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Abstract

The ability to reliably predidh vivo toxicity throughin vitro models is increasing. The use of
human cultured cell lines seems to be especiatignf@ing both for acute and chronic toxicity
evaluation. However the techniques currently usedje of which based on the measurement
of protein and ATP content and cell morphologyffesuof the restriction of this simplified
end-point data evaluation which proves to be inadeg for prediction of organ-specific

toxicity and toxicity of substances that do notuod cell death.

The goal of computational toxicity prediction is describe possible relationships between
chemical properties of the drug as well as biolalggmd toxicological process or mechanism.

In many cases the important points of interacti@ween a drug and its target can be
represented by a 3D arrangement of a small nunfleoms. Such a group of atoms is called
pharmacophore. A pharmacophore can be used tohsé&idc databases of drugs and

compounds sharing the pharmacophore can belonffécedt chemical classes.

In this thesis I'm searching for correlation betwedrug toxicity and pharmacophores using a
3D library of compounds, and their toxicity index dalifferent cell lines. Here, with
pharmacophore (toxiphore) searching I'm interestedetect local similarity, i.e. based on a
limited number of atoms (e.g. 3,4 atoms) withinhhigxic compounds. My hypothesis is that
such similarities could be dealt with their higixitity. The final aim of this study is the
definition of a Drug Toxicological Index (DTI). Téiindex should be able to predict the



toxicity strength of new compounds before theygoimg into practical experimentation. DTI
will be defined upon identification of pharmacope®i(toxicophores) associated to toxicity,

and the most important part of the study is findimg toxicophores related with toxicity .

This work is based on meta-analysis of public laéeé data, The used databases are NCI
DIS 3D database (http://129.43.27.140]/), and Corina dataset
(http://129.43.27.140/ncidb2/download) which arecalection of 3D structures for over
500,000 drugs, each which was built and is maiethiny the Developmental Therapeutics

Program “DTP”, Division of Cancer Treatment, NaabiCancer InstituteRRockville ,MD. At

NCI 3,000 compounds per year are screened for gueéntial anticancer activityfthe DTP
Human Tumor Cell Line Screen has checked tensafsdinds of screened compounds for
evidence of the ability to inhibit the growth ofrhan tumor cell linesThis screen utilizes 60
different human tumor cell lines, representing Eulka, melanoma and cancers of the lung,

colon, brain, ovary, breast, prostate, and kidney.

Screened drugs are saved in MOL format, and | lsameerted them into a tabular form and
loaded into MYSQL relational database. | stored #reicture information together with

toxicity index and | used this data to search foigd that share three atoms pharmacophore.

To detect “high toxic” pharmacophores, | collected compounds that shows high toxicity
index over all cell lines, then | extracted all pibse toxicophores. Those toxicophores were
then scanned across all very low toxic compswa | found that these suspected
toxicophores were under represented.

Out of a total of twenty six toxicophores foundx sf them are found in compounds with
toxicity index greater than 6, the other in compdsiwith toxicity index between 5 And 6.
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Introduction:

Toxicity is a measure of the degree to which soimgtls toxic or poisonous. The study of
poisons is known as toxicology. Toxicity can reffiethe effect on a whole organism, such as
a human or a bacterium or a plant, or to a subtstreicsuch as a cell (cytotoxicity), or an
organ (organotoxicity) such as the liver (hepatmity). There are generally three types of
toxic entities; chemical, biological, and physicdl) Chemicals include inorganic substances
such as lead, hydrofluoric acid, and chlorine gaganic compounds such as ethyl alcohol,
most medications, and poisons from living thin@. Biological toxic entities include those
bacteria and viruses that are able to induce disi@ds/ing organisms. Biological toxicity can
be complicated to measure because the "threshof®"dmay be a single organism.
3) Physically toxic entities include things not aby thought of under the heading of "toxic"
by many people: for example non-ionizing electronsig radiation, and ionizing radiation.
Toxicity can be measured by the effects on theetatgrganism, organ, tissue or cell).
Because individuals typically have different levefsresponse to the same dose of a toxin, a
population-level measure of toxicity is often usdtich relates the probability of an outcome
for a given individual in a population. One suchaswe is the LC50. "LC50" standing for
"Lethal Concentration”, which is a concentrationasuge for a toxin at which fifty-percent of

treated cells are killed. Biological activity is axpression describing the beneficial or



adverse effects of a drug on living matter. Whendhug is a complex chemical mixture, this
activity is exerted by the substance's active uigre but can be modified by the other

constituents. The main kind of biological activigya substance's toxicity [26].

Anticancer drugs has a factor of toxicity with difént effect on different cell lines. Under

normal circumstances, human cells have a limitedpan. They die when they are damaged,
worn out or no longer needed by the body. When thiey these cells are replaced by new
ones. The body depends on a normal and healthessoalled programmed cell death or
apoptosis to ensure that unwanted cells die onlttles process fails, then the damaged cells
live on and multiply indefinitely and uncontrollgbIThis uncontrolled multiplication of rogue

cells can lead to cancer. Conventional chemothetapeanticancer drugs target and attempt
to kill rapidly dividing cancer cells. This is sotimes successful in halting the disease, but
these drugs inevitably damage many normal tissHesce, even when the chemotherapy
works, the side effects for the patient can be genjous, and this could be called toxicity, i.e.
toxic is poisonous or harmful to the body, and druged to kill cancer cells can also have

toxic effects on normal tissue [27]

Chemotherapy drugs, are sometimes feared becawspaifent's concern about toxic effects.
Their role is to slow and hopefully halt the grovethd spread of a cancer. There are three
goals associated with the use of the most commuaseyl anticancer agents. 1) Damage the
DNA of the affected cancer cells. 2) Inhibit thenthesis of new DNA strands to stop the cell
from replicating, because the replication of thk isawhat allows the tumor to grow. 3) Stop
mitosis or the actual splitting of the original Icelto two new cells. Stopping mitosis stops
cell division (replication) of the cancer and madiynately halt the progression of the cancer.
Unfortunately, the majority of drugs currently dretmarket are not specific, which leads to
the many common side effects associated with cactoemotherapy. Because the common
approach of all chemotherapy is to decrease thetbrate (cell division) of the cancer cells,

the side effects are seen in bodily systems thairaey have a rapid turnover of cells
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including skin, hair, gastrointestinal, and bonanma. These healthy, normal cellso end

up damaged by the chemotherapy program.

The ability to reliably predian vivotoxicity throughin vitro models is increasing. The use of
human cultured cell lines seems to be especiatlynming both for acute and chronic toxicity
evaluation. However the techniques currently usethe of which based on the measurement
of protein and ATP content and cell morpholagyffer of the restriction of this simplified
end-point data evaluation which proves to bed@ogate for prediction of organ-specific
toxicity and toxicity of substances that do notuoe cell death.

For these reasons, the model complexity has beemeased based on gene expression
analysis, that permits to correlate chemical togffects with the activation of specific
metabolic pathways and molecular markers prediativioxicity effects even in the absence
of cell death. This is done through the use of “DMKips” technology. DNA chips, or
microarrays, give a measure of the transcriptidivi¢ of thousands of genes, at the same
time, starting from one biological sample. Toxicogmics founds its bases on the postulate
that the toxic effect of a compound determines lgeradion of the cellular homeostasis thus
modifying one or more cellular metabolic procesgéss alteration in its initial phase leads
back to a change in the expression of specific gageiences, expression measurable by the
MRNA population present in the cell. Thus it is gibke to investigate the process in its initial
multiple genetic effects enabling, among other,ah&luation of different levels of toxicity as
well as the identification of pathologies with slomanifestation and organ-specific
pathologies [28].

The compounds submitted to the cancer screen ameraly tested at five different
concentrations for the ability to inhibit sixty fifent human tumor cell lines. The dose
response data is used to calculate three condentgadrameters Gl (Growth Inhibitor), TGI
(Total Growth Inhibitor), LC (Lethal Concentratioflhe compounds screened for anticancer

drugs used in this paper is “In Vitro Cell Liner&ening Project “ (IVCLSP) is a dedicated
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service providing direct support to the anticararerg discovery program. In vitro 60 human

tumor cell line screen stressed to testing drug secréened, the cell lines are grown in
artificial media under conditions that are mimioviko situation.

This work will be mainly based on meta-analysipoblic available data. The majority of the

work will be done on the DTP dataset (http://dtpmb.gov/branches/btb/ivclsp.html) and

NCI database. At NCI 3,000 compounds per year wereened for their potential anticancer
activity. This screen utilizes 60 different humambr cell lines, representing leukemia,

melanoma and cancers of the lung, colon, brainrypuareast, prostate, and kidney. This
screen is unique in that the complexity of a 59 lve¢ dose response produced by a given
compound results in a biological response pattdrnichwcan be utilized in pattern recognition

algorithms.

Chemical databases are becoming a powerful tadiug discovery. Database searches based
on possible requirements for biological activitygdentify compounds that might be suitable
for further analysis or indicate novel ways to astei the desired activity, Chemical databases
have progressed over the past 15 years from beingera repository of the compounds
synthesized within an organization, to being a ptweesearch tool for discovering new lead

compounds [5].

The screened anticancer drugs 3D molecular modedéipgesentation is download from two
web sites, the first is the Developmental TherapsuProgram (DTP) Division of Cancer
Treatment, National Cancer Institute, Rockville ,Matabase of Corina datasets, and the
other is NCI DIS 3D database which is a collectwdr8D structures for over 500,000 drugs,
and the structural information stored in the hulgeaty of drug informations, atoms positions
in 3D coordinates and the connection table is & plathese information, and it is list of
which atoms are connected and how they are cortheatel | used two databases to get the

complete library of drugs used. This final librasy3D arrangement of molecular structure
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representing the drug in 3D space centered to pesdion. This library is in SDF format
contains MOL format of drugs 3D structure of atdmspace and how toms are connected.
This information can be searched to find drugs #tare similar patterns of connections,
which can correlate with similar biological actiyitike in our case toxicity. To search for a
common 3D three points(atoms) molecular structirdrugs for a common structure that
could be dealt with toxicity, but have very diffet patterns of atomic connections, first is to
convert the SDF file format of all drugs to a congsueadable form, then comes how to look
for this structure?. This unknown structure coukl temed as Pharmacophore or more

specific to my research is Toxicophores.

The term “Pharmacophore”, introduced by Ehrlichhia early 1900s, refers to the molecular
framework that carriespborog the essential features responsible for a drydiar(macomn
biological activity. Pharmapcophore are used tdngetssential feature of more than one
molecules with same biological activity. A Databaseliverse chemical compounds can then
be searched for more molecules which share santerédeand where these feature are a
similar distance apart from each other.

Due to stereochemical considerations (i.e., thetpattachments), many pharmacophores
are defined simply in terms of three atoms andethdestances. If more information is
available, other geometric objects and constraiatsbe added, including constraints on data
associated with atoms and bonds. Presently, ma@striaicophores are defined in terms of the
atoms and bonds of the ligand structures. Thisntighased definition has advantages for
input and searching purposes; in the case whersttbheture of the receptor is completely

unknown, it is the only way one can effectivelyidefa pharmacophore model [29].

The interested pharmacophores that is may resdernsibthe toxicity factor of drugs were
found after a long processing programs and calomsittime due to the complexity and
talking in mind all possible considerations of phacophores, and removing the ones that
shows us lower score of occurrences in the phamphexre database.
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Actually pharmacophores searching is processing amd memory size consuming, specially
when the drug compound contains high number of stanad atom connections, so to achieve
optimum and fast result, it's better to use a estcomputer with huge Random Access
Memory (RAM), and high speed processing time aslfgmprocessing in background mode.
The Biocluster computer that | work on it is eigidrkstation SUN V20Z, double processor,
single core Opteron 252 — 4Ghyte RAM, 72GB hardt,di$ Unix operating system, 2 layers
of Network 100Mbyte, and firewall protection networ

The present work focuses dhree-points pharmacophoresomposed of three atoms whose
arrangement therefore forms a triangle in the 3Bcspwe refer as pharmacophoreatty
possible configuration of three atoms or classest@is arranged as a triangle and present in
a molecule, representing thereforepatative configuration responsible for the biological
property of interest. . The pharmacophore can led s search 3D databases and drugs that
match the pharmacophore could have similar biokdgactivity, but have very different

patterns of atomic connections.
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Chapter 1
3D molecular modeling

There are two ways to generate 3D molecular streceither using experimental methods
like X-ray crystallography, microwave spectroscomnd NMR spectroscopy, or using
computational methods like Concord, Corina, andr&goograms.

The advantage of using experimental method is ¢haracy of the output 3D structure, but it
has also disadvantages which is the time consusmagially when manipulating complicated
structures.

In this paper, | will use the computational metrasda source of 3D structure because I'm
manipulating a big library of compounds, and corapahal method is the only way to
accommodate this big library, also with high factdraccuracy when compared with other
computational methods.

There are different computational methods of aut@mm@D conversion in the market like
CONCORD, ALCOGEN, Chem-X, MOLGEO, COBRA, and CORINK addition, | will

use CORINA as source of 3D molecular structurdtierbenefits that explained below.
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The three dimensional structure of a molecule zsaly related to a large variety of
chemicals, physicals and biological properties. Tieed for computer generated 3D

molecular structures has clearly been recognizeldug design and in many other areas.

Since the number of experimentally determined mdércgeometries is limited, therefore
there is a need for methods to predict 3D coordmatirectly from the constitution of
molecule. As a consequence, in the last threedésca number of programs for automatic
2D to 3D conversion have been reported. Among themthe program CORINA
(COoRdINAtes) of different updated versions andasdement from version 1.0 to 3.4 that
automatically generates three dimensional atomigrdipates from the constitution of a
molecule (see Figure 1.1) as expressed by a caondetble or linear code, and which is
powerful and reliable to convert large databasesesferal hundreds of thousand or even
millions of compounds. The program scope, its bdity and speed as well as some special
features for handling large rings and metal comgdeaxake it extremely useful for any study

or modeling purpose that requires 3D informatiothef molecules under investigation [16].

A

S .A"\ -

ad
SN
‘.
Figure 1.1 Generating a 3D model from the constitubf a molecule.

1.1The major benefits of CORINA conversion program:

- CORINA is applicable to the entire range of orgachemistry. Structures which can

be expressed in a valence bond notation can begsed.
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- CORINA does not provide any upper limit to the stfethe molecule or the size of
ring systems.

- CORINA fully considers stereochemical informatiomdagenerates the defined
stereoisomer.

- CORINA processes structures containing atoms wgthousix neighbors. Thus even
metal complexes can be processed.

- CORINA automatically detects stereo centers (tewledd center) and is able to
generate all possible isomers.

- CORINA can process a variety of standard file fasni@r the structure input and
output (e.g. MDL SD/RDFile, SMILES, SYBYL MOLFILEral MOL2, PDB, CIF).

- CORINA delivers structures of high quality. The RM8viation of CORINA built
models from published X-ray structures is among Best of all commercially
available conversion programs.

- CORINA is fast (less than 0.1 sec for small and inmadsized organic molecules on a
common x86 Linux workstation), robust and providescellent conversion rates
(99.5%) for the 250,251 structures of the Natio@ancer Institute (NCI) open
database without intervention or program crash.

- CORINA is general. A database with more than siXioni compounds has been

converted with conversion rate of more than 99%.

They are six automatic 3D structure generators (CORD, ALCOGEN, Chem-X,
MOLGEO, COBRA, and CORINA). To compare all of thesaetomatic 3D structure
conversion in performance and reliability, a 639ay-structure taken as a reference from
Cambridge Crystallographic Database. For all pnograa set of quality criteria was
determined: the conversion rate, the number of naragcrashes, the number of stereo
errors, the average computation time per moledbke,percentage of reproduced X-ray

geometries, the percent of reproduced ring geoesgtthe percent of reproduced chain



geometries, and percent of structures without cemvétoms, and these are more
described in figure 1.2.

1.2 Technical details of the programs comparison rurj16]:

CONCORD ALCOGEN Chem-X MOLGEO COBRA

CORINA

Conversion rate % 84 79 74 79 75
100

Generated 3D models 534 503 473 502 479
639

Conversion rate 84 79 74 79 75
100

Program crash 1 2 0 0 0 0
CPU time(s) 75 433 1431 41856 a8s3 401
Machine type VAX6600 Sun SPARC VAX3800 VAX3800 Sun SPARC SurAge
CPU time(s) VAX6600 75 397 154 4508 1672 368
CPU time(s) per molecule VAX660@.14 0.79 0.33 8.98 3.49 0.58

Also, there is sensitive relationship between qgtar{tonversion rate), and quality (the

degree of reproduction of the X-ray structure), itee efficiency of different programs. For
each program the ordered RM$g value of the non-hydrogen atoms are plotted vetisas

number of converted structures. Thus, the endshefcurves mark the number of totally

converted structures and the ascent of the cutvasacterize the quality of the structures in

term of similarity to the X-ray structures. Thesganqtity-quality characteristics shows again

the different suitability of the seven programsdatomatic 2D-to-3D conversion [16].
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Figurel.2 Quantity-quality characteristics of $®ven 3D structure generators: Conversion

rate vs. RM&yz value of the non-hydrogen atoms

1.3 3D molecular modeling output formats:

There are different types of output format to espréhe molecular structure, how the atoms
located in XYZ plane, how the atoms are connecied, the distances between them [5]. All
of this informations are expressed in differenhdtad formats like (Protein databank PDB,
MOPAC, MDL MOL, SDF, MSC(XMOL) XYZ, CIF, and SYBYIMOL?2).
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The output formats used by Corina is SDF (Struciha¢a Files) format to express the 3D
molecular structure of the compounds, and insidéisfMOL (MOLecule) format to express
each compound structure separately [17].

1.3.1 overview over SDF format:

An SDFile contains the structural inforratiand associated data items for one or more
compounds. The format is expressed as follow:

[MOL file]

[Data Header]

*c| *d *| [Data]

[Blank line]

$$$

Where:
*| is repeatexdt £ach line of data
*d :is repeated éach data item

*C is repeated éach compound

A [MOLfile] block has molfile format as will be described &xh
A [DataHeader] (one line) precedes each item of data, starts gvigater than (>) sign, and
contains at least one of the following:

-The field name enclosed in angle brackets.

20



- The field number.
- The compound internal and external registry nusberost be enclosed in
parentheses.
A [Data] value may extend over multiple lines containing@@00 characters each.
A line beginning with four dollar sign@$$$)terminates each complete data block describing
a compound.

1.3.2 MOL formats structure:

A molfile consists of a header block and a @mtion table. For example the molfile of

alanine compound corresponding to the followingcdtire:

L-Alanine 13 Chiml

L-Alanine (13C)
GSMACCS-11101691153662D 1 0.00366 0.000000 Header Block

6 50 0 1 0 3 V2000| Counts line
-0.6622 0.5342 0.0000 C 0 0020 O
0.6622 -0.3000 0.0000 C O 0000 O
-0.7202 20817 00000 C 1 0 @ O O Atom Block| Ctab
-1.8622 -0.3695 0.0000 N 03 0000
0.6220 -1.8037 0.0000 O 000000
1.9464 0.4244 0.0000 O 0 50000

12 1000
13 1100
1 4 1 0 0 g Bond block
252 00O
26 1 000
MCHG 2 4 1 6 -1
M ISO 1 3 13| Properties Block
M END

21



Where, Header Block: Identifies the molfile: molecule name, user's namegram, date,
NSC number of compound, CAS-RN (Chemical Abstraatvi8e Registration Number), and
other miscellaneous information and comments. &tab Block is the Connection table
contains structural relationships and propertiea oollection of atoms. The atoms may be
wholly or partially connected by bonds. The atorasnhers on the structure correspond to
atom numbers in the Ctab. An atom number is asdigoeording to the order of the atom in
the Atom Block [17].

1.3.3 Ctab format structure:

The connection table (Ctab) is the most valuabfermation that is describing the

compound, therefore it contains a multi-blocks ésatibe the compound, and it's as follow:

¢ Counts line: Important specifications here relate the numbeatoms, bonds, and
atom lists, the chiral flag setting, and Ctab \arsi

¢ Atom block: Specifies the atomic symbol and mass differenicarge,
stereochemistry, and associated hydrogens foraaahn

¢ Bond block: Specifies the two atoms connected by the bond] bhgpe, and any
bondstereochemistry and topology (chain or ring prapsjtfor each bond.

+ Properties block: Provides for further expandability of Ctab feature

- The Count line:

The structure of Counts line could be represensatjua set of characters:

aaabbbllIfffcccsssxxxrrrpppiiimmmvvvvv

Where:
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aaa = number of atoms (current max 255) [Garjeri
bbb = number of bonds (current max 255) [Geher
Il = number of atoms lists (max 30) [Query]

fff = (obsolete)

ccc = chiral flag: O=not chiral, 1=chiral  [Gengr

Sss= number of stext entries

xxX = (obsolete)

rrr = (obsolete)

iii = (obsolete)

mmm = number of lines of additional properties [Eeq]

- The Atom Block:

The Atom Block is made up of atoms lines, one fipe atom with following format:

XXXXX. XXXX.YYYY.YYYyzzz77.227z aaaddcccsshhhbbtHiHHrrriiimmmnnneee

where, the values are described as follow:

Xyz = atom coordinates  [Generic]

aaa= atom symbol from periodic table = [Generic]

dd = mass difference (-3,-2,-1,0,1,2,3,4) or O ifdr@y these limits [Generic]
ccc= charge, 1=+3,2=+2,3=+1  [Generic]

sss= atom stereo parity,0=non stereo,1=0dd,2=evemBrasked [Generic]
bbb = stereo care box, O=ignore stereo,1=stereo dflddaond

vvv = valence, 0=no marking, 1-14 =zero valence [E&eh

HHH = HO designator, O=not specified, 1=no H atomsvedid

rrr = not used
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lii = not used
mmm = atom-atom mapping number, 1 — number of atoreafRon]
nnn = inversion/retention flag, 0,1,2

eee= exact change flag, 0,1
The Bond Block:
The Bond Block is made up of bond lines, one liaelpnd, with following format:
111222tttsssxxxrrrccc
Where, the values are described as follow:
111 = first atom number [Generic]
222= second atom number [Generic]
ttt = bond type,1=single,2double,3=triple,4=aromatic
sss= bond stereo,0=not stereo,1=up,4=either,6=dowanfc]
XXX = not used
rrr = bond topology, O=either,1=ring,2=chain
ccc= reacting center status,1=center,-1=not a cé&stenmarked

The Properties Block:

The Properties Block is made up of mmm lines ofitamithl properties, where mmm

is the number in the counts line. It also inclu@&srge, Radical, or Isotope lines.
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1.4 Adapting the 3D molecular structure data:

The 3D SDF format of molecular structure of conmnpas composed of sub MOL file
format to express each compound independently. problem arises how to store this
data in accessible format, and each compound fsréift from the other in number of
atoms and number of bond. It means that the MQdifil shrinking and decompressing
according to number of atoms and bonds, also thubétormat of SDF that represent the
3D molecular structure is not organized in the faomead it by R program. Therefore a
program is implemented to convert the data to tbftdrm to read it by mysqgl or R
program.

The program will do the following, first the all,.D& file of all compounds which
contains around half million compound is read iBtocluster memory as text file, then a
program of error correction will manipulate the remtion any error deals with read data,
like mixed number of number of atoms and numbebaifds, this specially happened
when the compound contains number of atoms mone 1 atoms, some times the
number of atoms and bonds is mixed, or bond atommextion block table in the values
beyond 100 the bond number of first and second &amnixed which will let the program

to run in “run time error”.

Next the data is fed in program to read each,itamd store it in related variable of the
compoundwhile the program will automatically shrink or mpress the MOL file
according to read value of number of atoms and murabbonds, and will generate a

table comparable to Figurel.4.



# of bonds

# of atoms

» Chemical Abstract Service Reg. No.

» Unique drug identifier

Figure 1.4 Mdtrix format of molecular 3D data structure”

The fields of the table that will describe the campd 3D molecular structure is organized
as:
1) NSC
2) CAS-RN
3) Number of atoms (noa). |
4) Number of bonds (nob) Ctab (Connectaiie)
5) Atom Block
6) Bond Block.

The Atom Block is composed of the following fields:

Tx[v [z [as 1

2t



X = atom coordinate
Y = atom coordinate
Z = atom coordinate
as = atom symbol

dd = mass difference
cc = charge

Ss = stereo parity

hh = hydrogen count

vV = valence

while the Bond Block is composed of the followinglds:

@ ?

1% atom = First atom number

2" atom= Second atom number

bt = bond type

bs = bond stereo

bg = bond topology

cc = reacting center status

The data of all compounds are read, then spiltwieds instead of paragraph for each line,
then another Perl program is generated to trurtb&teouble and triple spaces, to minimize
the overhead of program processing, next comes eowection program to correct miss
attached number due to errors generated by Comftsvese while calculating the 3D

molecular structure positions.
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All the data of compounds are stored in matrix,hesmn is describing all the information
about one compound. One major problem concerneadrdatling deals with how to control
the program to pick up interested values and storedlated variable in the matrix, because
any miss allocation will result faulty value picinand of course a wrong variable stored in

the matrix, this due to variable size of 3D molecwstructure of the compound.

Program to conver

Error raw SDF to matrix

Correction

Feed the
result to
mysq|l
Corina SDF~ server
500,000 comp.

R-MYSQL package
R environment

Figure 1.5 Digitizing 3D molecular compound

The output matrix is then fed to relational dateb@dySQL database), specially that my data
around half million compound, and this consumestai RAM memory and processing time
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(Microprocessor or CPU time), and the benefit of9@) to make easy the operations of any
compound process in the database library.

To adapt this data to R environment, a R packagledcgdR-MySQL) to make a bridge
between MySQL environment and R. R-MySQL is a comrnmierface between R language
and database management systems (DBMS).

Finally, the database of all compounds are readctess and process under R environment,
specially that in the further steps we will needotof calculations and searching in the
database, these data flow is described in figue 1.

1.5 Algorithm of 3D molecular data structures managments:
The following main points description of the flowagram used to convert SDF file to matrix
form, this process toke around 8 working days oécexion inside the Biocluster in

background mode due to huge file size of all irdey@ compounds, and different parameters

used to express the compound structure and positigpace.
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Figure 1.6 flow diagram of converting raw SDF filall compounds to matrix forma




First the program read all half million compoundsRAM memory as ASCII text including
tabs and spaces, and because program read thasdane text each line is treated as one text
line, so another program is done to break eachtéireinto a set of words to treat each word
independently, and another routine implementedrdacate double and triple spaces, the
program will manage the accurate position of thedugariable that represents the molecular
structure of compounds because any mistake in mgadill result faulty variable and in

consequnce wrong connection table size and data.

Finally the result a complete organized library56D,000 compounds of all information like
NSC, CAS-RN, atom and bond matrices in sequentc#ro
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Chapter 2

Anti-cancer screened drugs

The compounds submitted to the cancer screen ameraly tested at five different
concentrations for the ability to inhibit sixty fifent human tumor cell lines. The dose
response data is used to calculate three condentrgiarameters GIl, TGI, LC. The
compounds screened for anticancer drugs useddsrp#per is “In Vitro Cell Line Screening
Project “ (IVCLSP) is a dedicated service provididigect support to the anticancer drug
discovery program. In vitro 60 human tumor celleliscreen stressed to testing drug and
screened, the cell lines are grown in artificialdmeunder conditions that are mimic in vivo
situation.

This work will be mainly based on meta-analysipoblic available data. The majority of the
work will be done on the DTP dataset (http://dtpmh.gov/branches/btb/ivclsp.html), and
NCI database. At NCI 3,000 compounds per year wereened for their potential anticancer
activity. This screen utilizes 60 different humammbor cell lines, representing leukemia,
melanoma and cancers of the lung, colon, brainrypuareast, prostate, and kidney. This
screen is unique in that the complexity of a 59 lve¢ dose response produced by a given
compound results in a biological response pattdrnichwcan be utilized in pattern recognition

algorithms.
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The aim is to prioritize for further evaluation,nélyetic compounds or natural product
samples showing selective growth inhibition or édling of particular tumor cell lines. This
screen is unique in that the complexity of a 59 lve¢ dose response produced by a given
compound results in a biological response pattdnchwcan be utilized in pattern recognition
algorithms. Using these algorithms, it is posstblassign a putative mechanism of action to a
test compound, or to determine that the responierpds unique and not similar to that of
any of the standard prototype compounds includederNCI database. In addition, following
characterization of various cellular molecular &sgn the 59 cell lines, it may be possible to

select compounds most likely to interact with acdpeemolecular target.

2.1 Methodology Of The In Vitro Cancer Screen &Screening results:

The human tumor cell lines of the cancer screepartel are grown in RPMI 1640 medium
containing 5% fetal bovine serum and 2 mM L-glutaeniFor a typical screening experiment,
cells are inoculated into 96 well microtiter plateslO0 pL at plating densities ranging from
5,000 to 40,000 cells/well depending on the dowptime of individual cell lines. After cell
inoculation, the microtiter plates are incubated3@t C, 5 % CO2, 95 % air and 100 %
relative humidity for 24 h prior to addition of esqimental drugs.

After 24 h, two plates of each cell line are fixadsitu with TCA, to represent a measurement
of the cell population for each cell line at theei of drug addition (Tz). Experimental drugs
are solubilized in dimethyl sulfoxide at 400-foltktdesired final maximum test concentration
and stored frozen prior to use. At the time of daddition, an aliquot of frozen concentrate is
thawed and diluted to twice the desired final maximtest concentration with complete
medium containing 50 pg/ml gentamicin. Additionalif, 10-fold or %2 log serial dilutions are
made to provide a total of five drug concentratiphss control. Aliquots of 100 ul of these
different drug dilutions are added to the apprdpriaicrotiter wells already containing 100 pl

of medium, resulting in the required final drug centrations.
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Following drug addition, the plates are incubatadain additional 48 h at 37°C, 5 % CO2, 95
% air, and 100 % relative humidity. For adheretiscéhe assay is terminated by the addition
of cold TCA. Cells are fixedh situ by the gentle addition of 50 pl of cold 50 % (WNGA
(final concentration, 10 % TCA) and incubated f@ ®inutes at 4°C. The supernatant is
discarded, and the plates are washed five timds taji water and air dried. Sulforhodamine
B (SRB) solution (100 ul) at 0.4 % (w/v) in 1 % facecid is added to each well, and plates
are incubated for 10 minutes at room temperatufter Ataining, unbound dye is removed by
washing five times with 1 % acetic acid and thetgdaare air dried. Bound stain is
subsequently solubilized with 10 mM trizma based d@dhe absorbance is read on an
automated plate reader at a wavelength of 515 @ms&spension cells, the methodology is
the same except that the assay is terminated mgfsettled cells at the bottom of the wells
by gently adding 50 pl of 80 % TCA (final concetiba, 16 % TCA). Using the seven
absorbance measurements [time zero, (Tz), contmith, (C), and test growth in the
presence of drug at the five concentration levEij,(the percentage growth is calculated at

each of the drug concentrations levels [32], [33].

Three dose response parameters are calculateddoregperimental agent:
1. Growth inhibition of 50 % (GI50) is calculated frof(iri-Tz)/(C-Tz)] x 100 = 50,

which is the drug concentration resulting in a 5@¥uction in the net protein increase

in control cells during the drug incubation, i#e concentration needed to reduce the
growth of treated cells to half that of untreatedntrol cells).

2. The drug concentration resulting in total growthibition (TGI) is calculated from Ti
= Tz, which is the concentration required to cortgllehalt the growth of treated
cells.

3. The LC50 (concentration of drug resulting in a S@4duction in the measured protein
at the end of the drug treatment as compared tcathitde beginning) indicating a net
loss of cells following treatment, i.e. the concation that kills half of treated cells, it
is calculated from [(Ti-Tz)/Tz] x 100 = -50.
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Where, the measurement unit is ug/mL

2.2 Dose response parameters for three concentratis:

They are eleven different parameters to expresst¢heened drugs used to treat cancer of

different cell lines, and they are as follow:

1)
2)
3)
4)
5)
6)
7
8)
9)

NSC number or, the NCI's internal ID number .
Concentration unit, either (Molar) or, (ug/mL).

Log of highest concentration tested.

Panel name for the cell line.

Cell line name.

Panel number of the cell line.

Cell number of the cell line.

- Log of the result (TGI50, TGI, LC50 dependingtbe file).

Number of tests for NCS and cell line.

10)Maximum number of test for this NSC .

11)Standard deviation (StdDev) for the {pgf the results average across all tests for this

NSC and cell line.

Here, in this paper I'm interested on Lethal Comion (LC50), which will give me a good

indication about drug toxicity, the cancer screewledg is updated periodically, the last

release data that I'm working on it is updated Match 2007.

2.3 Cell line names and Panel names:

they are 60 Cell line names, and in correspond aBepnames could be switched

according to phenotype data used in meta data 80Lfe, and it's shown in the following

table:
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Cell Line Name Panel Name
CCRF-CEM Leukemia
HL-60(TB) Leukemia

K-562 Leukemia

MOLT-4 Leukemia
RPMI-8226 Leukemia

SR Leukemia
AS549/ATCC Non-Small Cell Lung
EKVX Non-Small Cell Lung
HOP-62 Non-Small Cell Lung
HOP-92 Non-Small Cell Lung
NCI-H226 Non-Small Cell Lung
NCI-H23 Non-Small Cell Lung
NCI-H322M Non-Small Cell Lung
NCI-H460 Non-Small Cell Lung
NCI-H522 Non-Small Cell Lung
HCC-2998 Colon

HCT-116 Colon

HCT-15 Colon

HT29 Colon

KM12 Colon

SW-620 Colon

COLO 205 Colon

SF-268 CNS Central Nervous System
SF-295 CNS

SF-539 CNS

SNB-19 CNS

SNB-75 CNS

U251 CNS

MALME-3M Melanoma

M14 Melanoma
SK-MEL-2 Melanoma
SK-MEL-28 Melanoma
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SK-MEL-5 Melanoma
UACC-257 Melanoma
UACC-62 Melanoma
LOX IMVI Melanoma
IGROV1 Ovarian
OVCAR-3 Ovarian
OVCAR-4 Ovarian
OVCAR-5 Ovarian
OVCAR-8 Ovarian
SK-0OV-3 Ovarian
786-0 Renal
A498 Renal
ACHN Renal
CAKI-1 Renal

RXF 393 Renal
SN12C Renal
TK-10 Renal
UO-31 Renal
PC-3 Prostate
DU-145 Prostate
MCF7 Breast
NCI/ADR-RES Breast
MDA-MB-

231/ATCC Breast

HS 578T Breast
MDA-MB-435 Breast
MDA-N Breast
BT-549 Breast
T-47D Breast




2.4 Reading the meta LC50 drugs file:

The Lethal Concentration LC50 meta file downloaccompressed ASCII file, and this
file are processed and stored in other table iessible format by R language. Each NSC row
describes different screened drugs log. values ta@1Cell line names of LC50 file.

The number of available screened compound are 448B8%ounds, and these compounds
that I'm going to work on it. The program initialgreate an empty matrix of 159 columns by
44233 rows, and the software will fill each blarédl ¢hat is represents to log screened value

by appropriate value until all compounds are reagdh@wn in figure 2.1.

Reading
LC50raw

Extracting LC50 data of NSC, Cel
line nam, loa values for Mole

A 4

Creating an empty matrix contains
uniaue NS=(44233), and cell line

v

Filling & organizing empty matrix from
original memorized data fi

v

N Until eof

=4423-

vV

Create an output matrix text file & R object
data values of result for: NCS, cell lines, log

vialiiAA

Figure 2.1 Matrix of all compound screened values @ll cell lines
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The output matrix is shown in figure 2.2, the phgpe data could be expressed as cell
line names or, panel names for each NCS log. sedeesiue. Some of compounds in some

panel names are left as non expressed in log. vaifexpressed as “NA” data variable.

Panel/ Cell ® Lo5o

Panel / Cell line names

S Log. values

Figure.2.2 Output matrix file of screened drugs

The output matrix is saved as object data, ane#dy to be accessed using MySQL
program since each compound is described in romedp of screened value for each panel
name or cell line when read as expression set.

The compounds found here in screened compoundaetiieved from three dimensional
library molecular modeling of drugs, and the otél be discarded because my work only

based on screened anticancer compounds.
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Chapter 3

Detecting the high toxic compounds

After downloading both 3D molecular structure df @dugs library, and processing them to
MySQL format, and downloading the anti-cancer seeeleLC50 drug library and converting
to tabular computer readable format, and to expresset, now the back bone data is ready

for the target work.

To detect the Toxicophores responsible for thecitxiof the drugs, first, | will start with
extracting very high toxic compounds which showsexely high value of toxicity screened
value over all cell lines, these high toxic compdsimill be isolated to investigate them. This
group will be called very high toxic group, butdrtract these compounds, | have to find the
threshold value of high toxicity, this value wik lnetermined according to graph or histogram
plotted for all sets of compounds to see wheretthing edge of high toxic compounds

starts.
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Next, collecting the compounds above the threshalde and which shows high toxicity

factor over different cell lines. Then finally gqmng these compounds to a similar groups
according to similarity for an important reasonl\i illustrated in this chapter.

In figure 3.1 displays the density distribution all compounds over measured toxicity

screened values.

10

Density

M = 2481235 Bandwidth = 0.015071
Figure 3.1 All toxic compounds expression set
The red line indicate to high toxicity thresholduain log value , this value could observed

as 5.002, to display the details of high toxiciympounds over bigger scale, this shown in
figure 3.2 while the highest toxicity index valisel2.38.
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Figure 3.2 High toxicity compounds expression set
3.1 Filtering the high toxic compounds:

During this step the screened drugs expresseébrdata base is applied to R program to

nominate the high toxic compound from all data set.

A necessary Biobase, and R library functions is mloaded, then filter function program is
applied over all compounds to collect only compautidat shows high toxicity screened
value over most cell lines, these compounds shbale toxicity screened value more than
threshold value which is 5, and result compoundddcde considered as very high toxic
compounds, then filtering again the cell lines atot show expressed value over cell lines

among all NSC's.
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The final result was 94 compounds of different gtuees, some of them are complicated
structure compared to other. The 94 compoundsvisdsas expression set with two phenodata
(cell line names, panels names).

To process these 94 compounds for goal of my witgkimportant to make a connection
between output 94 compounds result, and the 3Daulalestructure built. Therefore another
software routine is done to collect automaticallg tompound 3D structure according to
output of screened compounds because I'm intergstadvestigate for the 3D structure
pattern that could be responsible for the toxicgo to keep in mind that | don’t know how
the structure looks like, but I'm carrying on stiéc rule says, similar biological activity is
highly related to the some part similar 3D struetur

The problem that | have faced is that there areesoampounds that NSC number is high
(more 700,000), i.e. for example compound NSC nun722518 is not covered by Corina
and NCI data base. Also some compounds coveredlbgaand not covered by NCI, also |
have faced of centering the compounds to homeipogi€oordinate xyz=0,0,0) because any
miss allocation will affect the result of the sdard@herefore all two databases (Corina and
NCI) are centered to same zero position.

The number of remaining compounds that are availabthe form of 3D molecular structure

which covered by used two databases is 76 compounds

3.2 Splitting the high toxic compounds group:

The list of high screened NSC compounds numbers are

50256, 53292, 68989, 103837, 114340, 221267, 23HADEH62, 328426, 363979, 363980,
363981, 378727, 378731, 378732, 378734, 3787353509394, 611747, 617668,
625517, 626369, 626370, 626371, 628082, 6335558¥31641319, 641321, 648766,
662779, 662823, 667642, 670038, 670547, 67434BRN 4674351, 674500, 674504,
674509, 676307, 677083, 684425, 684428, 684900®EB484903, 684904, 684905,
684906, 684907, 684908, 685968, 688217, 68822 BB&H88223, 688235, 688512,
691911, 693564, 693565, 693567, 700367, 7003686M)KF00370, 700371, 700372,
700373, 700657, 702923, 702924, 702925.
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In figure 3.4 displays the 3D molecular structufrdigh toxic compounds, and to see how log
values for panel names expressed of 94 high tommpounds using TMEV application

software, and to see how the expressed value aresented in figure 3.3

HEEE S el

Figure 3.3 TIGR Multi Experiment viewer (TMEV) oésult
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The question that may arises to mind when readiagtib title of this chapter about splitting,
why splitting the group of high toxic compound tdoggroups?

The answer is: to search for common pharmacophooudgh high toxic group there are a
problem of computer hardware limitation due to pssing complexity required to give the
answer, and this due to complexity of some compastnacture, so when the structure is
more complicated, the computer will need more timgive the answer. After | consider the
complexity of compounds, and processing time regulry Biocluster, | had found that the
estimated time required to give the answer is alofityears of execution all time day on
Biocluster.

Therefore, | had decided to split the problem i problems to overcome this problem of
execution time required, and to execute each supgseparately, then mixing the result as
the output of main group. These groups are dividactording to global similarity, each

subgroup contains the compound that there arecapeof similarity between them.

RMSD (Root Mean Square Deviation) technique is iappio classify the similarity between

compounds into similar groups to minimize procegsime and allocated memory. RMSD is
the most accepted quantitative method used to cargieuctural folding, the output result

represent to the geometric difference between a phistructures. Finding the best

superposition is done using “standard pair wisstleguare fitting algorithm”

3.3 RMSD global similarity comparing technique:

To compare pairs of structures, the most natuagl to compare two objects each
represented by a collection of elements, is tdity elements correspondence between two.
More formally for two objects A and B having elen®n,&,...,an,, and B,by,...b,

respectively, we define an equivalence as a sghiof L(A,B)=(a.b;).(82,02),....(a.by).

The equivalence is called an alignment if the el@sef A and B are ordered and if the pairs

in L(A,B) are co-linear, i.e., ifiKi><...<i and j<j.<....<j. Many different equivalence exits
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and a scoring function is needed to rank them arliscriminate good equivalence from bad
ones.

The scoring equivalence assumes to assign higlesaluscores to ‘good’ equivalence of
comparison. The score of an equivalence will bé ffithe pairs are between elements with
similar properties (for coordinates; if they supesitioned well) and if relation between pairs
of paired elements are similar.

When comparing two structures, the alignment ofspstiructure should be in right position,
the comparison handled by putting on structurehenap of the other, so that the
equivalenced elements come as close as possit#eoldihined distances can be used to
qguantify the similarity and to score the equivakenthis is called superposition of structures
and if the geometry of the structures are not chdng the process, it is referred as rigid-body
superposition.

Algorithm exists for superposing structure A orusture B by finding the superposition to
minimize the coordinate root mean square devigiRMSDc) , the RM$ is the norm of
distance vector between the two sets, providedttiggthave been optimally superposed and

it's given by this equation:
RMSE (LINZNop (XA-X)2)H2

Where (%*,X3:5),... (Xn*,Xn®) are the coordinates (after superpositioninghef

equivalenced elements.

An alternative measure is distance RMSD (RM¥LThis alleviates the need for finding

translation and rotation of one of the structumes ia given by:

RMSD= 1N (ZNog 2Ny (Y — B)?)™?
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Where each ' is the spatial distance between elements i andhigrstructure T, the
translation is effected by relocating the origirtloé coordinate system of each structure, and

finding the best superposition, and N is the nundb@toms.
Where, d = 6>+ (% - Y)°+ (3 2)°)"

d : Euaid distances difference
X, Y, Z : are the coordeaf compound in cubic lattice

This technique is effective in measurement of disbailarity after superposition the two
molecules on over the other to rotate, translate getting best RMSD value where this
value represents the geometric difference betwagn pf structures. A large RMSD value
for two structures signifies a large discrepandyeen pairs. Conversely, an RMSD value of

zero indicate that the structure are exactly timeesa

3.4 Results of high toxic groups:

After applying RMSD techniques to 76 compourtdscsures to group the compounds with
respect similarity measure between them. Accortbrtge number of similarity the groups
are divided, so they are three main groups whichhingh number of similarity between the
compounds (7 to 10 similarities), while they amgh¢isubgroups which contains smaller
number of similarity (2 to 5 similarities), and teas one group contains the compounds that
there are no similarities between them and | vall ¢t ‘mixed’ group.

The new subdivision of the main group to three ngaoups, and eight subgroups, and one
other called mixed group, the groups classificatoas follow:
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Main group | :

363979, 363980, 363981, 378727, 378731, 37873Z,BNB78735, 378736, 617668.

Main group I1:

609394, 700367, 700369, 700371, 700372, 700373680

Main group I11:

684901, 684902, 684903, 684904, 684905, 68490&084684908.

Subgroup i:

641318, 641319, 641321, 221267, 641320.

Subgroup ii:

626369, 626370, 633555, 626371.

Subgroup iii:

702923, 702924, 702925.

Subgroupiv:

693564, 693565, 693567.

Subgroup v:

674500, 674504, 674509.

Subgroup vi:

688221, 688222, 688223.

Subgroup vii:

532292, 68989.

Subgroup viii:

667642, 670038.

Subgroup mixed:

50256, 103837, 114340, 239072, 295662, 328426,47, 625517, 628082, 648766,
662779, 662823, 674349, 674350, 674351, 6763008&x 684425, 684428, 685968,
688217, 688235, 688512, 691911, 700370, 700657.
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All of these main groups and subgroups are claskdccording to the result score of
RMSD value, and in figure 3.5 shows one of the gsoilne 3D molecular structures of high

toxic compounds (main group lll) as an examplenmwshow much they are similar.

Figure 3.5 Similar high toxic compounds main grdllipccording to RMSD score value

After classifying the groups into subgroups, nowah start searching for pharmacophores

shared in each group, then comparing the pharmaceglthat are shared between all groups.
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Chapter 4

Pharmacophore searching

The goal of computational toxicity prediction is describe possible relationships between
chemical properties as well as biological and toligical process or mechanism.

A very important part of drug design is get drugefrffrom toxicity, therefore prediction of
pharmacophore structure, or detailed quantitatinegliption of small molecule binding can
require sophisticated computational techniquesallghmprocessing techniques, and a lots of
computer time.

And this is one of the major problem that | hadethdor searching for a toxiphore common
through all compound is computer hardware limitat&nce I'm running my program in
background mode in cluster computer and not on abB€ or notebook , and the problem
become worse if the structure of compounds are ptioated because the software
programmed should take all consideration for sugleand searched pharmacophore through
all interested compound.

A pharmacophore is commonly defined as an arrangeafenolecular features or fragments
forming necessary but not sufficient condition foiological activity. The concept of

pharmacophore mapping strives to discover the camtime@e dimensional patterns present in
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diverse molecules that act at the same enzymeceptor target site. Such pattern can be
defined by distances between features (atoms,imadtgroups or regions of atoms of a
particular type or with particular property). Irhet word a pharmacophore is a specific, three
dimensional map of biological properties commoalt@ctive conformations of a set of
ligands which exhibits a particular activity. Thebplem of pharmacophore identification is to
generate the pharmacophore from structural datidesy ligands and their interaction with
receptor, a pharmacophore identification is commyoatluced to the problem of finding
points common to all functional ligand configuratj@nd interested pharmacophore could be
indicated by common or most repeated set of attmsscalled (NP - complete) or, “ Largest
Approximate common point set problem” as describadble 4.1 to describe the frequency
of all atoms (ten atoms types) in high toxic commibgroup [2].

Atom type C O N H P F Cl s Br Ni

No. of repetition 2973 795 223835 1 7 12 11 4 1
4 decimal digits

No. of repetition 167 46 15 191 1 7 12 10 3 1

rounded 2 decimal

Table 4.1 frequency of repeating atoms in highcgxoup

4.1 Atoms and Pharmacophore relationship:

The number of 3-points pharmacophore is mainly ddpet on number of atoms, so when
number of atoms increase the number of pharmaceghorease, and they are mathematical
relationship describe this phenomena, and tableszribe the direct proportional between

number of pharmacophore with number of atoms :
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Number of pharmacophora= (n(n-1)(n-2))/6

Where, n is number of atoms

n 3 4 5 6 7] 50 100 150 200 ||

A 1 4 10 2 3% 196p0161700| 55130( 1313éﬂ)0

Table.2 Relation between number of pharmacophoyavith number of atoms (n) in one
compound

Throughout this paper we represent the 3D struatfi@ molecule as a set of pointskA.

These points correspond to the 3D coordinates efatioms of the molecule (for a given
arbitrary basis of the 3D Euclidean space) [31} Hrey are labeled with some information

related to the atoms. More formally, we define denalem as

where |[m| is the number of atoms that compose the molecute arx; denotes to atom

position, |; denotes to inter atomic distancé,denotes the set of atom labels The label is

meant to contain the relevant information to chi@rdwe a pharmacophore based on atoms,
such as the type of atom (C, N, O,...). The thr@etp pharmacophores considered in this
work correspond to triplets of distinct atoms oé timolecules. The set of pharmacophores of
the moleculen can therefore be formally defined as:

P(m) = { (p1, P2, p3) [! M>, p1# P2 #p3 }

Where, p denotes to pharmacophores structures, more gbnetta@ set of all possible

pharmacophores is naturally definedPas ( &x LP to ensure the inclusidd(m) | P.

4.2. Searching for unknown pharmacophore techniques
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The pharmacophore is represented by the nodesdged ef a 3D chemical graph represents
the atoms and inter-atomic distances (where ‘atmay include pharmacophore points such
as lone pairs) [1], and type of connection is @tsportant, in figure 4.1 there are two atoms
of Oxygen and one atom of Nitrogen represents teeain pharmacophore with fixed
distance in Angstrom, and tolerance values, thesgepermined atoms and distances could be

in different orientations in three dimensional spac

o a = 8.62% 0.58 Angstroms

(6]
/ \ b = 7.08% 0.56 Angstroms
/ a \ c=3.3570.65 Angstroms o

Figure 4.1 Searching for a pharmacophore

They are different techniques in pharmacophore cheay like in my case 3-points
pharmacophore searching which could be modified-pwints searching when the results
pharmacophore shares two points or atoms, so st ris 4-points pharmacophore, in my

opinion searching for 4 points or more pharmacotyming to be tedious work not only for
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the programmer but also for the hardware useds@]Jmore computer processing time, and

more memory. One of these techniques [14] are:

4.2.1 “Geometric hashing” which is developed for image recognition proasgsin
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computer vision, this is flexible technique hasrbeedely studied [6], and has been
shown to be quite successful in biological problesush as active site recognition
and identification , functional annotation, and hacophore identification.
Geometric Hashing was designed so that during poegsing phase, the system will
learn aMotif (series of points in space). Then during an onpnecessing phase, the
system is exposed to new pattern of points, theget from which it is to identify a
subset of reasonable geometric similarity to théfr{@j.
The measurement that Geometric Hashing uses spthteal relationship betweéhplets
of points in 3D. Since three points in space defingiangle in a plane, we can take
several simple measurements of this triangle, as®ltbhese measurements to compare
with other 3-plets, regardless of the orientatibthe other 3-plets, and the 3-plets stored
in a hash bin associated with its key .

After the triangles of the source motif have akkbgenerated and stored, preprocessing
is complete. The hash table can be stored for tat®gnition of this motif in other
structures later, and never needs to be recédcula
Now that source motif is processed and stored g&h hable, then compare it with target
pattern. This is the primary purpose of the Onkmnecessing phase.

Much like the decomposition that occurred with gwirce motif , repeat the same
decomposition process for the target pattern. Heweeach time a new 3-plet is
generated, rather than storing it, calculate treh ey for this 3-plet and then query the
hash table, querying the hash table for the keylte# finding several similar 3-plets

which were part of the source.



4.2.2 “Clique searching”: which is uses graph theory techniques [10] towérting the
Largest commompoint set of following definition [2]:

- Graph Nodes: For a node a, all pairs,awith al from ligand 1, a2 from ligand 2.

- Graph Edge: an edge (a,b) exists if the paiisspjaand (h,b;) can be aligned
simultaneously. (i.e. the distance betweearal i, and a and b is very similar.

This means that Graph G, findicjque a set of nodes;nn,, ... nc where for any i, |
less than k, the edgei ) is in G, implies finding a set of reasonably caemt points
common to bothigand structures. However, finding the largesgud is a Max-Clique ,
standard clique detectioalgorithm can be applied to detect cliques in . atldition, if
multiple ligands are available fpharmacophore identification, then one can be chasea

reference, m and the rest compared twifind a consensus pharmacophore [10].

These two techniques is time consuming due to nuwibealculations performed to calculate
Euclidian distances and twisting pharmacophore gke tin consideration all possible
pharmacophores consideration.

4.3 Applied trial method to search pharmacophore:

This paper follow this strategy of above techngjuend because pharmacophore is related to
repetition of certain atoms, and certain fixed alises, one of attempts done to establish the
goal is to find the Most Common Atoms (mca) throwh76 high toxic compound. All
atoms are rounded to nearest two decimal digitd, tanapply tolerance of (+/- 5%). A
tolerance is used to compensate for rounding efmrslistances and to accommodate the
variation in the distance that may be acceptabtedeptor.

Min(d x2) > max(d.,2) + tolerance

Max @ x2) > min(d ) - tolerance
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Then main high toxic group is subdivided to differgroups according to atom type, and as
we can see from table.1 that the atoms Carbond&ygen (O), Nitrogen (N), Hydrogen (H)
are the mostly occurred frequent atoms in the hmic compounds, and these atoms
considered as the atoms interested in searchechpbaphore structures. A programs done to
find the most occurred atoms where the positioepeated in three dimension, and these mca
(most common atoms) are saved in one table, andttimes that are not chosen because they
are different across all high toxic compound angliad to tolerance program to gave it a kind
of margin of the original value and to see if ip@ssible to find similarity with most common
atom table , and these atom positions are savedher table, then two resulted tables are
saved in one table called most common x atoms talliere x denotes to atom type table,
these process is explained in figure 4.2

> Apply +/-5% Check in non Add it to mca

| mca —» |

> tolerance selected table
atom:s

l
()

Figure 4.2 Most common atom (mca) flexible searghin

After this procedure, and defining the mca fronfedént atom types, now | To lighting program
need to show only the positions of mca of differatam types across the high

toxic group, this procedure | will call it lightingso by activation only interested point
(lighting it) as shown in figure 4.3, the other rioterested positions will be ignored, and in

final array I will have only the most occurred gamsis that | may interested on it to locate the
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pharmacophore. The advantages of this technigteerrgnimize non interested points and in

result | will get faster execution and answer ahntérested pharmacophore in less time, and
this technique going to be helpful if the researdrows the pharmacophore structure, but
there are one important disadvantage that somes tiheepharmacophore is not always dealt

with certain position.

In my thesis | stopped following this algorithm base first | don’t know the pharmacophore
that I'm looking for it, and in second taking in deration different toxicophores may

located at different orientation positions.

Li ghti ng nca
NSC

o »| NSC, «— NSG,
NSC,

mca
”N“

v

mca
”HC‘

mca
”OC‘ NSC _ NSC

v

? 9L

Figure 4.3 lighting algorithm to activate only thiea from all 76 high toxic compound,
Where, * denotes to output of flexible searching



4.4 Applied method to search for Pharmacophores:

In reference to chapter 3.4 and after classifyirggtigh toxic group to separate groups (mains
and subs), now | will start explain the strategyttis followed to reach pharmacophore that
could be responsible for the toxicity of anticandergs.
A program in C language is done to search for phaophore between main Groups
(GI,GII,GlII), subgroups (gi, gii, giii, giv, gvgvi, gvii, gvii), and mixed group. The
comparison made by one group over all full groupd ainding out the matched
pharmacophore.
First | will explain the data structure:
1) Three dimensional molecular structure of all compusuis saved as first table of
following format:
NSC (drug no.), X (x axis position), Y (y axis pos), Z (z axis position), AT (atom
type).
2) Load the compound structural information in MyS@hd adding each atom position
a progressive number saved as second tAl8€ (drug no.), X (x axis position), Y (y

axis position), Z (z axis position), AT (atom typB)(progressive number).

3) Creating a third table that contain Euclidian dis@a between two atoms in same
compound, i.e. one segment distance between twosatand a tolerance value of +/-
5% is applied. This data looks like the following:

[NSC], [id 1,2,3 (progressive number of atoms)],ufidian distance 1,2], [Euclidian

distance 1,3], [Euclidian distance 2,3].

[NSC], [progressive no. atom 1], [progressive ntora 2],[Jatom 1 type], [atom 2 type],

[distance].

Where Euclidian distance represents all possiblmbooation between three atoms

structure, and progressive number represent then giosition sequence number in
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Cartesian plane according to main file of three efisional molecular structure of

compounds, and progressive number related to NSIE, tand using this table I'm able to

identify the atom coordinate, for example [atom ID=NSC=378727] this means that the

program will extract the fdatom from NSC table of compound ID=378727. this

4) Creating MySQL file structure to load three poiptsarmacophore distances of forth
table, and the data are split to 1000 table, eable tcontain atom related to this
category.

[NSC], [id 1,2,3 (progressive number of atoms)],ufiidian distance 1,2], [Euclidian

distance 1,3], [Euclidian distance 2,3], numbersiiilarity of triangle inside interested

group.

Then updating the MySQL file by all compounds pbkspharmacophores.

5) Writing a tool to extract a similar pharmacophotestween classified groups in
comparison with high toxic compounds group. Thepss computer time consuming

specially when the compounds contains high numbatoons.

There are two rules of comparison applied to pnogohcomparison:
1) Discard triangles (three atoms pharmacophore)catiains more than one atom labeled
as H.
2) Discard triangles made by same atom type for atexefor e.g. (0,0,0) (H,H,H).

The next data is the result of searching, and explthe MySQL table (table4) which

indicates to high number of different similar trages with same atom types:

Main Group | : table4 (C-C-N)= 50 different similar triangleiable4 (C-C-0)=132 different
similar triangles, table4(C-0O-0)=47 different similtriangles.
Main Group Il : table4 (C-C-0)=337 different similar triangles, bi@4 (C-O-0)=136

different similar triangles

60



Main Group Il : table4 (C-C-N)=318 different similar triangles, b@4 (C-C-0)=399

different similar triangles, table4(C-N-N)=46 difémt similar triangles, table4 (C-N-O)=110
different similar triangles, table4 (C-O-O)=114 f#ifent similar triangles.

Mixed group : table4(C-C-0)=229818 different similar trianglesable4(C-0O-0)=96258

different similar triangles.

Sub Group i, ii, iii: table4(C-C-O)=105 different similar triangles, tad(C-O-0O)=55

different similar triangles.

Full Group: table4(C-C-N)=410 different similar triangles, tad(C-C-0)=1272804
different similar triangles, table4(C-N-N)=56310 fféirent similar triangles, table4(C-N-
0)=143504 different similar triangles, table4(C-O=£259416 different similar triangles,

But up to this step, | don’'t know which pharmacomsothat I'm interested to find it, the
above table just indicates that they are enormawsber of triangle in certain atom
sequences.

After long program calculations to find similar cpound among each group with high toxic
compound group, the major similarity found in mamoups (Group |, Group Il, Group 1lI)

and mixed group but up to this step | have no itlea critical distances of seeking
pharmacophore. As we see from above data that (@-@harmacophore is the most

frequent table occurred compared to other pharnfameg when compared with full group.

4.5 Filtering resulted pharmacophores:

A program is developed to compare each group withgfoup to find where high number of
similarities occurred and applying different vahfetolerances from 1% to 7% , and different
values of threshold value of similarities numbeneTprogram take each pharmacophore from

a group and compare it with full group and how mainye occurred in full group. The
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interested pharmacophore should has high numbecafrrence compared to the other, and
this is the result of (C-C-O) atoms:

Group | compare it to full group = 70 (C-C-O) siauilpharmacophores.
Group Il compare it to full group = 264 (C-C-O) dlar pharmacophores.
Group 11l compare it to full group = 18 (C-C-O) silaxr pharmacophores.
Group i, i, iit compare it to full group = 30 (C-©) similar pharmacophores.
Group mixed compare it to full group = 34 (C-C-Qingar pharmacophores.

The next step after determining the suspected tagic pharmacophores in the range from
5.022 up to 12.38, is to find the low toxic pharmaitores of the rang from O up to —4 while
the curve of figure. x begin to climb at 3.75 a®#hold value of low toxicity.

Low toxic compound found across database for vigs® than 3.75 across all cell lines, there
are 67 compounds are found, and this is the listoofipounds that could be considered as
very low toxic compounds.

740, 752, 755, 3088, 4728, 6396, 7365, 8806, 1989348, 23759, 25154, 26271, 27640,
32065, 32946, 34462, 51148, 63878, 67574, 7126851173754, 77213, 79037, 85998,
95466, 107392, 109724, 118742, 118949, 119875,42627716, 129943, 139490, 143095,
153353, 169780, 178248, 218321, 241240, 2569277281264880, 267213, 280594,
281272, 284751, 291643, 303812, 303861, 312887058,4322921, 329680, 330915,
338947, 339004, 348948, 353451, 356894, 36145@BHB 75575, 406021, 409962.

Also there are compounds with low toxicity, i.engmunds of low toxicity less 3.75 but it

doesn't reach the negative value of screened valnd,these compounds of low toxicity
about 167 compounds.
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One important point | would like to mention is thdtow toxic” compounds are not
complicated in structure as high toxic compoundnsmeed to split the low toxic compound
to another groups to analyze because it contaimsrloaumber of atoms with respect to high
toxic compound.

After analyzing result of very low toxic and lowxio compounds, | start with very low toxic
pharmacophore that could be shared with high tgtiarmacophores, and these shared
pharmacophores was very few , and these toxicophoas be discarded from high toxic
pharmacophore because it doesn’t deal with highctoand the same as for low toxic
pharmacophores. But there are important observasidhat number of pharmacophores of
low toxic toxicophores is higher than in very loaxic pharmacophores which means that
number of pharmacophores is dependent on toxicity.

To illustrate what it has be done by MySQL scrifisHigh Toxic Pharmacophores (HTP)
with Very Low Toxic Pharmacophores (VLTP), and Ldwxic Pharmacophores (LTP),
figure 4.4 illustrates that high toxic, low tox@nd very low toxic pharmacophores sharing a

small amount of pharmacophores.

Figure 4.4 High toxic pharmacophores relation Wath & very low pharmacophores
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The result HTP is containing only high toxic elertgetihat’s may responsible of drug toxicity,
and this graph is exactly representing the dataiodd by R program and MySQL scripts by
the area shared between three circles and thedshiaze.

The number of common pharmacophores in HTP arm@lyirthirty of (Carbon, Carbon,
Oxygen), these pharmacophores is plotted in X-Yh@léo see how these pharmacophore
share the same dimension and position in X-Y plaamed figure 4.5 illustrates that
pharmacophores sharing the similar three pointaies and has the same orientation. The
blue points show how much toxicophores are similar.

Figure 4.5 Thirty Similar High toxic pharmacophore

Next data show the tolerances of distance and deglecen L1 and L2:
Start — size for angle 125° +12°

Start — size for L1 is 13.89932 +1A°
Start — size for L2 is 2.424858 +0.01A°
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Chapter 5

Compounds Toxicity Index (TI)

Toxicity Index (TI) is the value that describes tbgicity of drugs, and this value is function
of toxicity screened value over all cell lines, andnber of toxic pharmacophores found. To
calculate Toxicity Index, first calculate the meatue over all cell lines, median, or Inter
Quartile Rage (IQR), and second dividing numbeogicophores assigned to certain value
over the number of NSC drug found on the same asdigertain value. The resulted value

indicate the toxicity index.

The next graph figure 5.1 illustrates the numbefoahd toxicophores over all screened cell
lines, and according to this graph we could noticat number of pharmacophores is
increased with toxicity screened value but theesi@portant point | would like to mention is,

why toxicity at screened value of 6 and 7 the vatidound pharmacophores is low? The
answer is, the number three dimensional molecuteuctsire of compound for some

compounds of high value (700,000 and more) aresmpported by Corina and NCI databases,
and according to that it's impossible to know theamnacophores when the 3D molecular

structure are not found. Another point that coutdnioticed from the graph of figure 5.1 that
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on low screened toxicity screened value there aretoxicophores found, also one the

negative value of screened value.

40

#Triangles
20

10

mean value of toxicity over all cell ines

Figure 5.1 Toxicophores found over screened valwexicity over all cell lines

5.1 3D parameters of found Toxicophores:

The three dimensional structures of found 28 tqaves is represented using following
table 5.1, where it contains reference table nunfiber of Carbon-Carbon-Oxygen, NSC
(drug identifier) , atom allocation number in taloleNSC (T), length L1, length L2, Length

L3 in Angstrom, and the angle Alfa in Radian:
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Tabl e NSC T L1 L2 L3 Alfa
Table4_C C O 700372 31-88-2 16.20748 2.428333 17.42171 2.030679
Table4_C C O 700372 67-78-80 16.25637 2.420331 17.37977 1.988591
Table4_C C O 700372 55-88-2 14.39086 2.428333 15.89636 2.174911
table4_C C O 609394 64-26-3 14.23575 2.441224 15.9272 2.276131
table4d_C C O 700367 81-31-29 14.26114 2.436637 15.86973 2.22935
table4_C C O 641321 14-42-41 13.17354 2.416691 14.8522 2.274624
table4_C C O 684425 47-26-21 14.39116 2.448265 15.88837 2.163118
table4d_C C O 684428 58-10-28 14.33513 2.426273 15.77498 2.139591
table4_C C O 684428 71-39-43 13.12527 2.422891 14.44003 2.068624
table4_C C O 688512 57-39-31 12.9158 2.422313 14.42684 2.173065
table4d_C C O 677083 26-56-47 13.09702 2.418595 14.46273 2.096445
table4_C C O 685968 15-38-37 13.13128 2.418098 14.50641 2.101787
table4_C C O 684428 1-55-53 14.77334 2.429486 16.18381 2.124746
table4d_C C O 700370 56-26-22 13.436 2.414374 14.98402 2.199699
table4_C C O 700657 20-8-10 14.78108 2.430638 16.46092 2.275964
table4_C C O 700370 35-82-2 13.20112 2.432694 14.54055 2.078747
table4_C C O 677083 27-56-47 13.43909 2.418595 14.95448 2.179614
table4_C C O 684428 29-66-57 13.21952 2.421983 14.75371 2.187804
table4_C C O 700370 61-26-22 14.41008 2.414374 16.00594 2.231671
table4d_C C O 684428 67-10-28 14.44452 2.426273 16.12128 2.274717
table4_C C O 700370 19-64-48 14.82733 2.426108 16.23294 2.123536
table4_C C O 684428 27-66-57 14.27671 2.421983 15.82517 2.200846
table4d_C C O 688512 60-39-31 12.95836 2.422313 14.82737 2.394629
table4_C C O 700370 58-26-22 13.41125 2.414374 14.8467 2.1369
table4_C C O 700657 18-8-10 13.22903 2.430638 14.89408 2.260448
table4_C C O 684428 74-39-43 14.12035 2.422891 15.72826 2.233968
table4_C C O 688512 63-39-31 13.26268 2.422313 14.839 2.211926
table4_C C O 684428 18-45-43 12.90972 2.432776 14.75409 2.37182

Table 5.1 List of found Toxicophores 3D informason

To see the effect the number of compounds fouatllias interested pharmacophores over
Toxicity Index, a number of pharmacophores foundeanh screened value is divided over
number of compound over that value, so this willegas a ratio, and this ratio is plotted over
toxicity index because toxicity index not dealinghwnumber of found pharmacophores but
also with number of compounds that has high nurobegpeat of interested pharmacophores,
this is illustrated in figure 5.2B.

Figure 5.2B is extracted from figure 5.2A whereufigg 5.2B shows frequency of toxicophores

matches, and frequency of number of compoundsadifferent values of toxicity index.
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The result of figure 5.2B looks convincible becatseic pharmacophores located in high
toxicity index, and show zero values at low toxigitdex, i.e. number of found toxicophores
is available in high value, but the question tvat could ask ourselves , which of twenty
eight toxicophores that could be the major inflleenttoxicity index? Therefore it is better to

divided into groups, and to see effect of each g toxicity index.

Histogram Histogram
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Figure 5.2 Toxic pharmacophore with respect nunlbeompounds distribution over TI

5.2 Finding the most toxic pharmacophores from redutoxicophores:

As we saw in figure 4.5 that the toxicophaabmeost similar, but there are margins of

distances L1, L2, and] (alpha) angle as follow:

The full coverage of points for resulted pharmaayph:
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The full coverage group is divided to four subgreup

Subset 1.
0 =113-122
L1=13.9-14.9
L2 =2.41-2.45

1.9722007017 2.12930
12.9071 L1101 14.9
241171 L2112.45

2 triangles found

Subset 3:
0 =122-131

L1=139-14.9
L2=241-2.45

2.129300 1111 2.28638
13.901 L1171 14.9
241111211245

2 triangles found
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Start - Size for the angle 125.60245 +18°
Start - Size for thd L1 : 13.899323 +2A°
Start - Size for thd L2 : 2.4248583 +0.04A°

Subset 2:
0 =113-122
L1=12.9-13.9
L2 =2.41-2.45

1.97220117 2.12930
12.97 L1171 13.9
24111211 2.45

4 triangles found

Subset 4
0 =122-131
L1=12.9-13.9
L2=2.41-2.45

2.12930 111 2.28638
12,97 L1 11 13.9
241112101 2.45

2 triangles found



The groups are divided according to marginal distan for example group subsetl and

subset? they are divided by fixing L2 parametad assigning L1 of one Angstrom margin

(12.9A°-13.9A°, 13.9A°-14.9A°) and 0 of 9 degree margin (113-122), while subset3 and

subset4 | fix L2 parameter, and assigning L1 of émmstrom margin (12.9A13.9A°,
13.9A°-14.9A°) andO of 9 degree margin (122-131).

These four subset are executed in Biocluster ththie most intensive group to toxicity index,

and the output are plotted in figure 5.3 to seedffiect of this subdivision and to determine

the most intensive toxicophores parameter thatm@sgonsible for toxicity.

toxicophores parameter that may responsible facitiyx
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According to the plotted output, | could conclutiattsubset 1 and 2 has very toxic effect on
high toxicity index; so these pharmacophores céa@dnuch responsible structure to toxicity
of drugs, and now by selecting the subsetl andes2las major toxic pharmacophore across
all subsets, and the result is six out of twentyase found in compounds with toxicity index
greater than 6, the other in compounds with toxicitiex between 5 And 6.

One thing | would like to do after getting thessuigs, is to be sure if toxicity structure found
is related to similarity structure dependent or.niétnot it will be fine because in that case

means that toxicophores is not structure similatégendent.

5.3 Toxicophores is it similarity dependent?

To justify if result pharmacophores are comesnfreimilarity between structure, or they
result because they are sharing special arrangeshémtee atoms or more.
A number of compounds are selected in the margitoxitity index between 6 and 7, high
repeat rate of toxicophores. These compounds dreergal and plotted using RAS-MOL
molecular graphics program V.2.7.3 [30] in threenelnsional space, this will help us to
visualize if there are compounds sharing similaucitire, This program reads in a molecule
coordinate file and interactively displays the necole on the screen in a variety of color
schemes and molecule representations. Currentliablearepresentations include depth-cued
wire frames, 'Deriding' sticks, space filling (CPBpheres, ball and stick, solid and strand
biomolecular ribbons, atom labels and dot surfates. compounds are shown in figure 5.4

as wire frame structure.

After visualizing figure 5.4 of different compoundsllection of toxicity index between 6 and
7, and also these compounds has high number of corphlrarmacophores shared, we could
conclude that the structure are completely diffefeam each other, and they don’t share any
kind of similarity, this result show that pharmabopes found are not compounds structure

dependent, but toxicity structure dependent.
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5.4 Marking pharmacophores on high Tl drugs:

After determining the most toxic subgroup of toxibores and compounds, now the critical
distances of three points pharmacophores and angjielear.

Three points pharmacophores show critical intematdhat represents pharmacophore in
three dimension as shown in figure 5.5 and expthingable 5.2 where it contain drug
identifier NSC, atom positions in X, Y, Z plane daatom type. Some of the compounds
represented in pharmacophore contains more thaa #tom similarity, so new
pharmacophore structure are showed in figure 5.8 sioms structure, so the result is 4-
points pharmacophore. Four points pharmacophorkaackto find when start searching for
common 4-points pharmacophore from scratch, bedaeseutine programs will be more
complicated and time consuming, therefore usingegbknique that | followed by searching
for three points toxicophores it is possible taffour points toxicophores because you can
imagine that four points pharmacophore is two tip@eats pharmacophore by sharing

common atoms positions between them.

NSC X Y Z atom type
700372 1.58 11. 54 11. 32 C
1.04 -0.92 2.48 C
1.5 -0.16 0.22 0
0.74 -9.48 -8.82 [
-1.38 -6.44 8.16 C
-0.12 -4.92 6.76 0
609394 5.5346 -3.8295 2.1498 C
-8.9462 0.8668 -2.5325 C
-7.4254 1.3357 -0.6814 0
700367 -1.98 1.54 -3.86 C
2.8 -12.3 -9.98 C
1.38 -10.48 -10.76 ¢}
641321 -5.2655 5.0552 2.4128 C
8.7252 1.8816 -1.4312 C
6.5132 1.0273 -1.8977 0
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684425 -3.54 -1.58 -1.08 C
11.18 -7.56 -1.04 C
10.34 -5.34 -1.64 ®]
677083 -10.24 -3.7 -4.08 C
1.48 1.58 2.5 C
-0.76 1.34 3.38 O
-10.94 -4.6400 -3.04 C
1.48 1.58 2.5 C
-0.76 1.34 3.38 O
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Table 5.2 Critical more than three points toxicasgositions
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Figure 5.5 Marking interested pharmacophores ot ltbgic index drugs



Conclusion

This work is mainly computational challenge byiyito understand how it is possible
to extract a certain pharmacophores from huge rifba three dimensional molecular
modeling of screened compounds, and trying towdesrand constrains over the result output
to let the result convincible to researcher becassee times similarities becomes high on
certain atom sequences within certain distancesdsst atoms and the assigned margin will

control the output.

Toxicophores actually tedious work to find becaliselooking for something that initially |
have no idea about it, how it's structured?, how @onnected?, and what is the critical
distances over this Toxicophores. So the work stidm scratch by collecting initially
information over all high toxic screened compouradues and trying to find local structure
similarity among all these compounds, and compatimg result with low toxic value
screened compound to see if some structures repeatwot.

Actually the result Toxicophores passes througlyg knmnel of examinations before | said this

is the suspected Toxicophores.
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Perspectives

An interesting issue to be investigated is theri@din of the gene targets of the toxic
effect induced by the toxicophores we have idesdifiRecently Lee and coworkers
(Proc. Natl. Acad. Sci. USA 2007, 104:13086—130B4aye published an approach to
associate specific transcriptional signatures edl&b sensitivity/resistance of drugs. They
use NCI data to define a set of the NCI60 cellditieat are responsive or not to a specific
treatment with a drug. Subsequently they use thestription profiles of the untreated
NCI60 cell lines to extrapolate a signature thdt define which genes are linked to the
drug sensitivity or resistance. We will apply thepproach to define the genes associated
to the resistance/sensitivity to the toxicophoreshave identified in this study.
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