row is describing all the information 

about one compound. One major problem concerned data reading deals with how to control 

the program to pick up interested values and stored in related variable in the matrix, because 

any miss allocation will result faulty value picking, and of course a wrong variable stored in 

the matrix, this due to variable size of 3D molecular structure of the compound. 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

 

 

 

 

Figure 1.5  Digitizing 3D molecular compound 

 

The output matrix is then fed to relational database (MySQL database), specially that my data 

around half million compound, and this consumes a lot of RAM memory and processing time 

Corina SDF ~ 
500,000 comp. 

Error 
Correction 

Program to convert 
raw SDF to matrix 

Feed the 
result to 
mysql 
server 

 

R-MYSQL   package 
bridge R environment 
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(Microprocessor or CPU time), and the benefit of MySQL to make easy the operations of any 

compound process in the database library. 

To adapt this data to R environment, a R package called (R-MySQL) to make a bridge 

between MySQL environment and R. R-MySQL is a common interface between R language 

and database management systems (DBMS). 

Finally, the database of all compounds are ready to access and process under R environment, 

specially that in the further steps we will need a lot of calculations and searching in the 

database, these data flow is described in figure 1.5.  

 

1.5 Algorithm of 3D molecular data structures managements: 

 

The following main points description of the flow diagram used to convert SDF file to matrix 

form, this process toke around 8 working days of execution inside the Biocluster in 

background mode due to huge file size of all interested compounds, and different parameters 

used to express the compound structure and position in space.  
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Converting SDF to tabular form Read all 500,000 compounds as text

Initialize all counters
Size=max. # rows

Convert text to splitted text & truncate
double & triple spaces

While counter
< size

Reading NSC, noa, nob
noa=temp+2
nob=temp+3
ab=noa+ob

NSC=temp+7

noa>=nobmax=nob max=noa
YN

Create empty atom matrix
For predefined max size

Y

For col
1 to noa

For rows
1 to 9

Setup counters

Y

Y

N

N

Fill the “atom matrix”
according to setup cntr.

Create empty bond matrix

For col

1 to nob

For row
1 to 6

Setup bond counter

Fill the “bond matrix”
according to setup cntr.

Concatenate NSC, CAS_RN, noa

nob, atom & bond matrices
for this compound  n in queue

Push in stack compound “n”

Increment temp counter
temp<=size

Write the output matrix to
a tab delimited file for

All 500,000 compounds 

Y

N

E N D

Figure 1.6  flow diagram of converting raw SDF file of all compounds to matrix format 
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First the program read all half million compounds in RAM memory as ASCII text including 

tabs and spaces, and because program read the data as one text each line is treated as one text 

line, so another program is done to break each line text into a set of words to treat each word 

independently, and another routine implemented to truncate double and triple spaces, the 

program will manage the accurate position of the used variable that represents the molecular 

structure of compounds because any mistake in reading will result faulty variable and in 

consequnce wrong connection table size and data.  

 

Finally the result a complete organized library of 500,000 compounds of all information like 

NSC, CAS-RN, atom and bond matrices in sequential order.  
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Chapter 2  
 

 
 Anti-cancer screened drugs  

 
 
 
The compounds submitted to the cancer screen are generally tested at five different 

concentrations for the ability to inhibit sixty different human tumor cell lines. The dose 

response data is used to calculate three concentration parameters GI, TGI, LC. The 

compounds screened for anticancer drugs used in this paper is  “In Vitro Cell Line Screening 

Project “ (IVCLSP) is a dedicated service providing direct support to the anticancer drug 

discovery program. In vitro 60 human tumor cell line screen stressed to testing drug and 

screened, the cell lines are grown in artificial media under conditions that are mimic in vivo 

situation. 

This work will be mainly based on meta-analysis of public available data. The majority of the 

work will be done on the DTP dataset (http://dtp.nci.nih.gov/branches/btb/ivclsp.html), and 

NCI database. At NCI 3,000 compounds per year were screened for their potential anticancer 

activity. This screen utilizes 60 different human tumor cell lines, representing leukemia, 

melanoma and cancers of the lung, colon, brain, ovary, breast, prostate, and kidney. This 

screen is unique in that the complexity of a 59 cell line dose response produced by a given 

compound results in a biological response pattern which can be utilized in pattern recognition 

algorithms. 
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The aim is to prioritize for further evaluation, synthetic compounds or natural product 

samples showing selective growth inhibition or cell killing of particular tumor cell lines. This 

screen is unique in that the complexity of a 59 cell line dose response produced by a given 

compound results in a biological response pattern which can be utilized in pattern recognition 

algorithms. Using these algorithms, it is possible to assign a putative mechanism of action to a 

test compound, or to determine that the response pattern is unique and not similar to that of 

any of the standard prototype compounds included in the NCI database. In addition, following 

characterization of various cellular molecular targets in the 59 cell lines, it may be possible to 

select compounds most likely to interact with a specific molecular target. 

 

2.1 Methodology Of The In Vitro Cancer Screen & Screening results: 

The human tumor cell lines of the cancer screening panel are grown in RPMI 1640 medium 

containing 5% fetal bovine serum and 2 mM L-glutamine. For a typical screening experiment, 

cells are inoculated into 96 well microtiter plates in 100 µL at plating densities ranging from 

5,000 to 40,000 cells/well depending on the doubling time of individual cell lines. After cell 

inoculation, the microtiter plates are incubated at 37° C, 5 % CO2, 95 % air and 100 % 

relative humidity for 24 h prior to addition of experimental drugs.  

After 24 h, two plates of each cell line are fixed in situ with TCA, to represent a measurement 

of the cell population for each cell line at the time of drug addition (Tz). Experimental drugs 

are solubilized in dimethyl sulfoxide at 400-fold the desired final maximum test concentration 

and stored frozen prior to use. At the time of drug addition, an aliquot of frozen concentrate is 

thawed and diluted to twice the desired final maximum test concentration with complete 

medium containing 50 µg/ml gentamicin. Additional four, 10-fold or ½ log serial dilutions are 

made to provide a total of five drug concentrations plus control. Aliquots of 100 µl of these 

different drug dilutions are added to the appropriate microtiter wells already containing 100 µl 

of medium, resulting in the required final drug concentrations.  
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Following drug addition, the plates are incubated for an additional 48 h at 37°C, 5 % CO2, 95 

% air, and 100 % relative humidity. For adherent cells, the assay is terminated by the addition 

of cold TCA. Cells are fixed in situ by the gentle addition of 50 µl of cold 50 % (w/v) TCA 

(final concentration, 10 % TCA) and incubated for 60 minutes at 4°C. The supernatant is 

discarded, and the plates are washed five times with tap water and air dried. Sulforhodamine 

B (SRB) solution (100 µl) at 0.4 % (w/v) in 1 % acetic acid is added to each well, and plates 

are incubated for 10 minutes at room temperature. After staining, unbound dye is removed by 

washing five times with 1 % acetic acid and the plates are air dried. Bound stain is 

subsequently solubilized with 10 mM trizma base, and the absorbance is read on an 

automated plate reader at a wavelength of 515 nm. For suspension cells, the methodology is 

the same except that the assay is terminated by fixing settled cells at the bottom of the wells 

by gently adding 50 µl of 80 % TCA (final concentration, 16 % TCA). Using the seven 

absorbance measurements [time zero, (Tz), control growth, (C), and test growth in the 

presence of drug at the five concentration levels (Ti)], the percentage growth is calculated at 

each of the drug concentrations levels [32], [33].   

Three dose response parameters are calculated for each experimental agent: 

1. Growth inhibition of 50 % (GI50) is calculated from [(Ti-Tz)/(C-Tz)] x 100 = 50, 

which is the drug concentration resulting in a 50% reduction in the net protein increase 

in control cells during the drug incubation, i.e.  the concentration needed to reduce the 

growth of treated cells to half that of untreated (control cells).  

2. The drug concentration resulting in total growth inhibition (TGI) is calculated from Ti 

= Tz, which is the concentration required to completely halt the growth of treated 

cells. 

3. The  LC50 (concentration of drug resulting in a 50% reduction in the measured protein 

at the end of the drug treatment as compared to that at the beginning) indicating a net 

loss of cells following treatment, i.e. the concentration that kills half of treated cells, it  

is calculated from [(Ti-Tz)/Tz] x 100 = -50. 
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Where, the measurement unit is ug/mL 

 

2.2 Dose response parameters for three concentrations: 

 

They are eleven different parameters to express the screened drugs used to treat cancer of 

different cell lines, and they are as follow: 

1) NSC number or, the NCI’s internal ID number  . 

2) Concentration unit, either (Molar) or, (ug/mL). 

3) Log of highest concentration tested. 

4) Panel name for the cell line. 

5) Cell line name. 

6) Panel number of the cell line. 

7) Cell number of the cell line. 

8) - Log of  the result (TGI50, TGI, LC50 depending on the file). 

9) Number of tests for NCS and cell line. 

10) Maximum number of test for this NSC . 

11) Standard deviation (StdDev) for the log10 of the results average across all tests for this 

NSC and cell line. 

 

Here, in this paper I’m interested on Lethal Concentration (LC50), which will give me a good 

indication about drug toxicity, the cancer screened drug is updated periodically, the last 

release data that I’m working on it is updated last March 2007. 

 

2.3  Cell line names and Panel names: 

they are 60 Cell line names, and in correspond  9 panel names could be switched 

according to phenotype data used in meta data of LC50 file, and it’s shown in the following 

table: 
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Cell Line Name Panel Name 

CCRF-CEM Leukemia 
HL-60(TB) Leukemia 
K-562 Leukemia 
MOLT-4 Leukemia 
RPMI-8226 Leukemia 
SR Leukemia 
A549/ATCC Non-Small Cell Lung 
EKVX Non-Small Cell Lung 
HOP-62 Non-Small Cell Lung 
HOP-92 Non-Small Cell Lung 
NCI-H226 Non-Small Cell Lung 
NCI-H23 Non-Small Cell Lung 
NCI-H322M Non-Small Cell Lung 
NCI-H460 Non-Small Cell Lung 
NCI-H522 Non-Small Cell Lung 
HCC-2998 Colon 
HCT-116 Colon 
HCT-15 Colon 
HT29 Colon 
KM12 Colon 
SW-620 Colon 
COLO 205 Colon 
SF-268 CNS Central Nervous System 
SF-295 CNS 
SF-539 CNS 
SNB-19 CNS 
SNB-75 CNS 
U251 CNS 
MALME-3M Melanoma 
M14 Melanoma 
SK-MEL-2 Melanoma 
SK-MEL-28 Melanoma 
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SK-MEL-5 Melanoma 
UACC-257 Melanoma 
UACC-62 Melanoma 
LOX IMVI Melanoma 
IGROV1 Ovarian 
OVCAR-3 Ovarian 
OVCAR-4 Ovarian 
OVCAR-5 Ovarian 
OVCAR-8 Ovarian 
SK-OV-3 Ovarian 
786-0 Renal 
A498 Renal 
ACHN Renal 
CAKI-1 Renal 
RXF 393 Renal 
SN12C Renal 
TK-10 Renal 
UO-31 Renal 
PC-3 Prostate 
DU-145 Prostate 
MCF7 Breast 
NCI/ADR-RES Breast 

MDA-MB-
231/ATCC Breast 
HS 578T Breast 
MDA-MB-435 Breast  
MDA-N Breast 
BT-549 Breast 
T-47D Breast 
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2.4 Reading the meta LC50 drugs file: 
 
The Lethal Concentration LC50  meta file download in compressed ASCII file, and this 

file are processed and stored in other table in accessible format by R language. Each NSC row 

describes different screened drugs log. values over 159 Cell line names of LC50 file. 

The number of available screened compound are 44233 compounds, and these compounds 

that I’m going to work on it. The program initially create an empty matrix of 159 columns by 

44233 rows, and the software will fill each blank cell that is represents to log screened value 

by appropriate value until all compounds are read as shown in figure 2.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1 Matrix of all compound screened values over all cell lines 

Create an output matrix text file & R object 
data values of result for: NCS, cell lines, log 
values   

Stop 

Start 

Reading 
LC50 raw 

Extracting  LC50 data of NSC, Cell 
line name, log values for Molar  

Creating an empty matrix  contains 
unique NSC=(44233), and cell line 

Filling & organizing empty matrix from 
original memorized data file 

Until eof 
=44233 

N 

Y 
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The output matrix is shown in figure 2.2, the phenotype data could be expressed as cell 

line names or, panel names for each NCS log. screened value. Some of compounds in some 

panel names are left as non expressed in log. value, or expressed as “NA” data variable. 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure.2.2 Output matrix file of screened drugs 
 
 
 
The output matrix is saved as object data, and its ready to be accessed using MySQL 

program since each compound is described in rows for log. of screened value for each panel 

name or cell line when read as expression set. 

The compounds found here in screened compound will retrieved from three dimensional 

library molecular modeling of drugs, and the other will be discarded because my work only 

based on screened anticancer compounds. 
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Chapter 3 
 

 
 Detecting the high toxic compounds 

 
 
 
After downloading both 3D molecular structure of all drugs library, and processing them to 

MySQL format, and downloading the anti-cancer screened LC50 drug library and converting 

to tabular computer readable format, and to expression set, now the back bone data is ready 

for the target work. 

 

To detect the Toxicophores responsible for the toxicity of the drugs, first, I will start with 

extracting very high toxic compounds which shows extremely high value of toxicity screened 

value over all cell lines, these high toxic compounds will be isolated to investigate them. This 

group will be called very high toxic group, but to extract these compounds, I have to find the 

threshold value of high toxicity, this value will be determined according to graph or histogram 

plotted for all sets of compounds to see where the trailing edge of high toxic compounds 

starts. 
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Next, collecting the compounds above the threshold value and which shows high toxicity 

factor over different cell lines. Then finally grouping these compounds to a similar groups 

according to similarity for an important reason will be illustrated  in this chapter. 

In figure 3.1 displays the density distribution of all compounds over measured toxicity 

screened values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1 All toxic compounds expression set  

 
 

The red line indicate to high toxicity threshold value in log value , this value could observed 

as 5.002, to display the details of high toxicity compounds over bigger scale, this shown in 

figure 3.2 while the  highest toxicity index value is 12.38. 
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Figure 3.2  High toxicity compounds expression set 
 
 
3.1 Filtering the high toxic compounds: 

 

    During this step the screened drugs expression set data base is applied to R program to 

nominate the high toxic compound from all data set. 

  

A necessary Biobase, and R library functions is downloaded, then filter function program is 

applied over all compounds to collect only compounds that shows high toxicity screened 

value over most cell lines, these compounds should have toxicity screened value more than 

threshold value which is 5, and result compounds could be considered as very high toxic 

compounds, then filtering again the cell lines that do not show expressed value over cell lines 

among all NSC’s.  
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The final result was 94 compounds of different structures, some of them are complicated 

structure compared to other. The 94 compounds is saved as expression set with two phenodata 

(cell line names, panels names). 

To process these 94 compounds for goal of my work, it’s important to make a connection 

between output 94 compounds result, and the 3D molecular structure built. Therefore another 

software routine is done to collect automatically the compound 3D structure according to 

output of screened compounds because I’m interested to investigate for the 3D structure 

pattern that could be responsible for the toxicity, also to keep in mind that I don’t know how 

the structure looks like, but I’m carrying on  scientific rule says, similar biological activity is 

highly related to the some part similar 3D structure.  

The problem that I have faced is that there are some compounds that NSC number is high 

(more 700,000), i.e. for example compound NSC number 722518 is not covered by Corina 

and NCI data base. Also some compounds covered by Corina and not covered by NCI, also I 

have faced of centering the compounds to home position (Coordinate xyz=0,0,0) because any 

miss allocation will affect the result of the search. Therefore all two databases (Corina and 

NCI) are centered to same zero position. 

The number of remaining compounds that are available in the form of 3D molecular structure 

which covered by used two databases is 76 compounds 

 

3.2 Splitting the high toxic compounds group: 

The list of high screened NSC compounds numbers are:  

50256, 53292, 68989, 103837, 114340, 221267, 239072, 295662, 328426, 363979, 363980, 
363981, 378727, 378731, 378732, 378734, 378735, 378736, 609394, 611747, 617668, 
625517, 626369, 626370, 626371, 628082, 633555, 641318, 641319, 641321, 648766, 
662779, 662823, 667642, 670038, 670547, 674349, 674350, 674351, 674500, 674504, 
674509, 676307, 677083, 684425, 684428, 684901, 684902, 684903, 684904, 684905, 
684906, 684907, 684908, 685968, 688217, 688221, 688222, 688223, 688235, 688512, 
691911, 693564, 693565, 693567, 700367, 700368, 700369, 700370, 700371, 700372, 
700373, 700657, 702923, 702924, 702925. 
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Figure 3.3 TIGR Multi Experiment viewer (TMEV) of result 

 
In figure 3.4 displays the 3D molecular structure of high toxic compounds, and to see how log 

values for panel names expressed of 94 high toxic compounds using TMEV application 

software, and to see how the expressed value are represented in figure 3.3 
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Figure 3.4 High toxic compounds 3D 
molecular       structure 
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The question that may arises to mind when reading the sub title of this chapter about splitting, 

why splitting the group of high toxic compound to sub groups? 

The answer is: to search for common pharmacophore through high toxic group there are a 

problem of computer hardware limitation due to processing complexity required to give the 

answer, and this due to complexity of some compound structure, so when the structure is 

more complicated, the computer will need more time to give the answer. After I consider the 

complexity of compounds, and processing time required by Biocluster, I had found that the 

estimated time required to give the answer is about 2.6 years of execution all time day on 

Biocluster. 

Therefore, I had decided to split the problem into sub problems to overcome this problem of 

execution time required, and to execute each subgroup separately, then mixing the result as 

the output of main group. These groups are divided  according to global similarity, each 

subgroup contains the compound that there are a percent of similarity between them. 

RMSD (Root Mean Square Deviation) technique is applied to classify the similarity between 

compounds into similar groups to minimize processing time and allocated memory. RMSD is 

the most accepted quantitative method used to compare structural folding, the output result 

represent to the geometric difference between a pair of structures. Finding the best 

superposition is done using “standard pair wise least square fitting algorithm” 

 

 

3.3 RMSD global similarity comparing technique: 
 
 To compare pairs of structures, the most natural way to compare two objects each 

represented by a collection of elements, is to try find elements correspondence between two. 

More formally for two objects A and B having elements a1,a2,...,am, and b1,b2,...bn, 

respectively, we define an equivalence  as a set of pairs L(A,B)=(ai1,bj1),(ai2,bj2),...,(ail,bjl). 

The equivalence is called an alignment if the elements of A and B are ordered and if the pairs 

in L(A,B) are co-linear, i.e., if i1<i2<...<il and j1<j2<....<jl. Many different equivalence exits 
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and a scoring function is needed to rank them and to discriminate good equivalence from bad 

ones. 

The scoring equivalence assumes to assign high values of scores to ‘good’ equivalence of 

comparison. The score of an equivalence will be high if the pairs are between elements with 

similar properties (for coordinates; if they super positioned well) and if relation between pairs 

of paired elements are similar. 

When comparing two structures, the alignment of pairs structure should be in right position, 

the comparison handled by putting on structure on the top of the other, so that the 

equivalenced elements come as close as possible. The obtained distances can be used to 

quantify the similarity and to score the equivalence. This is called superposition of structures 

and if the geometry of the structures are not changed in the process, it is referred as rigid-body 

superposition. 

Algorithm exists for superposing structure A on structure B by finding the superposition to 

minimize the coordinate root mean square deviation (RMSDC) ,  the RMSC is the norm of 

distance vector between the two sets, provided that they have been optimally superposed and 

it’s given by this equation: 

 

                                    RMSDC = (1/N ΣN
i=1 (X i

A-X i
B)2)1/2  

 

Where  (X1
A,X1

B),… (XN
A,XN

B)  are the coordinates (after superpositioning) of the 

equivalenced elements. 

 

An alternative measure is distance RMSD (RMSDD). This alleviates the need for finding 

translation and rotation of one of the structures and is given by: 

  

                                 RMSDD  = 1/N ( ΣN
i=1 Σ

N
j=1 (d

A
ij – dB

ij)
2 )1/2 
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Where each dTij is the spatial distance between elements i and j in the structure T, the 

translation is effected by relocating the origin of the coordinate system of each structure, and 

finding the best superposition, and N is the number of atoms. 

 

Where,                          d = ( (xi - xj)
2 + (yi - yj)

2 + (zi - zj)
2 )1/2  

 

                                        d :  Euclidian distances difference 

                         x, y, z : are the coordinate of compound in cubic lattice 

 

This technique is effective in measurement of global similarity after superposition the two 

molecules on over the other to rotate, translate until getting best RMSD value where this 

value represents the geometric difference between pairs of structures. A large RMSD value 

for two structures signifies a large discrepancy between pairs. Conversely, an RMSD value of 

zero indicate that the structure are exactly the same. 

 

  

3.4 Results of high toxic groups: 

 

   After applying RMSD techniques to 76 compounds structures to group the compounds with 

respect similarity measure between them. According to the number of similarity the groups 

are divided, so they are three main groups which has high number of similarity between the 

compounds (7 to 10 similarities), while they are eight subgroups which contains smaller 

number of similarity (2 to 5 similarities), and there is one group contains the compounds that 

there are no similarities between them and I will call it ‘mixed’ group.  

The new subdivision of the main group to three main groups, and eight subgroups, and one 

other called mixed group, the groups classification is as follow: 
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Main group I: 

363979, 363980, 363981, 378727, 378731, 378732, 378734, 378735, 378736, 617668. 

Main group II: 

609394, 700367, 700369, 700371, 700372, 700373, 700368. 

Main group III: 

684901, 684902, 684903, 684904, 684905, 684906, 684907, 684908. 

Subgroup i: 

641318, 641319, 641321, 221267, 641320. 

Subgroup ii: 

626369, 626370, 633555, 626371. 

Subgroup iii: 

702923, 702924, 702925. 

Subgroup iv: 

693564, 693565, 693567. 

Subgroup v: 

674500, 674504, 674509. 

Subgroup vi: 

688221, 688222, 688223. 

Subgroup vii: 

532292, 68989. 

Subgroup viii: 

667642, 670038. 

Subgroup mixed: 

50256, 103837, 114340, 239072, 295662, 328426, 611747, 625517, 628082, 648766, 

662779, 662823, 674349, 674350, 674351, 676307, 677083, 684425, 684428, 685968, 

688217, 688235, 688512, 691911, 700370, 700657. 
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All of these main groups and subgroups are classified according to the result score of 

RMSD value, and in figure 3.5 shows one of the groups the 3D molecular structures of high 

toxic compounds (main group III) as an example to show how much they are similar. 

 
 
 
  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5 Similar high toxic compounds main group III according to RMSD score value 
 
 

After classifying the groups into subgroups, now I can start searching for pharmacophores 

shared in each group, then comparing the pharmacophores that are shared between all groups.  
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Chapter 4  

 

Pharmacophore searching 
 
The goal of computational toxicity prediction is to describe possible relationships between 

chemical properties as well as biological and toxicological process or mechanism. 

A very important part of drug design is get drug free from toxicity, therefore prediction of 

pharmacophore structure, or detailed quantitative prediction of small molecule binding can 

require sophisticated computational techniques, parallel processing techniques, and a lots of 

computer time. 

And this is one of the major problem that I had faced for searching for a toxiphore common 

through all compound is computer hardware limitation since I’m running my program in 

background mode in cluster computer and not on normal PC or notebook , and the problem 

become worse if the structure of  compounds are complicated because the software 

programmed should take all consideration for suspected and searched pharmacophore through 

all interested compound. 

A pharmacophore is commonly defined as an arrangement of molecular features or fragments 

forming necessary but not sufficient condition for biological activity. The concept of 

pharmacophore mapping strives to discover the common three dimensional patterns present in 
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 diverse molecules that act at the same enzyme or receptor target site. Such pattern can be 

defined by distances between features (atoms, functional groups or regions of atoms of a 

particular type or with particular property). In other word a pharmacophore is a specific, three 

dimensional map of biological properties common to all active conformations of a set of 

ligands which exhibits a particular activity. The problem of pharmacophore identification is to 

generate the pharmacophore from structural data describing ligands and their interaction with 

receptor, a pharmacophore identification is commonly reduced to the problem of finding 

points common to all functional ligand configuration, and interested pharmacophore could be 

indicated by common or most repeated set of atoms, this called (NP - complete) or, “ Largest 

Approximate common point set problem” as described in table 4.1 to describe the frequency 

of all atoms (ten atoms types) in high toxic compound group [2]. 

 
 
   Atom type                      C         O         N         H         P         F        Cl        S         Br       Ni 
 
 
   No. of repetition         2973      795      223     3835      1         7       12        11         4         1 
        4 decimal digits     

 
No. of repetition                 167         46         15       191      1         7        12       10          3        1 
rounded 2 decimal  

 
 

Table 4.1 frequency of  repeating atoms in high toxic group 
 
 
4.1 Atoms and Pharmacophore relationship:  
 
The number of 3-points pharmacophore is mainly dependent on number of atoms, so when 

number of atoms increase the number of pharmacophore increase, and they are mathematical 

relationship describe this phenomena, and table.2 describe the direct proportional between 

number of pharmacophore with number of atoms : 
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Number of pharmacophore (∆) =  ( n ( n – 1 ) ( n – 2 ) ) /6  

 
Where, n is number of atoms 
 
 

 
                   n      3       4        5        6        7       50          100           150           200 
 
                   ∆      1       4       10      20       35     19600    161700     551300   1313400 
 

Table.2 Relation between number of pharmacophore (∆) with number of atoms (n) in one 
compound 

 
Throughout this paper we represent the 3D structure of a molecule as a set of points in R

3. 

These points correspond to the 3D coordinates of the atoms of the molecule (for a given 

arbitrary basis of the 3D Euclidean space) [31], and they are labeled with some information 

related to the atoms. More formally, we define a molecule m as  

m =  {  (xi, li) � R3 ×  L  } i=1,...,|m| , 

where |m| is the number of atoms that compose the molecule and  , xi denotes to atom 

position, li denotes to inter atomic distance, L denotes the set of atom labels The label is 

meant to contain the relevant information to characterize a pharmacophore based on atoms, 

such as the type of atom (C, N, O,...). The three-points pharmacophores considered in this 

work correspond to triplets of distinct atoms of the molecules. The set of pharmacophores of 

the molecule m can therefore be formally defined as: 

P(m) =  { (p1, p2, p3) � m3, p1≠ p2 ≠p3  } 

 

Where, p denotes to pharmacophores structures, more generally, the set of all possible 

pharmacophores  is naturally defined as P = ( R3x L)3333 ,to ensure the inclusion P(m)� P. 

 

4.2. Searching for unknown pharmacophore techniques: 
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The pharmacophore is represented by the nodes and edges of a 3D chemical graph represents 

the atoms and inter-atomic distances (where ‘atom’ may include pharmacophore points such 

as lone pairs) [1], and type of connection is also important, in figure 4.1 there are two atoms 

of Oxygen and one atom of Nitrogen represents to a certain pharmacophore with fixed 

distance in Angstrom, and tolerance values, these predetermined atoms and distances could be 

in different orientations in three dimensional space. where ‘atom’ may include pharmacophore 

points such as lone pairs).  
The nodes and edges of a (where ‘atom’ may include pharmacophore points such as lone 
pairs).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.1 Searching for a pharmacophore 

 

They are different techniques in pharmacophore searching like in my case 3-points 

pharmacophore searching  which could be modified to 4-points searching when the results 

pharmacophore shares two points or atoms, so the result is 4-points pharmacophore, in my 

opinion searching for 4 points or more pharmacophore going to be tedious work not only for 
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the programmer but also for the hardware used [8], so more computer processing time, and 

more memory. One of these techniques [14] are: 

 

4.2.1 “Geometric hashing”: which is developed for image recognition  processing in 

computer vision, this is flexible technique has been widely studied [6], and has been 

shown to be quite successful in biological problems such as active site recognition 

and identification , functional annotation, and pharmacophore identification. 

Geometric Hashing was designed so that during preprocessing phase, the system will 

learn a Motif (series of points in space). Then during an online processing phase, the 

system is exposed to new pattern of points, the Target, from which it is to identify a 

subset of reasonable geometric similarity to the motif [2]. 

The measurement that Geometric Hashing uses is the spatial relationship between 3-plets 

of points in 3D. Since three points in space define a triangle in a plane, we can take 

several simple measurements of this triangle, and use these measurements to compare 

with other 3-plets, regardless of the orientation of the other 3-plets, and the 3-plets stored 

in a hash bin associated with its key . 

After the triangles of the source motif have all been generated and stored, preprocessing   

       is complete. The hash table can be stored for later recognition of this motif in other            

        structures later, and never needs to be recalculated. 

Now that source motif is processed and stored in hash table, then compare it with target 

pattern. This is the primary purpose of the Online Processing phase. 

Much like the decomposition that occurred  with the source motif ,  repeat the same 

decomposition process for the target pattern. However, each time a new 3-plet is 

generated, rather than storing it, calculate the hash key for this 3-plet and then query the 

hash table, querying the hash table for the key results in finding several similar  3-plets 

which were part of the source.   
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4.2.2 “Clique searching”:  which is uses graph theory techniques [10] towards finding the 

Largest common point set of following definition [2]: 

 - Graph Nodes: For a node a, all pairs a1,a2, with a1 from ligand 1, a2 from ligand 2. 

 - Graph Edge: an edge (a,b) exists if the pairs (a1,a2) and (b1,b2) can be aligned 

simultaneously. (i.e. the distance between a1 and b1, and a2 and b2 is very similar. 

This means that Graph G, finding clique, a set of nodes n1, n2, … nk where for any i, j 

less than k, the edge (ni,nj) is in G, implies finding a set of reasonably congruent points 

common to both ligand structures. However, finding the largest clique is a Max-Clique , 

standard clique detection  algorithm can be applied to detect cliques in G.  In addition, if 

multiple ligands are available for pharmacophore identification, then one can be chosen as a 

reference, m and the rest compared to it, to find a consensus pharmacophore [10]. 

 

These two techniques is time consuming due to number of calculations performed to calculate 

Euclidian distances and twisting pharmacophore to take in consideration all possible 

pharmacophores consideration. 

 

4.3 Applied trial method to search pharmacophore: 

 This paper follow this strategy of above techniques, and because pharmacophore is related to 

repetition of certain atoms, and certain fixed distances, one of attempts done to establish the 

goal is to find the Most Common Atoms (mca) through all 76 high toxic compound. All  

atoms are rounded to nearest two decimal digits, and to apply tolerance of  (+/- 5%). A 

tolerance is used to compensate for rounding errors for distances and to accommodate the 

variation in the distance that may be acceptable to receptor. 

 

                       Min(dx1,x2) > max(dy1,y2) + tolerance 

                       Max(dx1,x2) > min(dy1,y2) - tolerance 
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Then main high toxic group is subdivided to different groups according to atom type, and as 

we can see from table.1 that the atoms Carbon (C), Oxygen (O), Nitrogen (N), Hydrogen (H) 

are the mostly occurred frequent atoms in the high toxic compounds, and these atoms 

considered as the atoms interested in searched pharmacophore structures. A programs done to 

find the most occurred atoms where the position is repeated in three dimension, and these mca 

(most common atoms) are saved in one table, and the atoms that are not chosen because they 

are different across all high toxic compound are applied to tolerance program to gave it a kind 

of margin of the original value and to see if it is possible to find similarity with most common 

atom table , and these atom positions are saved in other table, then two resulted tables are 

saved in one table called most common x atoms table, where x denotes to atom type table, 

these process is explained in figure 4.2 

 
                                                                                                                            

 
 

 
 
 

Figure 4.2 Most common atom (mca) flexible searching 
 
 
After this procedure, and defining the mca from different atom types, now I 

need to show only the positions of mca of different atom types across the high 

toxic group, this procedure I will call it lighting, so by activation only interested point 

(lighting it) as shown in figure 4.3, the other non-interested positions will be ignored, and in 

final array I will have only the most occurred positions that I may interested on it to locate the 

mca Apply +/-5% 
tolerance 

Check in non 
selected 
atoms 

Add it to mca 
table 

Next 
atom 

Y 

N * 

To lighting program 
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pharmacophore. The advantages of this technique is to minimize non interested points and in 

result I will get faster execution and answer about interested pharmacophore in less time, and 

this technique going to be helpful if the researcher knows the pharmacophore structure, but 

there are one important disadvantage that some times the pharmacophore is not always dealt 

with certain position. 

 

In my thesis I stopped following this algorithm because first I don’t know the pharmacophore 

that I’m looking for it, and in second taking in consideration different toxicophores may 

located at different orientation positions. 

 

 

 
 

 
 
 
 

 
 

   
 
 
 

 

 
 
Figure 4.3 lighting algorithm to activate only the mca from all 76 high toxic compound, 

Where, * denotes to output of flexible searching 
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4.4  Applied method to search for Pharmacophores: 
 
In reference to chapter 3.4 and after classifying the high toxic group to separate groups (mains 

and subs), now I will start explain the strategy that is followed to reach pharmacophore that 

could be responsible for the toxicity of anticancer drugs. 

A program in C language is done to search for pharmacophore between main Groups 

(GI,GII,GIII),  subgroups (gi, gii, giii, giv, gv, gvi, gvii, gviii), and mixed group. The 

comparison made by one group over all full group and finding out the matched 

pharmacophore. 

First I will explain the data structure: 

1) Three dimensional molecular structure of all compounds is saved as first table of 

following format: 

NSC (drug no.), X (x axis position), Y (y axis position), Z (z axis position), AT (atom 

type). 

2) Load the compound structural information in MySQL, and adding each atom position 

a progressive number saved as second table. NSC (drug no.), X (x axis position), Y (y 

axis position), Z (z axis position), AT (atom type), ID (progressive number). 

    

3) Creating a third table that contain Euclidian distance between two atoms in same 

compound, i.e. one segment distance between two atoms, and a tolerance value of +/-

5% is applied.  This data looks like the following: 

[NSC], [id 1,2,3 (progressive number of atoms)], [Euclidian distance 1,2], [Euclidian 

distance 1,3], [Euclidian distance 2,3]. 

[NSC], [progressive no. atom 1], [progressive no. atom 2],[atom 1 type], [atom 2 type], 

[distance].  

Where Euclidian distance represents all possible combination between three atoms 

structure, and progressive number represent the atom position sequence number in 
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Cartesian plane according to main file of three dimensional molecular structure of 

compounds, and progressive number related to NSC table, and using this table I’m able to 

identify the atom coordinate, for example [atom ID=10, NSC=378727] this means that the 

program will extract the 10th atom from NSC table of compound ID=378727. this     

4) Creating MySQL file structure to load three points pharmacophore distances of forth 

table, and the data are split to 1000 table, each table contain atom related to this 

category.  

[NSC], [id 1,2,3 (progressive number of atoms)], [Euclidian distance 1,2], [Euclidian 

distance 1,3], [Euclidian distance 2,3], number of similarity of triangle inside interested 

group. 

Then updating the MySQL file by all compounds possible pharmacophores. 

5) Writing a tool to extract a similar pharmacophores between classified groups in 

comparison with high toxic compounds group. This step is computer time consuming 

specially when the compounds contains high number of atoms. 

 

There are two rules of comparison applied to program of comparison: 

1) Discard triangles (three atoms pharmacophore) that contains more than one atom labeled 

as H. 

2) Discard triangles made by same atom type for all vertex, for e.g. (O,O,O) (H,H,H). 

 

The next data is the result of searching, and explains the MySQL table (table4) which 

indicates to high number of different similar triangles with same atom types: 

 

Main Group I : table4 (C-C-N)= 50 different similar triangles, table4 (C-C-O)=132 different 

similar triangles, table4(C-O-O)=47 different similar triangles. 

Main Group II : table4 (C-C-O)=337 different similar triangles, table4 (C-O-O)=136 

different similar triangles 
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Main Group III : table4 (C-C-N)=318 different similar triangles, table4 (C-C-O)=399 

different similar triangles, table4(C-N-N)=46 different similar triangles, table4 (C-N-O)=110 

different similar triangles, table4 (C-O-O)=114 different similar triangles. 

Mixed group : table4(C-C-O)=229818 different similar triangles, table4(C-O-O)=96258 

different similar triangles. 

Sub Group i, ii, iii: table4(C-C-O)=105 different similar triangles, table4(C-O-O)=55 

different similar triangles. 

Full Group: table4(C-C-N)=410 different similar triangles, table4(C-C-O)=1272804 

different similar triangles, table4(C-N-N)=56310 different similar triangles, table4(C-N-

O)=143504 different similar triangles, table4(C-O-O)=459416 different similar triangles,   

 

But up to this step, I don’t know which pharmacophores that I’m interested to find it, the 

above table just indicates that they are enormous number of triangle in certain atom 

sequences. 

After long program calculations to find similar compound among each group with high toxic 

compound group, the major similarity found in main groups (Group I, Group II, Group III) 

and mixed group but up to this step I have no idea the critical distances of seeking 

pharmacophore. As we see from above data that (C-C-O) pharmacophore  is the most 

frequent table occurred compared to other pharmacophores when compared with full group. 

 

4.5 Filtering resulted pharmacophores: 

 

A program is developed to compare each group with full group to find where high number of 

similarities occurred and applying different value of tolerances from 1% to 7% , and different 

values of threshold value of similarities number. The program take each pharmacophore from 

a group and compare it with full group and how many time occurred in full group. The 
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interested pharmacophore should has high number of occurrence compared to the other, and 

this is the result of (C-C-O) atoms: 

 

Group I compare it to full group = 70 (C-C-O) similar pharmacophores. 

Group II compare it to full group = 264 (C-C-O) similar pharmacophores. 

Group III compare it to full group = 18 (C-C-O) similar pharmacophores. 

Group i, ii, iii compare it to full group = 30 (C-C-O) similar pharmacophores. 

Group mixed compare it to full group = 34 (C-C-O) similar pharmacophores. 

 

 

The next step after determining  the suspected high toxic pharmacophores in the range from 

5.022 up to 12.38, is to find the low toxic pharmacophores of the rang from 0 up to –4 while 

the curve of figure. x begin to climb at 3.75 as threshold value of low toxicity. 

Low toxic compound found across database for value less than 3.75 across all cell lines, there 

are 67 compounds are found, and this is the list of compounds that could be considered as 

very low toxic compounds.  

740, 752, 755, 3088, 4728, 6396, 7365, 8806, 19893, 21548, 23759, 25154, 26271, 27640, 

32065, 32946, 34462, 51148, 63878, 67574, 71261, 71851, 73754, 77213, 79037, 85998,  

95466, 107392, 109724, 118742, 118949, 119875, 126849, 127716, 129943, 139490, 143095, 

153353, 169780, 178248, 218321, 241240, 256927, 261726, 264880, 267213, 280594, 

281272, 284751, 291643, 303812, 303861, 312887, 314055, 322921, 329680, 330915, 

338947, 339004, 348948, 353451, 356894, 361456, 368390, 375575, 406021, 409962. 

 

Also there are compounds with low toxicity, i.e. compounds of low toxicity less 3.75 but it 

doesn’t reach the negative value of screened value, and these compounds of low toxicity 

about 167 compounds. 
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One important point I would like to mention is that “Low toxic” compounds are not 

complicated in structure as high toxic compound, so no need to split the low toxic compound 

to another groups to analyze because it contains lower number of atoms with respect to high 

toxic compound. 

After analyzing result of very low toxic and low toxic compounds, I start with very low toxic 

pharmacophore that could be shared with high toxic pharmacophores, and these shared 

pharmacophores was very few , and these toxicophores has be discarded from high toxic 

pharmacophore because it doesn’t deal with high toxic, and the same as for low toxic 

pharmacophores. But there are important observation is that number of pharmacophores of 

low toxic toxicophores is higher than in very low toxic pharmacophores which means that 

number of pharmacophores is dependent on toxicity. 

To illustrate what it has be done by MySQL scripts to High Toxic Pharmacophores (HTP) 

with Very Low Toxic Pharmacophores (VLTP), and Low Toxic Pharmacophores (LTP), 

figure 4.4 illustrates that high toxic, low toxic, and very low toxic pharmacophores sharing a 

small amount of pharmacophores. 

 

 

 

 

 

 

 

 

Figure 4.4  High toxic pharmacophores relation with low & very low pharmacophores 

 



 64

L1 

L2 

X 

Y 

The result HTP is containing only high toxic elements that’s may responsible of drug toxicity, 

and this graph is exactly representing the data obtained by R program and MySQL scripts by 

the area shared between three circles and the shared area. 

The number of  common pharmacophores in HTP are finally thirty of (Carbon, Carbon, 

Oxygen), these pharmacophores is plotted in X-Y plane to see how these pharmacophore 

share the same dimension and position in X-Y plane, and figure 4.5 illustrates that 

pharmacophores sharing the similar three points distances and has the same orientation. The 

blue points show how much toxicophores are similar. 

 

 

                                                                         

                                                                       

 

             

 

                                                                            

Figure 4.5 Thirty Similar High toxic pharmacophore 

 

 

Next data show the tolerances of distance and angle between L1 and L2: 

 

Start – size for angle 125° ± 12° 

Start – size for L1 is 13.89932 ± 1A° 

Start – size for L2 is 2.424858 ± 0.01A° 
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Chapter 5  

 

Compounds Toxicity Index (TI) 
 

Toxicity Index (TI) is the value that describes the toxicity of drugs, and this value is function 

of toxicity screened value over all cell lines, and number of toxic pharmacophores found. To 

calculate Toxicity Index, first calculate the mean value over all cell lines, median, or Inter 

Quartile Rage (IQR), and second dividing number of toxicophores assigned to certain value 

over the number of NSC drug found on the same assigned certain value. The resulted value 

indicate the toxicity index. 

 

The next graph figure 5.1 illustrates the number of found toxicophores over all screened cell 

lines, and according to this graph we could notice that number of pharmacophores is 

increased with toxicity screened value but there are important point I would like to mention is, 

why toxicity at screened value of 6 and 7 the value of found pharmacophores is low? The 

answer is, the number three dimensional molecular structure of compound for some 

compounds of high value (700,000 and more) are not supported by Corina and NCI databases, 

and according to that it’s impossible to know the pharmacophores when the 3D molecular 

structure are not found. Another point that could be noticed from the graph of figure 5.1 that 
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on low screened toxicity screened value there are no toxicophores found, also one the 

negative value of screened value. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1 Toxicophores found over screened value of toxicity over all cell lines 
 

 
5.1 3D parameters of found Toxicophores: 
 

     The three dimensional structures of found 28 toxicophores is represented using following 

table 5.1, where it contains reference table number four of Carbon-Carbon-Oxygen, NSC 

(drug identifier) , atom allocation number in table of NSC (T), length L1, length L2, Length 

L3 in Angstrom, and the angle Alfa in Radian: 
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Table NSC T L1 L2 L3 Alfa 
Table4_C_C_O 700372 31-88-2 16.20748 2.428333 17.42171 2.030679 
Table4_C_C_O 700372 67-78-80 16.25637 2.420331 17.37977 1.988591 
Table4_C_C_O 700372 55-88-2 14.39086 2.428333 15.89636 2.174911 
table4_C_C_O 609394 64-26-3 14.23575 2.441224 15.9272 2.276131 
table4_C_C_O 700367 81-31-29 14.26114 2.436637 15.86973 2.22935 
table4_C_C_O 641321 14-42-41 13.17354 2.416691 14.8522 2.274624 
table4_C_C_O 684425 47-26-21 14.39116 2.448265 15.88837 2.163118 
table4_C_C_O 684428 58-10-28 14.33513 2.426273 15.77498 2.139591 
table4_C_C_O 684428 71-39-43 13.12527 2.422891 14.44003 2.068624 
table4_C_C_O 688512 57-39-31 12.9158 2.422313 14.42684 2.173065 
table4_C_C_O 677083 26-56-47 13.09702 2.418595 14.46273 2.096445 
table4_C_C_O 685968 15-38-37 13.13128 2.418098 14.50641 2.101787 
table4_C_C_O 684428 1-55-53 14.77334 2.429486 16.18381 2.124746 
table4_C_C_O 700370 56-26-22 13.436 2.414374 14.98402 2.199699 
table4_C_C_O 700657 20-8-10 14.78108 2.430638 16.46092 2.275964 
table4_C_C_O 700370 35-82-2 13.20112 2.432694 14.54055 2.078747 
table4_C_C_O 677083 27-56-47 13.43909 2.418595 14.95448 2.179614 
table4_C_C_O 684428 29-66-57 13.21952 2.421983 14.75371 2.187804 
table4_C_C_O 700370 61-26-22 14.41008 2.414374 16.00594 2.231671 
table4_C_C_O 684428 67-10-28 14.44452 2.426273 16.12128 2.274717 
table4_C_C_O 700370 19-64-48 14.82733 2.426108 16.23294 2.123536 
table4_C_C_O 684428 27-66-57 14.27671 2.421983 15.82517 2.200846 
table4_C_C_O 688512 60-39-31 12.95836 2.422313 14.82737 2.394629 
table4_C_C_O 700370 58-26-22 13.41125 2.414374 14.8467 2.1369 
table4_C_C_O 700657 18-8-10 13.22903 2.430638 14.89408 2.260448 
table4_C_C_O 684428 74-39-43 14.12035 2.422891 15.72826 2.233968 
table4_C_C_O 688512 63-39-31 13.26268 2.422313 14.839 2.211926 
table4_C_C_O 684428 18-45-43 12.90972 2.432776 14.75409 2.37182 

 
Table 5.1 List of found Toxicophores 3D informations 

 

To see the effect the number of  compounds found that has interested pharmacophores over 

Toxicity Index, a number of pharmacophores found on each screened value  is divided over 

number of compound over that value, so this will gave us a ratio, and this ratio is plotted over 

toxicity index because toxicity index not dealing with number of found pharmacophores but 

also with number of compounds that has high number of repeat of interested pharmacophores, 

this is illustrated in figure 5.2B. 

Figure 5.2B is extracted from figure 5.2A where figure 5.2B shows frequency of toxicophores 

matches, and frequency of number of compounds over different values of toxicity index. 
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The result of figure 5.2B looks convincible because toxic pharmacophores located in high 

toxicity index, and show zero values at low toxicity index, i.e. number of found toxicophores 

is available in  high value, but the question that we could ask ourselves , which of twenty 

eight toxicophores that could be the major influence of toxicity index? Therefore it is better to 

divided into groups, and to see effect of each group on toxicity index. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 5.2 Toxic pharmacophore with respect number of compounds distribution over TI 

 
 
5.2 Finding the most toxic pharmacophores from result toxicophores: 
 

     As we saw in figure 4.5 that the toxicophores almost similar, but there are margins of 

distances L1, L2, and � (alpha) angle as follow: 

 

The full coverage of points for resulted pharmacophores: 

A B 
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Start -  Size for the angle 125.60245 ± 18° 

Start -  Size for the ∆ L1 : 13.899323 ± 2A° 

Start -  Size for the ∆ L2 : 2.4248583 ± 0.04A° 

 

The full coverage group is divided to four subgroups 

 

Subset 1:       Subset 2: 

     θ  = 113 – 122                         θ  = 113 – 122 

     L1 = 13.9 – 14.9          L1 = 12.9 – 13.9 

     L2 = 2.41 – 2.45          L2 = 2.41 – 2.45 

 

1.97220 ≼�≼ 2.12930                  1.97220 ≼�≼ 2.12930   

12.9 ≼ L1 ≼ 14.9       12.9 ≼ L1 ≼ 13.9 

2.41 ≼ L2 ≼ 2.45      2.41 ≼ L2 ≼ 2.45 

2 triangles found      4  triangles found 

 

Subset 3:       Subset 4: 

     θ  = 122 – 131                         θ  = 122 – 131 

     L1 = 13.9 – 14.9          L1 = 12.9 – 13.9 

     L2 = 2.41 – 2.45          L2 = 2.41 – 2.45 

 

2.12930 ≼�≼ 2.28638                  2.12930 ≼�≼ 2.28638 

13.9 ≼ L1 ≼ 14.9       12.9 ≼ L1 ≼ 13.9 

2.41 ≼ L2 ≼ 2.45      2.41 ≼ L2 ≼ 2.45 

2  triangles  found      2  triangles  found 
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The groups are divided according to marginal distances, for example group subset1 and 

subset2 they are divided by fixing  L2 parameter, and assigning L1 of one Angstrom margin 

(12.9A°-13.9A°, 13.9A°-14.9A°) and θ of 9 degree margin (113-122), while subset3 and 

subset4 I fix L2 parameter, and assigning L1 of one Angstrom margin (12.9A°-13.9A°, 

13.9A°-14.9A°) and θ of 9 degree margin (122-131). 

These four subset are executed in Biocluster to find the most intensive group to toxicity index, 

and the output are plotted  in figure 5.3 to see the effect of this subdivision and to determine 

the most intensive toxicophores parameter that may responsible for toxicity.   

toxicophores parameter that may responsible for toxicity. 
  
 
 
 
 
  
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Subset1 Subset2 

Subset3 Subset4 

Figure 5.3 The most toxic pharmacohores classification 
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According to the plotted output, I could conclude that subset 1 and 2 has very toxic effect on 

high toxicity index; so these pharmacophores could be much responsible structure to toxicity 

of drugs, and now by selecting the subset1 and subset2 as major toxic pharmacophore across 

all subsets, and the result is six out of twenty six are found in compounds with toxicity index 

greater than 6, the other in compounds with toxicity index between 5 And  6. 

One thing I would like to do after getting these results, is to be sure if toxicity structure found 

is related to similarity structure dependent or not!. If not it will be fine because in that case 

means that toxicophores is not structure similarity dependent. 

 

5.3 Toxicophores is it similarity dependent? 

  To justify if result pharmacophores are comes from similarity between structure, or they 

result because they are sharing special arrangement of three atoms or more. 

A number of compounds are selected in the margin of toxicity index between 6 and 7, high 

repeat rate of toxicophores. These compounds are gathered and plotted using RAS-MOL 

molecular graphics program V.2.7.3 [30] in three dimensional space, this will help us to 

visualize if there are compounds sharing similar structure, This program reads in a molecule 

coordinate file and interactively displays the molecule on the screen in a variety of color 

schemes and molecule representations. Currently available representations include depth-cued 

wire frames, 'Deriding' sticks, space filling (CPK) spheres, ball and stick, solid and strand 

biomolecular ribbons, atom labels and dot surfaces. The compounds are shown in figure 5.4 

as wire frame structure. 

 

After visualizing figure 5.4 of different compounds collection of toxicity index between 6 and 

7, and also these compounds has high number of common pharmacophores shared, we could 

conclude that the structure are completely different from each other, and they don’t share any 

kind of similarity, this result show that pharmacophores found are not compounds structure 

dependent, but toxicity structure dependent. 
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Figure 5.4  High TI compounds of high toxicophores 
found 
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5.4 Marking pharmacophores on high TI drugs: 
 

After determining the most toxic subgroup of toxicophores and compounds, now the critical 

distances of three points pharmacophores and angle are clear. 

Three points pharmacophores show critical inter atomic that represents pharmacophore in 

three dimension as shown in figure 5.5 and explained in table 5.2 where it contain drug 

identifier NSC, atom positions in X, Y, Z plane, and atom type. Some of the compounds 

represented in pharmacophore contains more than three atom similarity, so new 

pharmacophore structure are showed in figure 5.5 for 4 atoms structure, so the result is 4-

points pharmacophore. Four points pharmacophore are hard to find when start searching for 

common 4-points pharmacophore from scratch, because the routine programs will be more 

complicated and time consuming, therefore using the technique that I followed by searching 

for three points toxicophores it is possible to find four points toxicophores because you can 

imagine that four points pharmacophore is two three points pharmacophore by sharing 

common atoms positions between them.  

 
NSC X Y Z atom type 

700372 1.58 11.54 11.32 C 
 1.04 -0.92 2.48 C 
 1.5 -0.16 0.22 O 
 0.74 -9.48 -8.82 C 
 -1.38 -6.44 8.16 C 
 -0.12 -4.92 6.76 O 
     

609394 5.5346 -3.8295 2.1498 C 
 -8.9462 0.8668 -2.5325 C 
 -7.4254 1.3357 -0.6814 O 
     

700367 -1.98 1.54 -3.86 C 
 2.8 -12.3 -9.98 C 
 1.38 -10.48 -10.76 O 
     

641321 -5.2655 5.0552 2.4128 C 
 8.7252 1.8816 -1.4312 C 
 6.5132 1.0273 -1.8977 O 
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684425 -3.54 -1.58 -1.08 C 
 11.18 -7.56 -1.04 C 
 10.34 -5.34 -1.64 O 
     

677083 -10.24 -3.7 -4.08 C 
 1.48 1.58 2.5 C 
 -0.76 1.34 3.38 O 
 -10.94 -4.6400 -3.04 C 
 1.48 1.58 2.5 C 
 -0.76 1.34 3.38 O 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5.2 Critical more than three points toxicophores positions 
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Figure 5.5 Marking interested pharmacophores on High toxic index drugs 
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Conclusion 
 

This work is mainly computational challenge by trying to understand how it is possible 

to extract a certain pharmacophores from huge library of three dimensional molecular 

modeling of screened compounds, and trying to set rules and constrains over the result output 

to let the result convincible to researcher because some times similarities becomes high on 

certain atom sequences within certain distances between atoms and the assigned margin will 

control the output. 

 

Toxicophores actually tedious work to find because I’m looking for something that initially I 

have no idea about it, how it’s structured?, how it’s connected?, and what is the critical 

distances over this Toxicophores. So the work starts from scratch by collecting initially 

information over all high toxic screened compound values and trying to find local structure 

similarity among all these compounds, and comparing the result with low toxic value 

screened compound to see if some structures repeated or not. 

Actually the result Toxicophores passes through long tunnel of examinations before I said this 

is the suspected Toxicophores. 
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Perspectives 
An interesting issue to be investigated is the definition of the gene targets of the toxic 

effect induced by the toxicophores we have identified. Recently Lee and coworkers 

(Proc. Natl. Acad. Sci. USA 2007, 104:13086–13091) have published an approach to 

associate specific transcriptional signatures related to sensitivity/resistance of drugs. They 

use NCI data to define a set of the NCI60 cell lines that are responsive or not to a specific 

treatment with a drug. Subsequently they use the transcription profiles of the untreated 

NCI60 cell lines to extrapolate a signature that will define which genes are linked to the 

drug sensitivity or resistance. We will apply their approach to define the genes associated 

to the resistance/sensitivity to the toxicophores we have identified in this study. 
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